A Dynamic Permeability Model in Shale Matrix after Hydraulic Fracturing: Considering Mineral and Pore Size Distribution, Dynamic Gas Entrapment and Variation in Poromechanics
Abstract
:1. Introduction
2. Complex Pore Characterisation
2.1. Description of PSD within Different Minerals
2.2. Coupling PSD by Comparing NMR and FIB-SEM Data
2.3. Log–Gaussian Mixed Capillary Model for Describing Overlapped Pores Distribution in Clay and Brittle Minerals Based on Coupled Data
2.4. Capillary Bundle Model for Describing Shale Matrix
2.5. Tortuosity of Capillary Tube Model
2.6. Stress Dependent Pore Radius Correlation
2.6.1. Pores with Brittle Mineral and Clay Mineral
2.6.2. Water Film Thickness Considering Adsorption
2.6.3. Pores in Organic Matter
3. Dynamic Permeability Model
3.1. Flowing Mechanism Considering Hydraulic Fracturing Process
3.2. Water Bridging Mechanism during Production
3.3. Mixed Flow Regime
3.3.1. Free Gas Viscous Flow after Fracturing Process
3.3.2. Adsorption Gas Diffusion with Impact of Fracturing Process
3.3.3. Correlation of Free Gas Flux from Slip Flow and Knudsen Diffusion
3.4. Development of Dynamic Apparent Permeability Model
4. Model Validation
4.1. Validation of Apparent Permeability Model for Single Capillary
4.2. Validation of Dynamic Permeability with Experiment Data
4.3. Validation of Dynamic Permeability under Field Conditions: Numerical Simulation
5. Result and Discussion
5.1. Dynamic Permeability under Different Reservoir Conditions
5.2. Fracturing-Induced Water Blockage and Water-Film Thickness during Production
5.3. Fracturing Effected Adsorption Layer Thickness and Consequentially Impacted Permeability
5.4. Influence of Clay-Shaped Factors
6. Conclusions
- Bayesian-assisted Gaussian description for the three majority minerals derived from coupled FIB-SEM and NMR data proves to be viable for accurately describing the PSD in shale. The corresponding dynamic permeability model demonstrates an intimate association with experimental data.
- The fracturing-induced imbibition process results in water blockage and water bridging mechanisms during shale gas production, impacting the dynamic permeability in the matrix. The water blockage phenomenon significantly reduces permeability in nano-scaled brittle minerals and clay. Substantial water blockage requires a larger pressure gradient to overcome. The impact on total permeability, however, depends on the subsequent PSD in the micro-scale. Nano-scaled dominated OMP and micro-scaled dominated brittle and clay pores reduce the impact on permeability from water blockage. Water bridging occurs only in nano-scale OMP below 50nm at high pressure and temperatures. Due to the high concentration of OMP, the permeability contribution cannot be neglected.
- Reservoir depletion has a substantial impact on permeability, showing a declining trend as pore pressure increases. In addition to poromechanics, the fracturing-induced imbibition phenomenon reduces the thickness of the water film inside pores, significantly impacting adsorbed gas permeability, and only marginally boosting the contribution of free gas to permeability.
- Due to the high permeability of large-scale clay mineral pores, the SF of clay minerals significantly influences dynamic permeability. With constant pore spacing, higher SF clay mineral pores reduce permeability in the shale matrix.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
total organic carbon | TOC |
surface relaxivity | |
ratio of surface area to pore volume | |
standard derivations of Log-gaussian distribution | |
mean of Log-gaussian distribution | |
volume concertation of brittle, organic matter and clay, respectively | |
hydraulic tortuosity | |
porosity | ϕ |
surface area | S |
shape factor | β |
sphericity of particle | ξ |
residual porosity at high stress | |
initial porosity | |
mean effective stress | |
force between water film and surface | |
force between water film and opposite surface | |
force between two adsorbed water films | |
water film thickness | h |
equivalent proe radius | r |
idea gas constant | R |
media permeability | |
initial media permeability | |
media compressibility | |
change of effective stress | |
Poisson’s ratio | ν |
media pressure | p |
Langmuir-type organic matter shrinkage constants | εl, pε |
initial water saturated capillary length | |
interfacial tension of water | |
tortuosity-considered equivalent capillary length | |
critical film thickness | h⁎ |
saturated vapor pressure | |
fitting curve coefficient | |
viscous of gas | |
Knudsen number | |
Rarefaction coefficient | |
diffusion coefficient | |
molar concentration of adsorbed gas | |
Avogadro constant | |
langmuir pressure | |
tortuosity-considered capillary length | |
molecular mass | M |
shape factor of clay minerals | |
Young’s Modulus | E |
Adsorption isothermals | ∆H |
Electrical conductivity | e |
References
- Li, M.; Pang, X.; Xiong, L.; Hu, T.; Chen, D.; Zhao, Z.; Hui, S. Application of mathematical statistics to shale gas-bearing property evaluation and main controlling factor analysis. Sci. Rep. 2022, 12, 9859. [Google Scholar] [CrossRef] [PubMed]
- Chai, D. Comprehensive Characterization of Shale Gas Seepage in Nanoscale Organic-Rich Shales. Ph.D. Thesis, University of Houston, Ann Arbor, MI, USA, 2020. Available online: https://www.proquest.com/dissertations-theses/comprehensive-characterization-shale-gas-seepage/docview/2494342993/se-2?accountid=132643 (accessed on 13 March 2022).
