Adsorption Performance and Mechanism of Fe(II) Adsorption in Abandoned Mine Water of Nonstick Coal
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Materials
2.2. Coal Sample Characterization
2.3. Adsorption Experiment
2.4. Determination of Fe(II) Concentration
3. Results and Discussion
3.1. Characterization of Nonstick Coal
3.2. Influence of pH on Adsorption of Fe(II) in Coal Samples
3.3. Influence of the Solid–Liquid Ratio on Adsorption of Fe(II) in Coal Samples
3.4. Thermodynamic Study of Adsorption
3.5. Adsorption Dynamic Curves and Equations
3.6. Isothermal Adsorption Curve Analysis
3.7. Discussion of the Adsorption Mechanism
3.7.1. Microstructural Changes
3.7.2. Changes in Elemental and Mineral Composition
3.7.3. FT-IR Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, W. China Coal Market Analysis 2022 and Outlook 2023. China Steel Focus 2023, 4, 41–44. [Google Scholar]
- Yao, Q.L.; Tang, C.J.; Liu, Z.C. Discussion on coal and water co-mining in ecologically fragile mining areas in western China. Coal Sci. Technol. 2021, 49, 225–232. [Google Scholar] [CrossRef]
- Wang, S.M.; Duan, Z.H.; Ma, L.; Zhang, Y.P. Research status and future trends of geological assurance technology for coal green development in Western China. Coal Sci. Technol. 2019, 47, 1–6. [Google Scholar] [CrossRef]
- Gu, D.Z. Theory framework and technological system of coal mine underground reservoir. J. China Coal Soc. 2015, 40, 239–246. [Google Scholar] [CrossRef]
- Fan, L.; Ma, X. A review on investigation of water-preserved coal mining in western China. Int. J. Coal Sci. Technol. 2018, 5, 411–416. [Google Scholar] [CrossRef]
- He, X.W.; Zhang, X.H.; Li, F.Q.; Zhang, C.H. Comprehensive utilization system and technical innovation of coal mine water resources. Coal Sci. Technol. 2018, 46, 4–11. [Google Scholar] [CrossRef]
- Sun, Y.J.; Chen, G.; Xu, Z.M.; Yuan, H.Q.; Zhang, Y.Z.; Zhou, L.J.; Wang, X.; Zhang, C.X.; Zheng, J.M. Research progress of water environment, treatment and utilization in coal mining areas of China. J. China Coal Soc. 2020, 45, 304–316. [Google Scholar] [CrossRef]
- Song, W.; Zhou, P. Characteristic and Processing Engineering Practice of Acidity Mine Water Contanining Fe and Mn. J. Guizhou Univ. (Nat. Sci.) 2010, 27, 129–132. [Google Scholar] [CrossRef]
- Zhou, L.; Yi, T.; Zheng, S.S.; Zhu, X.Q.; Wu, J.F. Experimenta simulation on the electrochemica mechanism of iron pollution from “dua-source’ in closed coal mine water. Coal Sci. Technol. 2023, 2023, 10. [Google Scholar] [CrossRef]
- Jiang, B.B.; Liu, S.Y.; Ren, J.; Zheng, R.F.; Chen, M.Y.; Yu, Y.; Zhang, K. Purification effect of coal mine groundwater reservoir on mine water containing orgqanic compounds and heavy metals in different occurrence forms. Coal Eng. 2020, 52, 122–127. [Google Scholar]
- Pondja, E.A.; Bashitialshaaer, R.; Persson, K.M.; Matsinhe, N.P.; Kanan, S. Bioadsorbents of heavy metals from coal mines area in Mozambique. Cogent Environ. Sci. 2017, 3, 1355088. [Google Scholar] [CrossRef]
- Zhao, H.J. Wastewater Treatment by Adsorption. Guangdong Chem. Ind. 2016, 43, 128–129. [Google Scholar]
- Lin, X.F. Removal of Heavy Metals from Acid Drainage by Pig Bone Meal. Master’s Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Liu, H.L.; He, L.H.; Zhao, Y. Research Progress in Adsorption Materials for Heavy Metals. J. Salt Sci. Chem. Ind. 2023, 45, 437–444. [Google Scholar] [CrossRef]
- Jochová, M.; Puncochár, M.; Horácek, J.; Stamberg, K.; Vopálka, D. Removal of heavy metals from water by lignite-based sorbents. Fuel 2004, 83, 1197–1203. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Gorbov, S.N.; Tischenko, S.A.; Shimko, A.E. Use of brown coal as a detoxifier of soils contaminated with heavy metals. J. Geochem. Explor. 2018, 184, 232–238. [Google Scholar] [CrossRef]
