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Abstract: Given China’s ambition to realize carbon peak by 2030 and carbon neutralization by 2060,
hydrogen is gradually becoming the pivotal energy source for the needs of energy structure op-
timization and energy system transformation. Thus, hydrogen combined with renewable energy
has received more and more attention. Nowadays, power-to-hydrogen, power-to-methanol, and
power-to-ammonia are regarded as the most promising three hydrogen-driven power-to-X tech-
nologies due to the many commercial or demonstration projects in China. In this paper, these three
hydrogen-driven power-to-X technologies and their application status in China are introduced and
discussed. First, a general introduction of hydrogen energy policies in China is summarized, and then
the basic principles, technical characteristics, trends, and challenges of the three hydrogen-driven
power-to-X technologies are reviewed. Finally, several typical commercial or demonstration projects
are selected and discussed in detail to illustrate the development of the power-to-X technologies
in China.

Keywords: power-to-X; power-to-hydrogen; power-to-methanol; power-to-ammonia; application

1. Introduction

In recent years, communities have been focused on the importance of energy system
transformation and decarbonization [1,2]. In order to tackle climate change and enhance
energy security, renewable energy sources have received sustained and widespread atten-
tion, especially for solar and wind energy, which have the highest potential as substitutes
for fossil fuels for electricity production [3,4]. The European Union (EU) has taken steps
to increase the share of renewable energy sources in its energy consumption. In October
2023, the new Renewables Energy Directive (“RED III”) was approved, which aims to
raise the share from the previous 32% to 42.5% by 2030, with an additional 2.5% indicative
supplement to meet the 45% target. As for China, the wind power [5] and photovoltaic
(PV) power installations and generations increased rapidly, ranking at the top in the world.
By the end of 2023, China’s installed capacity of renewable energy had reached 14.5 billion
kilowatt, accounting for over 50% of the country’s total installed capacity. Moreover, the
installed capacity of renewable energy surpassed that of thermal power for the first time in
history [6]. The energy structure has been greatly changed. Furthermore, in the 14th Five-
Year Plan for renewable energy development [7], China set a clear target that the cumulative
installed capacity of wind power and solar power would exceed 120 GW by 2030.

However, the core problem of utilizing renewable energy sources, especially for solar
and wind energy, is their inherent unpredictability and intermittency, which makes it diffi-
cult to integrate them into the existing power grid and guarantee the power balance [8]. In
addition, the distribution of renewable energy resources often varies significantly between
regions. In China, the great northwest sand desert is rich in renewable energy sources [9],
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while the electricity demand is relatively lower. And the existing transmission and dis-
tribution of infrastructure in these regions cannot meet the requirements for such a large
amount of power output. The southeast of China has fewer renewable energy resources
but greater capacity to consume electricity [10]. To address these challenges, hydrogen has
the potential to be an ideal carrier for the storage of renewable energy [11].

Hydrogen energy is a kind of secondary energy with high gravimetric energy density.
It has nearly four times the energy content of standard coal and three times the energy
content of gasoline for the same mass. The gravimetric energy density and volumetric
energy density (based on lower heating values) of typical fuels are shown in Table 1 [12].
Moreover, hydrogen is clean and low-carbon [13–15], and its application process only
produces water. Whether hydrogen is used for combustion or in fuel cell electrochemical
reactions, it does not generate carbon emissions [16,17]. In addition, hydrogen could be
applied in multiple fields, including the chemical industry [18], transportation [19,20],
electricity, and construction [21].

Table 1. Gravimetric energy density and volumetric energy density (based on lower heating values)
of fuels [12].

Gravimetric
Energy Density

(MJ/kg)

Gravimetric
Energy Density

(kWh/kg)

Volumetric
Energy Density

(MJ/L)

Volumetric
Energy Density

(kWh/L)

H2 (35 Mpa) 120.0 33.3 2.8 0.8
H2 (70 Mpa) 120.0 33.3 4.8 1.3
H2 (liquid) 120.0 33.3 8.5 2.2

CH4 (25 Mpa) 50.1 13.9 9.5 2.6
Standard coal 29.3 8.1

Gasoline 43.1 12.2 32.0 8.9
Diesel 46.0 12.8 38.6 10.7

According to hydrogen production technologies and energy sources, the clean energy
industry often classifies by color [22,23]. The main classifications of hydrogen energy in
colors are grey hydrogen, blue hydrogen, and green hydrogen [24,25]. The grey hydrogens
refer to hydrogen produced by gasification [26], reforming [27] or pyrolysis of fossil fuels,
causing carbon emission during the production process. The blue hydrogen combines
grey hydrogen with carbon capture and a storage process, reducing the emission of car-
bon. Green hydrogen is produced by electrolysis (supplied by renewable electricity) [28],
photolysis [29], or biomass [30] methods, which are carbon-free in the process. The main
classifications of hydrogen energy and their corresponding production technologies as
shown in Figure 1. In addition, hydrogen is classified by the industry based on lifecycle
greenhouse gas emissions [31]. In 2020, the group standard “Standard and evaluation of
low-carbon hydrogen, clean hydrogen and renewable hydrogen” was issued in China,
classifying hydrogen into low-carbon hydrogen, clean hydrogen, and renewable hydrogen.
In terms of carbon emissions of hydrogen, the carbon emissions of low-carbon hydrogen
are no more than 14.51 kgCO2e/kgH2, while the carbon emissions of clean hydrogen
and renewable hydrogen are no more than 4.9 kgCO2e/kgH2. Renewable hydrogen also
requires that energy source of hydrogen production must be renewable energy.