- Li, F.; Wang, M.; Liu, S.; Hao, Y. Pore characteristics and influencing factors of different types of shales. Mar. Pet. Geol. 2019, 102, 391–401. [Google Scholar] [CrossRef]
- Saif, T.M.A. Multi-Scale Multi-Dimensional Imaging and Characterization of Oil Shale Pyrolysis. AGU Fall Meeting Abstracts. 2017. Available online: https://ui.adsabs.harvard.edu/abs/2017AGUFMEP21H..08G (accessed on 20 December 2023).
- Chandra, D.; Vishal, V. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery. Earth-Sci. Rev. 2021, 217, 103638. [Google Scholar] [CrossRef]
- Goral, J. Digital Rock Physics for Multiscale Characterization of Heterogeneous Petroleum Geomaterials. Master’s Thesis, The University of Utah, Salt Lake City, UT, USA, 2022. Available online: https://www.proquest.com/pqdtglobal/docvie-w/1983971354/abstract/B0790A58BFF94CC7PQ/1 (accessed on 19 May 2022).
- Zhang, D.; Meegoda, J.N.; da Silva, B.M.G.; Hu, L. Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling. Sci. Rep. 2021, 11, 20049. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Lin, D.; Singh, H.; Wei, W.; Zhou, S. Shale gas transport model in 3D fractal porous media with variable pore sizes. Mar. Pet. Geol. 2018, 98, 437–447. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Williams-Kovacs, J.D. Modeling Two-Phase Flowback of Multifractured Horizontal Wells Completed in Shale. Spe J. 2013, 18, 795–812. [Google Scholar] [CrossRef]
- Cui, J.; Cheng, L. A theoretical study of the occurrence state of shale oil based on the pore sizes of mixed Gaussian distribution. Fuel 2017, 206, 564–571. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ma, X.H.; Zhang, X.W.; Guo, W.; Kang, L.X.; Yu, R.Z.; Sun, Y.P. A deep-learning-based prediction method of the estimated ultimate recovery (EUR) of shale gas wells. Pet. Sci. 2021, 18, 1450–1464. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Holmes, P. Micro and Nano Flow, 5th ed.; Applied Mathematical Sciences; Springer: New York, NY, USA, 1997; Volume 42. [Google Scholar]
- Wang, J.; Rahman, S.S. Investigation of Water Leakoff Considering the Component Variation and Gas Entrapment in Shale During Hydraulic-Fracturing Stimulation. SPE Reserv. Eval. Eng. 2016, 19, 511–519. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, B.; Ye, K.; Li, H.; Tan, Y. Spontaneous imbibition model for micro–nano–scale pores in shale gas reservoirs considering gas–water interaction. J. Pet. Sci. Eng. 2022, 209, 109893. [Google Scholar] [CrossRef]
- Afagwu, C.; Abubakar, I.; Kalam, S.; Al-Afnan, S.F.; Awotunde, A.A. Pressure-transient analysis in shale gas reservoirs: A review. J. Nat. Gas Sci. Eng. 2020, 78, 103319. [Google Scholar] [CrossRef]
- Fu, J.; Su, Y.; Chen, Z.; Li, L.; Wang, W.; Zhan, S. Distribution of a water film confined in inorganic nanopores in real shale gas reservoirs. J. Pet. Sci. Eng. 2022, 209, 109831. [Google Scholar] [CrossRef]
- Gao, Q.; Han, S.; Cheng, Y.; Li, Y.; Yan, C.; Han, Z. Apparent permeability model for gas transport through micropores and microfractures in shale reservoirs. Fuel 2021, 285, 119086. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Su, Y.; Jin, Z. Lattice Boltzmann Model for Oil/Water Two-Phase Flow in Nanoporous Media Considering Heterogeneous Viscosity, Liquid/Solid, and Liquid/Liquid Slip. SPE J. 2022, 27, 3508–3524. [Google Scholar] [CrossRef]
- Wang, K.; Ye, K.; Jiang, B.; Li, H.; Tan, Y. The mechanism of gas-water extraction in micro- and nanoscale pores in shale gas reservoirs: Based on gas-water interactions. Chem. Eng. Sci. 2022, 248, 117259. [Google Scholar] [CrossRef]
- Xu, J.; Wu, K.; Li, R.; Li, Z.; Li, J.; Xu, Q.; Li, L.; Chen, Z. Nanoscale pore size distribution effects on gas production from fractal shale rocks. Fractals 2019, 27, 1950142. [Google Scholar] [CrossRef]