- Yao, Q.L.; Wang, W.N.; Xia, Z.; Zhu, L.; Wang, A.; Yu, L.Q. Adsorption characteristics of Mn(II) on sandy mudstone and fine sandstone of coal measures. J. China Univ. Min. Technol. 2020, 49, 411–418. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.K.; Li, L.; Zhon, X.J.; Wu, H.T. Adsorption Characteristics and Mechanisms of CrVI) on Coal Gangue-Chitosan Particulate Composite Material. Environ. Sci. Technol. 2021, 44, 68–75. [Google Scholar] [CrossRef]
- Xuan, Y.W.; Wu, W. Determination of lron in the Industrial Waste Water by Spectrophotometry. Chin. J. Spectrosc. Lab. 2011, 28, 1560–1563. [Google Scholar] [CrossRef]
- Wang, W.M.; Wang, Z.M.; Chen, X.; Long, F.; Lu, S.F.; Liu, G.H.; Tian, W.C.; Su, Y. Fractal nature of porosity in volcanic tight reservoirs of the San tanghu Basin and its relationship to pore formation processes. Fractals Interdiscip. J. Complex Geom. Nat. 2018, 26, 1840007. [Google Scholar]
- Yi, G.X.; Wang, N.; Xu, H.; Ou, R. The Formation Mechanism and Major Treatment Technology of Acidic Mine Water. Environ. Sci. Manag. 2008, 9, 100–102. [Google Scholar] [CrossRef]
- Wu, D.S. Research on treatment of acid mine water with high salty and high iron. Coal Sci. Technol. 2008, 8, 110–112. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, J.; Shan, W.J.; Lou, Z.N.; Fang, D.W.; Zang, S.L.; Han, G.X. A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour. Technol. 2013, 127, 464–472. [Google Scholar] [CrossRef]
- Peniche-Covas, C.; Alvarez, L.W.; Argüelles-Monal, W. The adsorption of mercuric ions by chitosan. J. Appl. Polym. Sci. 2010, 46, 1147–1150. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakademiens. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Kay, M. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. part I. solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Für Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Yao, Q.-L.; Xia, Z.; Tang, C.-J.; Zhu, L.; Wang, W.-N.; Chen, T.; Tan, Y.-M. Characteristics of Heavy Metal Ion Adsorption by Silty Mudstones in Coal Mine Goafs. Geofluids 2020, 2020, 8560151. [Google Scholar] [CrossRef]
- Chai, X.; Mi, H.; He, C. Principles and maintenance of scanning electron microscope and X-ray energy spectrometer. Autom. Instrum. 2018, 523, 192–194. [Google Scholar]
- Liang, C.H.; Liang, W.Q.; Li, W. Functional groups of different coal ranks based on infrared spectroscopy. Coal Sci. Technol. 2020, 48, 182–186. [Google Scholar]
- Li, X.Z.; Zhang, M.Q.; Yang, Z.B.; Liu, Y.; Ding, C.; Huang, G. Effect of fault structure on the structure and oxidative spontaneous combustion characteristics of coal. J. China Coal Soc. 2023, 48, 1246–1254. [Google Scholar] [CrossRef]
Experiment Name | pH | Solid–Liquid Ratio (g mL−1) | Temperature (°C) | Time (h) | Concentration (mg L−1) |
---|---|---|---|---|---|
Isothermal adsorption experiments with different pH values | 2, 3, 4, 5, 6, 7 | 1:20 | 25 | 2 | 10 |
Isothermal adsorption experiments with different solid–liquid ratios | 6 | 1:50, 1.5:50, 2:50, 2.5:50, 3:50 | 25 | 0.5, 2 | 10 |
Adsorption thermodynamics experiment | 6 | 1:20 | 25, 35, 45, 55 | 5 | 10 |
Isothermal adsorption experiment | 6 | 1:20 | 25 | 24 | 1, 4, 8, 10, 12, 16, 20, 25, 30, 40, 50 |
Adsorption kinetics experiment | 6 | 1:20 | 25 | 0~24 | 10 |
Sample | Mineral Composition Analysis | Clay Mineral Analysis | ||||
---|---|---|---|---|---|---|
Coal sample | Quartz | Calcite | Anorthite | Clay | Chlorite | Kaolinite |