At present, although the majority of hydrogen is grey hydrogen, the proportion of
green hydrogen would be significantly increased with the goal of reducing carbon emissions
and the rapid development of renewable energy. As for green hydrogen production
technologies, there are still many difficult problems to overcome. For example, photolysis
suffers from poor stability and efficiency of catalysts [32]. Biomass method is limited by the
rate of reaction and scale of technology [30]. Water electrolysis is a promising technology
combined with the power produced by renewable energy for large-scale application. The
process that uses the excess and underutilized renewable sources [33] to generate electricity
and produce green hydrogen via water electrolysis is also called power-to-hydrogen.
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Considering the drop of the hydrogen chain in diverse applications, the total value
chain from power generation by renewable sources to the utilization of hydrogen is com-
monly termed power-to-X [34–38]. This concept was first summarized in 2013/14 in
Germany [39]. In China, in addition to power-to-hydrogen, power-to-methanol and power-
to-ammonia are the other two main power-to-X technical routes, which have large develop-
ment perspective on a commercial scale [40]. Methanol is one of the most important raw ma-
terials in the chemical and pharmaceutical industry and for hydrocarbons synthesis [41,42].
It is directly used as a fuel for transportation as an energy carrier. Ammonia is a crucial
component for chemical materials synthesis, with over 76% of all nitrogen-based products
utilizing it [43]. And it could be used as a carbon-free fuel applied to transportation and
power generation. Traditional synthesis methods for these two chemicals involve high
carbon emission, while power-to-methanol and power-to-ammonia processes enable a
net-neutral decarbonization. Moreover, by extending the use of these two chemicals in
the energy field, the demand could be significantly increased, and, thus, offers a major
opportunity to implement a green and low-carbon energy system. However, to the best of
our knowledge, a clear and exhaustive review on these three hydrogen-driven power-to-X
technologies and their application status in China is lacking.

This paper makes contributions for better understanding of the status quo and promot-
ing the sustainable development of China’s power-to-X technologies based on hydrogen.
The focus of this study is to review the hydrogen energy policies of China, status and
development of hydrogen driven power-to-X technologies, including power-to-hydrogen
technologies (e.g., alkaline water electrolysis, proton electrolyte membrane water electrol-
ysis, and solid oxide water electrolysis), power-to-methanol technology, and power-to-
ammonia technology, in China. According to the general situation of green hydrogen in
China, current challenges and future perspectives of hydrogen-driven power-to-X tech-
niques are discussed in detail. Several typical commercial or demonstration projects are
also introduced for a better understanding of the application status in China.

2. Hydrogen Energy Policies in China

Many countries, including Japan, France, South Korea, Germany, etc., have launched
their national hydrogen strategies, plans, or roadmaps. The Chinese government has also
issued a series of hydrogen-energy-related policies to actively promote transformation and
decarbonizing of energy systems, such as proposing overall development strategy and
promoting crucial technologies progress. The summary of China hydrogen energy policies
is shown in Table 2.
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Table 2. Summary of China hydrogen energy policies.

Year Main Policy Key Points

2006 Outline of the National Medium- and Long-term Planning for
Development of Science and Technology (From 2006 to 2020)

Hydrogen energy and fuel cell technologies were
incorporated into the advanced energy technologies.

2012 Plan for Development of the Energy Efficient and New
Energy Automobile Industry (2012–2020)

The government proposed to drive the development of
hydrogen production, storage, transportation, and refueling
technology by means of fuel cell application demonstration.

2014 Energy Development Strategy Action Plan (2014–2020) Hydrogen energy and fuel cell were determined as strategic
directions for energy technology innovation

2016 China Energy Technology Innovation Action Plan 2016–2030
The section on hydrogen energy has significantly expanded,
covering hydrogen production from renewable energy and
nuclear energy, fuel cell distributed power generation, etc.

2019 Government Work Report
For the first time, hydrogen was included in the government
work report, which emphasized the need to promote the
implementation of charging and hydrogen refueling facilities.

2020 The energy law of the people’s republic of China
(Exposure Draft)

At the level of national law, hydrogen energy was
incorporated in the energy management.

2021 Action Plan for Carbon Dioxide Peaking Before 2030
The plan proposed to explore the large-scale application of
hydrogen energy in industry, transportation, construction,
and other fields.

2022 New Energy Storage Development Implementation during
the 14th Five-year Plan

It clarified the position of hydrogen energy and ammonia
energy as a new type of energy storage.

2022 14th Five-year plan for renewable energy development It was emphasized that large-scale hydrogen production from
renewable energy sources was promoted.

2022 China maps 2021–2035 plan on hydrogen
energy development

The plan defined the energy properties of hydrogen, and
proposed that hydrogen energy would play an important
supporting role in the country’s green energy transformation.

2023 Guidelines on Hydrogen Energy Industry Standard System
Construction (2023)

The guidelines systematically established a standard system
for the entire industrial chain of hydrogen energy, including
hydrogen production, storage, transportation, and utilization.

As early as the 1980s, the hydrogen energy industry in China began scientific research
programs, such as the National High-tech R&D Program (863 Program) and National
Basic Research Program of China (973 Program), which included several studies aimed
at developing hydrogen fuel cells. Subsequently, policies began to focus on hydrogen
energy and hydrogen fuel cells. In 2006, hydrogen energy and fuel cell technologies were
incorporated into advanced energy technologies in the outline of the national medium-
and long-term planning for development of science and technology (from 2006 to 2020).
In recent years, especially since 2019, with the increase in research [44–46], the number of
hydrogen energy policies issued by the Chinese government has steadily increased over
time [47]. In 2019, for the first time, hydrogen was included in the government work report.
In 2022, the China maps 2021–2035 plan on hydrogen energy development was issued,
which defined the energy properties and strategic positioning of hydrogen. Particularly,
this plan proposed to actively guide the transformation of industries such as synthetic
ammonia and methanol from high-carbon processes to low-carbon processes, promoting
the green and low-carbon development of high-energy-consuming industries.