- Alharthy, N.S.; Nguyen, T.N.; Teklu, T.W.; Kazemi, H.; Graves, R.M. Multiphase Compositional Modeling in Small-Scale Pores of Unconventional Shale Reservoirs. In SPE Annual Technical Conference and Exhibition; SPE: Abu Dhabi, United Arab Emirates, 2013; p. D031S052R008. [Google Scholar] [CrossRef]
- Cao, P.; Liu, J.; Leong, Y.-K. A fully coupled multiscale shale deformation-gas transport model for the evaluation of shale gas extraction. Fuel 2016, 178, 103–117. [Google Scholar] [CrossRef]
- Shen, R.; Zhang, X.; Ke, Y.; Xiong, W.; Guo, H.; Liu, G.; Zhou, H. An integrated pore size distribution measurement method of small angle neutron scattering and mercury intrusion capillary pressure. Sci. Rep. 2021, 11, 17458. [Google Scholar] [CrossRef]
- Sheng, G.; Javadpour, F.; Su, Y. Dynamic porosity and apparent permeability in porous organic matter of shale gas reservoirs. Fuel 2019, 251, 341–351. [Google Scholar] [CrossRef]
- Xiao, D.; Lu, Z.; Jiang, S.; Lu, S. Comparison and integration of experimental methods to characterize the full-range pore features of tight gas sandstone—A case study in Songliao Basin of China. J. Nat. Gas Sci. Eng. 2016, 34, 1412–1421. [Google Scholar] [CrossRef]
- Sakhaee-Pour, A.; Bryant, S.L. Pore structure of shale. Fuel 2015, 143, 467–475. [Google Scholar] [CrossRef]
- Wang, D.; Yao, J.; Chen, Z.; Song, W.; Cai, M.; Tian, M.; Zhang, J.; Xu, W. Image-based model for dynamic apparent gas permeability in Organic-rich shales. Fuel 2022, 318, 123588. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, S.; Yao, X.; Hu, X.; Chen, S. Evaluation of Gas Adsorption in Nanoporous Shale by Simplified Local Density Model Integrated with Pore Structure and Pore Size Distribution. Langmuir 2022, 38, 3641–3655. [Google Scholar] [CrossRef] [PubMed]
- Blauch, M.E. Developing Effective and Environmentally Suitable Fracturing Fluids Using Hydraulic Fracturing Flowback Waters. In SPE Unconventional Resources Conference/Gas Technology Symposium; SPE: Abu Dhabi, United Arab Emirates, 2010; p. SPE-131784-MS. [Google Scholar] [CrossRef]
- Duong, A.N. Rate-Decline Analysis For Fracture-Dominated Shale Reservoirs: Part 2. In SPE/CSUR Unconventional Resources Conference–Canada; OnePetro: Richardson, TX, USA, 2014; p. D021S008R001. [Google Scholar] [CrossRef]
- Inman, M. Natural gas: The fracking fallacy. Nature 2014, 516, 28. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Q.; Ma, T.H.; Zhang, L.Y.; Huang, B.; Li, A.S. Study on Hydraulic Fracturing Affected by Natural Fractures. Appl. Mech. Mater. 2014, 501–504, 2056–2059. [Google Scholar] [CrossRef]
- Tian, Z.; Wei, W.; Zhou, S.; Sun, C.; Rezaee, R.; Cai, J. Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale. Energy 2022, 244, 122707. [Google Scholar] [CrossRef]
- Fu, J.; Su, Y.; Li, L.; Wang, W.; Wang, C.; Li, D. Productivity model with mechanisms of multiple seepage in tight gas reservoir. J. Pet. Sci. Eng. 2022, 209, 109825. [Google Scholar] [CrossRef]
- Dongari, N.; Sharma Iitk, A.; Durst, F. Pressure-driven diffusive gas flows in micro-channels: From the Knudsen to the continuum regimes. Microfluid. Nanofluidics 2009, 6, 679–692. [Google Scholar] [CrossRef]
- Xu, R. Pore Scale Study of Gas Sorption and Transport in Shale Nanopore Systems. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2020. [Google Scholar] [CrossRef]
- Shi, K.Y.; Chen, J.Q.; Pang, X.Q.; Jiang, F.J.; Hui, S.S.; Zhao, Z.C.; Chen, D.; Cong, Q.; Wang, T.; Xiao, H.-Y.; et al. Wettability of different clay mineral surfaces in shale: Implications from molecular dynamics simulations. Pet. Sci. 2023, 20, 689–704. [Google Scholar] [CrossRef]