27.6% | 42.6% | 16.4% | 13.4% | 13% | 87% |
T (K) | ∆G (kJ mol−1) | ∆S (J mol−1 K−1) | ∆H (kJ mol−1) |
---|---|---|---|
298 | 5.55 | 89.40 | 32.21 |
308 | 5.25 | 89.40 | 32.80 |
318 | 4.28 | 89.40 | 32.73 |
328 | 2.85 | 89.40 | 32.18 |
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qe (mg g−1) | b (L mg−1) | R2 | k | n | R2 | |
Noncaking coal | 0.43476 | 9.45578 | 0.855 | 0.33353 | 10.22959 | 0.76922 |
Element | C | O | Al | Si | S | Ca | Fe |
---|---|---|---|---|---|---|---|
Before adsorption | 77.18% | 19.62% | 0.13% | 0.16% | 0.11% | 2.80% | 0.00% |
4 mg L−1 | 79.15% | 19.14% | 0.17% | 0.13% | 0.09% | 1.23% | 0.09% |
12 mg L−1 | 79.40% | 18.36% | 0.16% | 0.21% | 0.09% | 1.66% | 0.12% |
20 mg L−1 | 79.39% | 19.22% | 0.20% | 0.15% | 0.13% | 0.76% | 0.15% |
30 mg L−1 | 80.35% | 18.22% | 0.14% | 0.19% | 0.15% | 0.71% | 0.24% |
Number | Functional Group | Before Adsorption | After Adsorption | ||||
---|---|---|---|---|---|---|---|
Peak Position (cm−1) | Peak Area | Area Ratio (%) | Peak Position (cm−1) | Peak Area | Area Ratio (%) | ||
1 | Benzene ring substitution | 767 | 1.48 | 26.24 | 764 | 0.50 | 15.59 |
2 | Benzene ring trisubstitution | 785 | 0.71 | 12.65 | 775 | 0.40 | 12.51 |
3 | Benzene ring trisubstitution | 789 | 2.89 | 51.28 | 778 | 1.73 | 53.56 |
4 | Benzene ring pentasubstitution | 883 | 0.55 | 9.83 | 882 | 0.59 | 18.34 |
Number | Functional Group | Before Adsorption | After Adsorption | ||||
---|---|---|---|---|---|---|---|
Peak Position (cm−1) | Peak Area | Area Ratio (%) | Peak Position (cm−1) | Peak Area | Area Ratio (%) | ||
1 | C−OH stretching vibration of alcohols | 1049 | 1.31 | 0.91 | 1049 | 1.22 | 1.77 |
2 | C−OH stretching vibration of alcohols | 1094 | 8.65 | 5.90 | 1090 | 6.09 | 8.83 |
3 | −CH3 symmetric bending vibration | 1348 | 11.80 | 8.17 | 1348 | 6.53 | 9.47 |
4 | Carboxyl C−O−H bending vibration | 1395 | 17.52 | 12.14 | 1396 | 9.80 | 14.21 |
5 | Carboxyl C−OH stretching vibration | 1597 | 39.49 | 27.36 | 1602 | 21.92 | 31.77 |
6 | Carboxyl C=O stretching vibration | 1648 | 66.19 | 45.52 | 1654 | 23.42 | 33.95 |
Number | Functional Group | Before Adsorption | After Adsorption | ||||
---|---|---|---|---|---|---|---|
Peak Position (cm−1) | Peak Area | Area Ratio (%) | Peak Position (cm−1) | Peak Area | Area Ratio (%) | ||
1 | Aldehyde C−H stretching vibration | 2718 | 3.56 | 1.30 | 2714 | 2.11 | 2.20 |
2 | −CH2 symmetric stretching vibration | 2806 | 3.86 | 1.41 | 2802 | 2.40 | 2.51 |
3 | Alkyl C−H stretching vibration | 2902 | 20.39 | 7.45 | 2902 | 8.29 | 8.67 |
4 | −CH3 antisymmetric stretching vibration | 2992 | 11.21 | 4.09 | 2992 | 5.69 | 5.96 |
5 | Aromatic ring −OH stretching vibration | 3113 | 11.15 | 4.07 | 3114 | 8.32 | 8.70 |
6 | −OH stretching vibration | 3194 | 98.00 | 35.79 | 3197 | 28.07 | 29.36 |
7 | O−H stretching vibration of alcohols | 3388 | 88.06 | 32.16 | 3388 | 39.19 | 40.99 |
8 | π−OH | 3533 | 37.60 | 13.73 | 3534 | 1.55 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Wu, C.; Wang, F.; Sun, J.; Xu, Y.; Shen, J. Adsorption Performance and Mechanism of Fe(II) Adsorption in Abandoned Mine Water of Nonstick Coal. Processes 2024, 12, 188. https://doi.org/10.3390/pr12010188
Shi Z, Wu C, Wang F, Sun J, Xu Y, Shen J. Adsorption Performance and Mechanism of Fe(II) Adsorption in Abandoned Mine Water of Nonstick Coal. Processes. 2024; 12(1):188. https://doi.org/10.3390/pr12010188
Chicago/Turabian StyleShi, Zhuolin, Chengle Wu, Furong Wang, Jialong Sun, Yingnan Xu, and Jinhang Shen. 2024. "Adsorption Performance and Mechanism of Fe(II) Adsorption in Abandoned Mine Water of Nonstick Coal" Processes 12, no. 1: 188. https://doi.org/10.3390/pr12010188