3. Power-to-Hydrogen

China is currently the world’s largest producer of hydrogen, producing 37.81 million
tons of hydrogen in 2022 [48]. However, most hydrogen is derived from fossil fuels [49],
namely, grey hydrogen, with a relatively low proportion of green hydrogen. The percentage
of hydrogen production from coal is 57.06%, natural gas is 21.90%, industrial byproduct
is 18.15%, water electrolysis is 1.42%, and other sources is 1.47% [50]. According to IEA
forecasts, the global production of green hydrogen in 2050 will be much higher than blue
hydrogen. By 2060, the vast majority of hydrogen production capacity will be supplied by
green hydrogen, of which nearly 80% will come from electrolysis of water. It is clear that
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water electrolysis powered by renewable sources, i.e., power-to-hydrogen, is an important
hydrogen production method for the future.

3.1. Typical Water Electrolysis Techniques

Water electrolysis is the most common electrochemical hydrogen production method [51].
Its basic principle is passing an electric current through water to split it into hydrogen
and oxygen. Electrochemical processes involve two half-cell reactions, i.e., hydrogen
evolution reaction (HER) and oxygen evolution reaction (OER), occurring at the cathode
and anode, respectively [52]. The overall reaction is shown in Equation (1). The reaction
takes place in an electrolyzer, which mainly consists of two electrodes (cathode and anode),
a diaphragm, and a bipolar plate. Water electrolysis [53–55] is mainly classified into three
types: alkaline (ALK) electrolysis, proton exchange membrane (PEM) electrolysis, and solid
oxide cell (SOEC) electrolysis [56,57]. Figure 2 presents the schematic diagrams of the three
electrolyzer structures. The characteristics of the three typical electrolytic water production
technologies are shown in Table 3.

2H2O → 2H2 + O2 (1)
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Table 3. Technical characteristics of typical water electrolysis technologies [58].

Type ALK PEM SOEC

Current density (A/cm2) 0.2~0.7 0.1~2.2 1.0~2.0
Temperature (◦C) 50~80 40~80 700~900

H2 Purity (%) 99.5~99.9 99.99 99.90
Pressure (MPa) 1.0~3.0 2.0~5.0 0.1~1.5

Energy consumption (kWh/Nm3) 4.5~5.5 3.4~4.4 2.23~2.27
Efficiency (%) 56~80 76~85 90~100

Load range (%) 15~100 0~150 0~120
Respond speed Dozens of seconds Several seconds Several minutes

Lifetime (h) 90,000 20,000~50,000 ~7000

The most conventional and mature method for water electrolysis is ALK electrolysis,
proposed by Troostwijk and Diemann in 1789 [59,60]. When the current passes, the water
obtains electrons via reduction reaction at the cathode, producing H2 and hydroxide ions
(OH−). To maintain charge balance, the OH− penetrates the diaphragm, which loses
electrons at the anode, producing O2. The electrode reaction equations of ALK electrolysis
are shown in Equations (2) and (3). Although there have been many studies on novel
catalysts such as platinum-based catalysts [61] and crystalline catalysts [62], nickel-based
catalysts remain the widely used catalysts for commercial ALK electrolyzers due to their
relatively high electrocatalytic activity and low cost. In the past, thick asbestos diaphragms
were generally used in AKL cells to separate the anolyte and catholyte compartments [63].
Recently, new materials such as nickel oxide, PTFE, and different types of polysulfone have
been used to replace thick asbestos materials [64]. The electrolyte could help ionic transport
and conduction; the most commonly used electrolyte in ALK electrolyzers is KOH solution
with mass fraction of 20–30% [65]. Most ALK electrolyzers adapt tiny-gap or zero-gap
structures to reduce ohmic loss [66]. In these structures, the electrode and diaphragm are
very close, even in connection.

4OH− → 2H2O + O2 + 4e− (OER at Anode) (2)

4H2O + 4e− → 2H2 + 4OH− (HER at Cathode) (3)

PEM electrolysis is another relatively mature technology for water electrolysis, first
introduced in the 1960s [67]. Different from ALK electrolysis, it is a proton that is trans-
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ported in the PEM electrolyte [68,69]. Protons are generated at the anode and penetrate
the diaphragm, obtaining electrons at the cathode, producing H2. The electrode reaction
equations of PEM electrolysis are shown in Equations (4) and (5). The precious metal
iridium and its oxides [70] are still the most advanced water anode catalysts for PEM
electrolysis because of their best balance of activity and stability for the OER [71]. Gener-
ally, HERs require platinum-based catalysts. The most widely used diaphragm for PEM
electrolyzers is solid perfluoro sulfonic acid (PFSA). Both precious metal catalysts and
PFSA diaphragm cause the costs of PEM electrolyzers to be significantly higher than the
costs of ALK electrolyzers. Nevertheless, PEM electrolysis could enhance the purity of
hydrogen, with fast dynamic response speed and compact structure. It is still one of the
most promising technologies for water electrolysis hydrogen production.