- Wang, K.; Ma, L.; Taylor, K.G. Microstructure changes as a response to CO2 storage in sedimentary rocks: Recent developments and future challenges. Fuel 2023, 333, 126403. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.-P. Pore-scale diffusivity and permeability evaluations in porous geomaterials using multi-types pore-structure analysis and X-μCT imaging. J. Hydrol. 2022, 615, 128704. [Google Scholar] [CrossRef]
- Alkouh, A.; Wattenbarger, R.A. Estimation of Effective-Fracture Volume Using Water-Flowback and Production Data for Shale-Gas Wells. J. Can. Pet. Technol. 2014, 53, 290–303. [Google Scholar] [CrossRef]
- An, C.; Fang, Y.; Liu, S.; Alfi, M.; Yan, B.; Wang, Y.; Killough, J. Impacts of Matrix Shrinkage and Stress Changes on Permeability and Gas Production of Organic-Rich Shale Reservoirs. In SPE Reservoir Characterisation and Simulation Conference and Exhibition; OnePetro: Richardson, TX, USA, 2017; p. D021S009R002. [Google Scholar] [CrossRef]
- Cao, P.; Liu, J.; Leong, Y.-K. Combined impact of flow regimes and effective stress on the evolution of shale apparent permeability. J. Unconv. Oil Gas Resour. 2016, 14, 32–43. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Chen, W.; Wang, S.; Wang, X. Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale. Sci. Rep. 2017, 7, 44696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Ma, D. Effective stress characteristics in shale and its effect on shale gas productivity. J. Nat. Gas Geosci. 2018, 3, 339–346. [Google Scholar] [CrossRef]
- Javadpour, F. Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone). J. Can. Pet. Technol. 2009, 48, 16–21. [Google Scholar] [CrossRef]
- Li, Y.; Dong, P.; Zhou, D. A dynamic apparent permeability model for shale microfractures: Coupling poromechanics, fluid dynamics, and sorption-induced strain. J. Nat. Gas Sci. Eng. 2020, 74, 103104. [Google Scholar] [CrossRef]
- Shi, J.Q.; Durucan, S. Drawdown Induced Changes in Permeability of Coalbeds: A New Interpretation of the Reservoir Response to Primary Recovery. Transp. Porous Media 2004, 56, 1–16. [Google Scholar] [CrossRef]
- Afagwu, C.; Alafnan, S.; Mahmoud, M.A.; Patil, S. Permeability model for shale and ultra-tight gas formations: Critical insights into the impact of dynamic adsorption. Energy Rep. 2021, 7, 3302–3316. [Google Scholar] [CrossRef]
- Balczár, I.; Korim, T.; Dobrádi, A. Correlation of strength to apparent porosity of geopolymers–Understanding through variations of setting time. Constr. Build. Mater. 2015, 93, 983–988. [Google Scholar] [CrossRef]
- Gu, X.; Mildner, D.F.R.; Cole, D.R.; Rother, G.; Slingerland, R.; Brantley, S.L. Quantification of Organic Porosity and Water Accessibility in Marcellus Shale Using Neutron Scattering. Energy Fuels 2016, 30, 4438–4449. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.; Meng, Q.; Wang, Y.; Cai, J. Fractal models for gas–water transport in shale porous media considering wetting characteristics. Fractals 2020, 28, 2050138. [Google Scholar] [CrossRef]
- Hagita, K.; Higuchi, T.; Jinnai, H. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning. Sci. Rep. 2018, 8, 5877. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Su, Y.; Hao, Y.; Guo, Y.; Elsworth, D.; Li, L.; Li, D.; Li, X. Monitoring oil displacement and CO2 trapping in low-permeability media using NMR: A comparison of miscible and immiscible flooding. Fuel 2021, 305, 121606. [Google Scholar] [CrossRef]
- Andersen, P.Ø. Steady-State Gas Flow from Tight Shale Matrix Subject to Water Blocking. SPE J. 2021, 26, 3970–3985. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, G.; Bi, H.; Shi, Y.; Gao, Y.; Han, X.; Zeng, X. A new method to determine surface relaxivity of tight sandstone cores based on LF-NMR and high-speed centrifugation measurements. J. Pet. Sci. Eng. 2021, 196, 108096. [Google Scholar] [CrossRef]
- Taghavinejad, A.; Sharifi, M.; Heidaryan, E.; Liu, K.; Ostadhassan, M. Flow modeling in shale gas reservoirs: A comprehensive review. J. Nat. Gas Sci. Eng. 2020, 83, 103535. [Google Scholar] [CrossRef]
- Ahmadi, M.; Mohammadi, S.; Nemati Hayati, A. Analytical derivation of tortuosity and permeability of monosized spheres: A volume averaging approach. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 83, 026312. [Google Scholar] [CrossRef]
- Ashrafi Moghadam, A.; Chalaturnyk, R. Expansion of the Klinkenberg’s slippage equation to low permeability porous media. Int. J. Coal Geol. 2014, 123, 2–9. [Google Scholar] [CrossRef]
- Miguel, A.F.; Serrenho, A. On the experimental evaluation of permeability in porous media using a gas flow method. J. Phys. D Appl. Phys. 2007, 40, 6824–6828. [Google Scholar] [CrossRef]
- Rutqvist, J.; Wu, Y.-S.; Tsang, C.-F.; Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 429–442. [Google Scholar] [CrossRef]
- Tuller, M.; Or, D.; Dudley, L.M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour. Res. 1999, 35, 1949–1964. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wu, K.; Feng, D.; Zhang, T.; Zhang, Y. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. Int. J. Coal Geol. 2017, 179, 253–268. [Google Scholar] [CrossRef]
- Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometre films. Nature 2001, 413, 51–54. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, X.; Li, Y.; Wu, K.; Shi, J.; Yang, L.; Feng, D.; Zhang, T.; Yu, P. Water distribution characteristic and effect on methane adsorption capacity in shale clay. Int. J. Coal Geol. 2016, 159, 135–154. [Google Scholar] [CrossRef]
- Teng, T.; Wang, J.G.; Gao, F.; Ju, Y.; Jiang, C. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization. J. Nat. Gas Sci. Eng. 2016, 32, 319–333. [Google Scholar] [CrossRef]
- Wang, H.; Su, Y.; Qiao, R.; Wang, J.; Wang, W. Investigate Effects of Microstructures on Nanoconfined Water Flow Behaviors from Viscous Dissipation Perspectives. Transp. Porous Med. 2021, 140, 815–836. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.; Liu, X.; Ansari, U.; Cheng, Y.; Yan, C. Hydrate as a by-product in CO2 leakage during the long-term sub-seabed sequestration and its role in preventing further leakage. Environ. Sci. Pollut. Res. 2022, 29, 77737–77754. [Google Scholar] [CrossRef]
- de la Calle-Arroyo, C.; López-Fidalgo, J.; Rodríguez-Aragón, L.J. Optimal designs for Antoine Equation. Chemom. Intell. Lab. Syst. 2021, 214, 104334. [Google Scholar] [CrossRef]
- Song, H.; Li, B.; Li, J.; Ye, P.; Duan, S.; Ding, Y. An Apparent Permeability Model in Organic Shales: Coupling Multiple Flow Mechanisms and Factors. Langmuir 2023, 39, 3951–3966. [Google Scholar] [CrossRef]
- Zhan, J.; Soo, E.; Fogwill, A.; Cheng, S.; Cai, H.; He, R.; Chen, Z. An Integrated Multi-Scale Numerical Simulation of Transient Gas Flow in Shale Matrix. In Offshore Technology Conference Asia; OTC: Springfield, MO, USA, 2018; p. D021S007R002. [Google Scholar] [CrossRef]
- Zhang, F.; Emami-Meybodi, H. Flowback Fracture Closure of Multifractured Horizontal Wells in Shale Gas Reservoirs. In SPE/AAPG Eastern Regional Meeting; OnePetro: Richardson, TX, USA, 2018; p. D043S007R003. [Google Scholar] [CrossRef]
- Yu, H.; Xu, H.; Fan, J.; Zhu, Y.; Wang, F.; Wu, H.-A. Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy Fuels 2020, 35, 911–943. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, J.; Guo, J. Characterization of gas transport in shale: A multi-mechanism permeability modeling approach. Chem. Eng. J. 2022, 438, 135604. [Google Scholar] [CrossRef]
- Assady, A. The Impact of Stress Dependent Permeability Alteration on Gas Based EOR in the Bakken Formation. Ph.D. Thesis, The University of North Dakota, Ann Arbor, MI, USA, 2022. Available online: https://www.proquest.com/dissertations-theses/impact-stress-dependent-permeability-alteration/docview/2721678992/se-2?accountid=132643 (accessed on 13 March 2022).