2H2O → O2 + 4H+ + 4e− (OER at Anode) (4)

4H+ + 4e− → 2H2 (HER at Cathode) (5)

SOEC electrolysis has developed rapidly in recent years, but it still in the laboratory
stage and is less mature commercially. The electrode reaction equations of SOEC electrolysis
are shown in Equations (6) and (7). At present, oxygen ion (O2−) is the most common
SOEC electrolysis carrier. In SOEC electrolyzers, water obtains electrons at the cathode,
producing H2 and O2−, and then O2− penetrates the diaphragm and loses electrons at
the anode, producing O2 [72]. SOEC electrolysis operates at high temperatures compared
to other electrolysis technologies. The higher temperatures enable higher efficiencies of
SOEC electrolysis [73]. However, that leads to attach the limiting condition to the choice
of materials, demanding that electrodes and electrolyte materials retain stability under
high-temperature conditions. Currently, anodes commonly use perovskite and cathodes
use ceramic–metal composites or perovskite. Materials with high ionic conductivity, such
as yttria-stabilized zirconia (YSZ) and doped ceria (CeO2), are typically used as electrode
materials in SOEC electrolysis [74].

2O2− → O2 + 4e− (OER at Anode) (6)

2H2O + 4e− → 2H2 + 2O2− (HER at Cathode) (7)

3.2. Chinese Electrolyzer Manufacturers

As mentioned before, ALK water electrolysis and PEM water electrolysis technologies
are relatively mature; thus, these two types of electrolyzers are more widely used in indus-
try and business, especially for ALK electrolyzers. The majority of Chinese electrolyzer
manufacturers focus on producing ALK electrolyzers, and some manufacturers choose
to produce PEM electrolyzers. In addition, the application of SOEC water electrolysis
technology is not wide enough, but there are a few Chinese electrolyzer manufacturers
starting to produce SOEC electrolyzers. Based on preliminary statistics, there have been
more than 100 electrolyzer manufacturers in China, distributed mainly in the east of China.
Table 4 lists the specific parameters for several Chinese typical electrolyzer manufacturers,
such as Peric Hydrogen from Hebei, Longi from Shanxi, Tianjin Mainland Hydrogen Equip-
ment from Tianjin, Shandong Saikesaisi Hydrogen Energy from Shandong, and H2-Bank
Hydrogen from Zhejiang.

Peric Hydrogen is a manufacturer for both ALK and PEM electrolyzers, with an annual
output reaching 1.5 GW. The hydrogen production rate for ALK electrolyzer products
ranges from 20 Nm3/h to 2000 Nm3/h. For ALK electrolyzers, both one-piece equipment
and modular equipment are provided. The purity of hydrogen before purification can
reach 99.8%, the purity of oxygen can reach 99.2%, and the purity of hydrogen after
purification can reach 99.999%. The ALK electrolyzers adopt a bipolar press filter structure,
with good seal performance of the insulating gasket. The hydrogen production rate for
PEM electrolyzer products ranges from 0.01 Nm3/h to 300 Nm3/h. Compared to ALK
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electrolyzer products, PEM electrolyzer products are smaller in size and lighter in weight,
with higher current density and efficiency.

Table 4. Several Chinese typical electrolyzer manufacturers.

Brand Province Technology Hydrogen Production
Rate (Nm3/h)

Hydrogen
Pressure (MPa)

Power Consumption
(kWh/Nm3)

Peric Hydrogen Hebei ALK 20–2000 1.5–2.5 ≤4.3–4.5
PEM 0.01–200 0.1–3.2 ≤5.4

Longi Hydrogen Shannxi ALK 1–3000 1.6 4.1–4.3 (ALK Hi1)
4.3–4.5 (ALK G)

Sungrow Anhui ALK ≤1000 1.8 -
PEM ≤250 3 -

Tianjin Mainland
Hydrogen Equipment Tianjin ALK 0.1–1000 5 ≤4.4–4.9

PEM 0.4–10 7 -
Sany Hunan ALK 500–2000 1.8 4.3–4.7

PEM ≤200 3 4.3
Guofuhee Jiangsu ALK 50–1000 - -

PEM 4–200 - -
Kohodo Hydrogen Energy Guangdong ALK 0.5–1000 1.6 4.0

Changchun lvdong Jilin PEM ≤200 - -
Shandong Saikesaisi

Hydrogen Energy Shandong PEM 0.5–200 3 -

BPEG Beijing ALK 2–2000 - 4.3
C hySA Guangdong PEM 0.2–300 3.5 -
H2-Bank Zhejiang SOEC 2 - 3.5

Longi Hydrogen is a manufacturer for ALK electrolyzers; its output reached 1.5 GW
in 2022. It is expected that by 2025, the production capacity of Longi Hydrogen will
reach 5–10 GW. According to different products’ characteristics, ALK electrolyzers could
be divided into two series. The Longi ALK Hi1 series with the maximum hydrogen
production is rated to 1000 Nm3/h, with a power consumption of just 4.1–4.3 kWh/Nm3.
In September 2023, LONGi ALK G series were launched; the biggest draw to this series
is that the maximum hydrogen production rate can reach 3000 Nm3/h. In addition, each
model has a service life of around 200,000 h.

Tianjin Mainland Hydrogen Equipment produces ALK electrolyzers, gas purification
equipment, and small PEM electrolyzers as main products. The hydrogen production rate
for ALK electrolyzer products ranges from 0.1 Nm3/h to 1000 Nm3/h, while for PEM
electrolyzer products, it ranges from 0.4 Nm3/h to 10 Nm3/h. Specifically, the hydrogen
production pressure of ALK electrolyzers could reach 5.0 MPa; this is the highest operating
pressure of ALK electrolyzers produced in China.

Shandong Saikesaisi Hydrogen Energy is one of the earliest manufacturers engaged
in PEM water electrolysis equipment production. It includes 13 series with hydrogen
production rates range from 0.5 Nm3/h to 200 Nm3/h. At present, PEM electrolyzer
products produced by Shandong Saikesaisi hydrogen energy have been exported to more
than 30 countries and regions.

H2-Bank is an electrolyzers manufacturer for SOEC electrolyzers. The operating
temperature of SOEC electrolyzers is 750 ◦C. Moreover, the hydrogen production rate is
2 Nm3/h and the power consumption is 3.5 kWh/Nm3.

3.3. Trends and Challenges

The current level of advancement and features of each electrolysis technology are quite
different. ALK electrolysis technology is more advanced and cheaper than other electrolysis
technologies, and China has a relatively mature alkaline-electrolyzer industry. However,
some improvements are still needed, including increasing the current density [75], prevent-
ing the crossover of the gases, and widening the operating range. The PEM electrolysis
technology is well adapted for integration with variable renewable energy sources. There
have been some studies on the flexibility of PEM electrolysis technology via dynamic
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models or experimental methods [76,77]. Still, the cost-effective cell components need to
be developed. It is necessary to address existing challenges by finding transition metals
to replace precious metal as catalysts, developing proton exchange membrane materials
with high conductivity and low cost, exploiting new preparation methods of membrane
electrode assembly, etc. The SOEC electrolysis technology is still in its early stages of
development. While it could be more favorably considered for integration with exothermic
reactions in synthesis process of methanol or ammonia, the biggest challenge of SOEC
electrolysis technology is to maintain structural stability and withstand the thermal stresses
generated at long-term high temperatures, which lead to material creep.

In China, with the continuous increase in the installed capacity of renewable energy,
the scale of power-to-X systems is increasing. At present, Chinese electrolyzer manufac-
turers could produce ALK electrolyzers with the maximum hydrogen production rate to
3000 Nm3/h; these stacks and their balance of plant (BOP) systems still need to be verified
by the commercial or demonstration project. Moreover, China boasts a vast landmass, and
most renewable energy is located in the less developed regions. Since there are multiple
conversion steps from renewable energy to power and power-to-hydrogen, it makes eco-
nomic sense in regions with favorable renewable energy resources and corresponding land
availability [78]. That raises a spatial mismatch between hydrogen energy consumption and
supply. The high cost of hydrogen storage and transportation is a barrier; thus, additional
research and development is needed.

4. Power-to-Methanol

Methanol is widely used as a basic chemical and in the production of formaldehyde,
acetic acid, dimethyl ether, methyl tertbutyl ether, and many other chemicals [79]. The
boiling and melting point of methanol at standard atmospheric pressure are 64.7 ◦C and
−97.8 ◦C, respectively, making it easy to store and transport in liquid form [80]. Due to its
much higher volumetric energy density than hydrogen and ease of transport, it can serve
as a hydrogen carrier. Methanol can be directly used as a transportation fuel and is also
considered as energy. Generally, in industrial applications, syngas is produced from coal
gasification or natural gas reforming first, and then methanol is produced from syngas at
5–10 MPa and 250–300 ◦C using copper (Cu)-based catalysts [81]. Nevertheless, the process
in which methanol is produced from captured carbon dioxide and green hydrogen from
renewable energy sources has received a lot of attention and research in recent years [82].
The methanol synthesis process of power-to-methanol in this paper refers to this process
as well.

4.1. Methanol Synthetic Reaction

The main reaction equations involved in methanol synthesis from H2 and CO2 are
shown in Equations (8) and (10) [83]. In addition to the methanol formation reaction
from CO2 hydrogenation, the reverse water gas shift (RWGS) reaction as well as the CO
hydrogenation to methanol reaction can occur. The whole process of methanol synthesis is
thermodynamically exothermic, and lower temperatures promote the CO2 hydrogenation
reaction. However, the average kinetic energy of the reactants increases with the increase
in temperature, leading to faster motion and higher collision frequency of the molecules,
and, consequently, facilitates the reaction. In general, the temperature range of methanol
synthesis process is 250–300 ◦C. Furthermore, the methanol synthesis process has to occur
under elevated pressure normally at the range of 3–5 MPa.

CO2 + 3H2 → CH3OH + H2O ∆H298K = −49.1 kJ/mol (8)

CO2 + H2 → CO + H2O ∆H298K = +41.2 kJ/mol (9)

CO + 2H2 → CH3OH ∆H298K = −90.8 kJ/mol (10)

One of the crucial challenges of the CO2 hydrogenation reaction for researchers is to
seek catalysts with efficient methanol production as well as high methanol selectivity. As
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catalysts are the key factors that determine the cost and efficiency of methanol synthesis
from H2 and CO2, great attempts have been made in recent years [84–87]. The catalysts
used for methanol synthesis from H2 and CO2 are mainly various heterogeneous catalysts,
including copper-based catalysts [88–90], indium oxide (In2O3)-based catalysts [91,92], and
noble metal catalysts [93,94]. The catalytic performance of several different catalysts in
references is shown in Table 5. Cu-based catalysts are reported in many studies due to
their relatively high activity and methanol selectivity. The majority of Cu-based catalysts
consist of Cu, ZnO as support, along with different promoters such as aluminum, cerium,
zirconium, silicon, boron, gallium, etc. Among them, Cu/ZnO/Al2O3 catalysts are the
most promising for large-scale industrial applications because of their economic benefits,
where ZnO as support alters the structure of the Cu phase by adding more active sites
to the Cu surface and improving the dispersion of active species, and Al2O3 as promoter
increases the overall catalytic activity [95]. In addition, Cu/ZnO/ZrO2 catalysts have also
received a lot of research attention as they generally show significant catalytic efficiency [96].
In2O3-based catalysts exhibit high methanol selectivity and outstanding stability [97]. It has
been reported that In2O3/ZrO2 catalysts, i.e., In2O3-based catalysts with ZrO2 as support,
demonstrate excellent activity, nearly 100% methanol selectivity and remarkable stability
for 1000 h under industrially relevant conditions [98]. Concerns have been raised for noble
metal catalysts mainly because of their catalytic and anti-sintering activity. However, noble
metal catalysts are currently expensive and economically unfeasible.