- Wang, B.; Fidelibus, C. An Open-Source Code for Fluid Flow Simulations in Unconventional Fractured Reservoirs. Geosciences 2021, 11, 106. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
The maximum pore spacing, (μm) | 10 [54] |
The minimum pore spacing, (μm) | 0.001 |
Porosity for fracture networks, | 0.05 [57] |
TMAC, | 0.79 [24] |
Temperature, (K) | 393 |
Pore pressure, (MPa) | 23 |
Confining pressure, | 100.56 |
Critical temperature, | 190.6 |
Critical pressure, Pa | 4.599 × 106 |
Fitting constant, Y1 | 7.9 |
Fitting constant, Y2 | −9 × 10−6 |
Fitting constant, Y3 | 0.28 |
The Langmuir pressure, (MPa) | 6.72 × 106 |
Adapted coefficient (Organic matter), a | 5 × 10−8 |
Media coefficient (in-organic matter), (1/Mpa) | 22 |
Molecular weight, (kg/mol) | 16 × 10−3 |
Universal gas constant, (J/(mol·K)) | 8.314 |
Interfacial tension (water-gas), | 25 [38] |
Rarefaction coefficient, | 1.19 [24] |
Diffusion coefficient, | 1 × 10−12 [24] |
Adsorption isothermals,, | 14 × 103 |
Electrical conductivity, e, () | 8.85 × 10−12 |
Potential difference (solid-liquid), | 50 |
CH4 molecular radius, | 0.38 × 10−9 |
CH4 viscosity, | 0.0184 |
Water concentration in | 0.001 |
Parameters | OMP | Brittle | Clay |
---|---|---|---|
Porosity concentration | 0.9 | 0.03 | 0.07 |
STD derivation | 0.32 | 0.17 | 0.23 |
Mean | 0.97 × 10−6 | 0.03 × 10−6 | 0.062 × 10−6 |
Contact angle (°) | 116 | 10 | 12 |
Adsorbed gas concentration (mol/m2) | 7 × 10−6 | 1.92 × 10−6 | 1.8 × 10−6 |
Parameters | EDFM | Amended EDFM |
---|---|---|
Matrix permeability (nD) | 600 | Dynamic |
Fracturing pressure (Mpa) | - | 50 |
Porosity | 0.03 | |
Fracture permeability (D) | 0.1 | |
Natural fracture perm (D) | 0.01 | |
Bottom hole pressure (MPa) | 15 | |
Initial pore pressure (MPa) | 23 | |
Case1 contribution | 0.2 | |
Case2 contribution | 0.7 | |
Case3 contribution | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, H.; Li, Y.; Wang, H.; Lu, K. A Dynamic Permeability Model in Shale Matrix after Hydraulic Fracturing: Considering Mineral and Pore Size Distribution, Dynamic Gas Entrapment and Variation in Poromechanics. Processes 2024, 12, 117. https://doi.org/10.3390/pr12010117
Zhang Q, Li H, Li Y, Wang H, Lu K. A Dynamic Permeability Model in Shale Matrix after Hydraulic Fracturing: Considering Mineral and Pore Size Distribution, Dynamic Gas Entrapment and Variation in Poromechanics. Processes. 2024; 12(1):117. https://doi.org/10.3390/pr12010117
Chicago/Turabian StyleZhang, Qihui, Haitao Li, Ying Li, Haiguang Wang, and Kuan Lu. 2024. "A Dynamic Permeability Model in Shale Matrix after Hydraulic Fracturing: Considering Mineral and Pore Size Distribution, Dynamic Gas Entrapment and Variation in Poromechanics" Processes 12, no. 1: 117. https://doi.org/10.3390/pr12010117