Table 5. Catalytic performance of different methanol synthesis catalysts in different references.

Reference Catalysts H2:CO2
Temperature

(◦C)
Pressure

(MPa)
GHSV
(h−1)

CO2 Conversion
(%)

Methanol
Selectivity (%)

Florian et al. [99] Standard commercial
catalyst (Süd-Chemie) 3.1:1 250 8 10,500

Toyir et al. [100] Cu/ZnO/ZrO2/Al2O3/SiO2 3.7:1 250 7 10,000

Doss et al. [101]
commercial catalyst
(Johnson Matthey)
Cu/ZnO/Al2O3

3:1 240 6.9 3300 5.81

Choi et al. [102] Cu-Pd/CeO2 3:1 270 3 16.1 26.7
Tan et al. [103] Cu/ZnO/Al2O3 3:1 260 3 6000 23.1 31.2
Tan et al. [103] CuNi2/CeO2−NT 3:1 260 3 6000 17.8 78.8

Zabilskiy et al. [104] Standard Cu/ZnO/Al2O3
catalyst (Alfa Aesar) 3:1 260 1.5 2 43

Liang et al. [105] Cn-Zn/Al foam 3:1 250 3 13.6 64.5
Wang et al. [96] Cu/ZnO/ZrO2 3:1 220 3 18.9 80.2

Zhang et al. [106] CuZn/CeO 260 3 68.5
Wang et al. [107] Cu-Mn-Zn/ZrO 3:1 250 5 4000 6.5 73.7
Martin et al. [98] In2O3/ZrO2 4:1 300 5 20,000 5.2 99.8
Rui et al. [108] In2O3 4:1 300 5 21,000 8.2 71

Chou et al. [109] In2O3/ZrO2 4:1 300 4 52,000 10.5 53
Chou et al. [109] 1.5YIn2O3/ZrO2 4:1 300 4 52,000 7.6 69

Wang et al. [110] MaZrOx (Ma = Cd, Ga)
solid-solution catalysts 3:1 300 5 24,000 4.3–12.4 80

Li et al. [111] Pd/ZnO-ZIF-8 3:1 270 4.5 9.3 74

4.2. Methanol Synthesis Process System

The methanol synthesis process system from H2 and CO2 consists of a compression
unit, a reaction unit, a separation and purification unit, and a storage unit. Altogether, it
can be divided into four subsections, as shown in Figure 3. In the compression unit, both
H2 and CO2 as fresh gas are compressed to relatively high pressure, normally between
3 and 5 MPa, by multistage compressors. In the reaction unit, the compressed gas is mixed
together and is heated in the heat exchanger first. Then the heated gas is fed to the synthesis
reactor, where the catalyst is immersed inside. The synthesis reaction in the reactor has
a low single-pass conversion efficiency; hence, gas from the reactor outlet comprises the
produced methanol, together with the unreacted H2, CO2, CO, and other byproducts such
as H2O. In the separation and purification unit, gas from the reactor outlet is cooled down
before entering the flash evaporators. In the first flash evaporator, some vapor is condensed
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into a liquid form and separated. In the second flash evaporator, crude methanol vapor is
condensed into a liquid form and separated with the unreacted H2, CO2, and CO. Next,
the unreacted H2, CO2, and CO are recycled back and mixed together with the compressed
fresh gas, and then the reaction process is recycled. The crude methanol, mainly composed
of methanol and water, is sent further for distillation forming and is stored in tanks.
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4.3. Trends and Challenges

The reactor is one of the core pieces of equipment in a methanol synthesis process
system [113]. The primary reactor design considerations are effective heat removal and
low pressure drop, as well as flexibility and economics [114]. Nowadays, the dominant
and technically well-established reactor is a quasi-isothermal fixed-bed reactor via cooling
through vaporizing water [40]. In China, it is also the most used type of reactor for industrial
application. The improvement of the reactor should be considered to adapt the newly
developed catalysts. In addition, recently, researchers have attempted to develop novel
reactors, include membrane reactors, micro (channel and monolith-structured) reactors, and
nonthermal dielectric plasma reactors, to improve the efficiency of conversion [115,116].

The integration and optimization of hydrogen production from new energy sources
coupled with the methanol synthesis system is the key to the power-to-methanol system. It
is necessary to overcome the fluctuation of fresh H2 and enhance variable load capacity.
For these purposes, there have been some studies on capacity planning, dispatch, and the
flowsheet optimization model [117–123]. However, because of the complex dynamics of
methanol synthesis and distillation-based separation, the capacity planning and integration
for the power-to-methanol system needs further study.

Currently, there are many planned or under-construction power-to-methanol projects
in China. The market for methanol production is mature and large. However, due to the
lack of domestic standards and policies for power-to-methanol products, the products have
not received premium attention, and they compete with traditional synthetic methanol
products in the same market. This is also a challenge faced by the current development of
power-to-methanol in China.
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5. Power-to-Ammonia

Ammonia is an important chemical raw material in modern industry and is widely
used in the production of fertilizers in agriculture. It is a chemical precursor used in the
production of polyimides, nitric acid, nylon, pharmaceuticals, refrigerants, and other in-
dustrial materials [124]. As a carbon-free chemical, ammonia has recently been considered
as a promising hydrogen carrier, and it is easier to store and transport as a liquid than
hydrogen [125]. It can be transported in liquid form at environmental pressure and a tem-
perature of −33 ◦C, or environmental temperature and a pressure of 0.8 MPa. Furthermore,
ammonia can be converted back to hydrogen with low energy consumption, or directly
used as a fuel with low carbon emission or a chemical commodity [126]. In modern indus-
try, the ammonia is commonly synthesized through the Haber–Bosch process [127,128],
where hydrogen and nitrogen react over iron-based catalysts at 10–30 MPa and 350–550 ◦C.
For power-to-ammonia in this paper, we refer to the process in which the green hydrogen
from renewable energy sources reacts with nitrogen obtained by air separation through the
thermochemical reaction method.

5.1. Ammonia Synthetic Reaction

The ammonia synthesis from H2 and N2 is also thermodynamically exothermic, and
the reaction equation is shown in Equation (11). The reaction process in the presence
of catalyst mainly includes the following steps [129]: (1) adsorption of hydrogen and
nitrogen on the catalyst surface; (2) dissociation of hydrogen and nitrogen molecules to
hydrogen and nitrogen atoms, respectively; (3) combination of activated hydrogen atoms
with activated nitrogen atoms to form surface-bound ammonia; (4) desorption of ammonia
molecules from the catalysts. Because the nitrogen molecule is very stable and is difficult to
activate with the strong nitrogen–nitrogen triple bond, the ammonia synthesis reactions
from H2 and N2 have to occur at high temperature and pressure [130]. The dissociation of
nitrogen molecules to nitrogen atoms is the rate-determining step under high-temperature
and high-pressure conditions [124].

N2 + 3H2 → 2NH3 ∆H298K = −45.9 kJ/mol (11)

Nowadays, significant efforts have been made to improve the conventional thermo-
catalytic ammonia synthesis reaction by finding new catalysts that can decrease reaction
temperature and pressure. The types of catalysts include iron-based catalysts, ruthenium-
based catalysts, cobalt-based catalysts, nickel-based catalysts, and metal-nitride-based
catalysts. The catalytic performances of several different catalysts in the references are
shown in Table 6. As early as the beginning of last century, many efforts have been made to
focus on Fe-based catalysts, which are still the most widely used in the industrial ammo-
nia synthesis today due to their low cost and good catalytic performance [131]. The two
typical oxide precursors for Fe-based ammonia synthesis catalysts are magnetite (Fe3O4),
with an inverse spinal crystal lattice structure, and wustite (Fe1−xO), with a cubic lattice
structure [132]. Among them, the wustite catalysts show much higher activity and lower
reduction temperature than the magnetite catalysts [133]. Generally, small addition of
promoters, such as Al2O3, K2O, CaO, and SiO2, could promote the performance of Fe-based
catalysts. The most common structural and electronic promotors for Fe-based ammonia
synthesis catalysts are Al2O3 and K2O, respectively [130]. In addition to Fe-based catalysts,
Ru-based catalysts are the only other catalysts that can be used in industrial ammonia
synthesis. In particular, Ru-based catalysts exhibit high activity at reduced temperature and
pressure, which leads to ammonia synthesis under relatively mild conditions. Generally,
the synthesis of ammonia from hydrogen and nitrogen using Fe-based catalysts occurs
under 350–550 ◦C and 10–30 MPa. For Ru-based catalysts, the range of reaction temperature
is 300–450 ◦C and the pressure is 4–15 MPa [134]. The other focuses of Ru-based catalysts
include the precursor form [135], different support materials [136], and promotors [137].
However, Ru-based catalysts are limited by Ru’s insufficient resources and high price.
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Table 6. Catalytic performance of different ammonia synthesis catalysts in different references.

Reference Catalysts Compositions (wt.%) H2:N3
Temperature

(◦C)
Pressure

(MPa)
GHSV
(h−1)

NH3 Concentration
(%)

Han et al. [138] WBC 80.46FeO + 12.66Fe2O3 + 1.8Al2O3 +
0.6K2O + 1.8CaO + 2.68others 3:1 350–475 5 30,000 10.4–18.5

Han et al. [138] Nb-WBC 80FeO + 12.52Fe2O3 + 1.8Al2O3 + 0.6K2O
+ 1.8CaO + 0.6Nb2O5 + 2.08others 3:1 350–475 5 30,000 9.6–17.9

Yu et al. [139] A110-3 68Fe(total) + 2.2Al2O3 + 0.59K2O +
1.2CaO + 0.36SiO2

3:1 425 15 10,000 19.5

Yu et al. [139] FA401 68Fe(total) + 2.3Al2O3 + 0.58K2O +
1.1CaO + 0.33SiO2 + 0.3MgO + 0.38others 3:1 425 15 10,000 20.8

Czekajło et al. [140] ZBRW-10 2.18Al2O3 + 0.44K2O +
1.3CaO + 2.01CoO2

3:1 475 10 20,000 10.8

Jafari et al. [141] Wustite 65.7O + 30.62Fe + 2.4Al + 0.31K + 1Ca 3:1 350–530 3
Jafari et al. [141] Magnetite 65.7O + 30.24Fe + 3.3Al + 0.23K + 0.54Ca 3:1 350–530 3

Kobayashi et al. [142] Ru/BaTiO2.5H0.5 0.9Ru 3:1 400 5 0.17
Han et al. [143] Ru/La2Ce2O7 4Ru 3:1 425 10 10,000 12.94
Lin et al. [144] Ba-Ru/AC-G 9Ba 3:1 400 10

Karolewska et al. [145] (Co-Ce)-Ba/C 9.34Co 3:1 400 9
Zybert et al. [146] Co/Ba(CP) 3:1 400 6.3 70,000

Ye et al. [147] Ni/CeN NPs 10Ni 3:1 400 0.1 36,000

5.2. Ammonia Synthesis Process System

The ammonia synthesis process system from H2 and N2 consists of four parts: a
compression unit, a reaction unit, a refrigeration and separation unit, and a storage unit.
The system diagram is shown in Figure 4. First, the fresh H2 and N2 are mixed together,
where N2 is extracted from the air via different methods including cryogenic distillation,
pressure swing adsorption, and membrane separation [148]. Then, the mixed fresh gas is
compressed to the required pressure by multistage compressors. At the heat exchanger,
the compressed gas is heated up before entering the synthesis reactor. Similar to methanol
synthesis, the ammonia synthesis reaction has a low single-pass conversion efficiency in the
reactor [149]. In the refrigeration and separation unit, unreacted H2 and N2 are separated
with the produced NH3 and are returned for recycling reactions. The produced NH3 is
stored in tanks in a liquid form.
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5.3. Trends and Challenges

The presence of oxygen in the fresh gas would reduce the activity of ammonia synthe-
sis catalysts and lead to catalyst poisoning. Recent research has shown that even oxygen
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impurities below 1 ppm can lead to the obvious deactivation of iron-based ammonia synthe-
sis catalysts [150]. Oxygen is the byproduct of hydrogen production by water electrolysis
and it inevitably exists in hydrogen products. Hence, extensive purification processes must
be adopted to obtain pure hydrogen to avoid poisoning of the ammonia synthesis catalysts.
These purification processes not only increase the initial and operating costs of large-scale
ammonia synthesis plants, but also reduce the overall efficiency. Therefore, it is necessary
to improve the oxygenate tolerance of catalysts and continue develop new catalysts in
the future. In addition, the development of ammonia synthesis catalysts should take into
account the intermittency of renewables, making it work efficiently at different loads.

In the traditional chemical industry, most ammonia synthesis process is operated under
relatively stable conditions. In China, multiple-bed adiabatic reactors with intercooling
stages are generally used as types of ammonia synthesis reactors [151]. For the hydrogen-to
ammonia process, rapid and frequent start–stop, and change of reaction temperature and
pressure for the reactors are common because of the fluctuations of the fresh hydrogen.
This may have adverse effects on materials, instruments, and operation of the ammonia
synthesis reactor. The research on integration and flexibility of power-to-ammonia system
is not mature enough, either. Overall, substantial efforts need to be devoted to improving
the flexibility of ammonia synthesis reactors and power-to-ammonia systems.

Similar to power-to-methanol, ammonia products produced by power-to-ammonia
have not received premium attention and do not have enough competitiveness due to
the lack of supporting and subsidized policies. There are dozens of power-to-ammonia
projects in planning or approval stages in China. It is also an important path for many
enterprises to lay out in the hydrogen energy industry. However, sustainable and healthy
development of power-to-ammonia in China needs improvements in technology, market,
policy, and standards.

6. Typical Commercial or Demonstration Projects

In recent years, following several power-to-X demonstration projects, such as the
Lanzhou Liquid Solar Fuel Production Demonstration Project and Kuqa Green Hydrogen
Pilot Project, the power-to-X projects have continued to heat up in China. Due to the
differences in wind and solar resources, project scales, technical routes, etc., the costs vary
significantly among different projects. The approximate costs [40,112,152] for difference
power-to-X technologies are shown in Table 7. Dozens of power-to-X projects are currently
in progress, and some of the commercial or demonstration projects in China are listed in
Table 8. These projects are concentrated in the northwest and northeast regions of China,
which are abundant in wind and solar resources. Great breakthroughs have been made in
terms of renewable power scale, output of hydrogen, methanol, and ammonia. However,
only a few projects have signed product purchase agreements, and the business models
still need to be further explored.

China’s largest green hydrogen production project has commenced operation in Kuqa
city of Aksu prefecture, Xinjiang Uygur autonomous region. The project is also China’s first
10,000-ton level solar-generated green hydrogen demonstration project. It mainly comprises
three parts: a 200 MW capacity photovoltaic power generation system, a power transmis-
sion and transformation system, and a 20,000 tons per annum water electrolysis hydrogen
production system. As a demonstration project, it is expected to reduce 485,000 tons of
carbon dioxide emissions annually. It is of great significance to promote the development
of the green hydrogen industry chain, and promote the transformation and upgrading of
the energy industry.

Table 7. The cost for different power-to-X technologies.

Power-to-Hydrogen
Power-to-Methanol Power-to-Ammonia

ALK PEM SOEC

Cost CNY 5437~9425/kW CNY 14,500/kW CNY 25,375/kW CNY 7.91~15.81/kgCH3OH CNY 7.12/kgNH3
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Table 8. Some of the commercial or demonstration projects in China.

Project Name Location Scale Status

Guyuan Wind Energy Hydrogen
Production Industrial
Application Project

Guyuan, Hebei 200 MW wind
10 MW H2

2022 start operation

Kuqa Green Hydrogen Pilot Project Kuqa, Xinjiang 200 MW solar
20,000 t/a H2

2023.06 the first phase
start operation

Ordos Green Hydrogen Pilot Project Ordos, Inner Mongolia
450 MW wind
250 MW solar
30,000 t/a H2

Under construction

Lanzhou Liquid Solar Fuel
Production Demonstration Project Lanzhou, Gansu 10 MW solar

1000 t/a CH3OH 2020.01 start operation

The Da’an Wind and Solar Green
Hydrogen Synthesis Ammonia

Integration Demonstration Project
Da’an, Jilin

700 MW wind power
100 MW solar
32,000 t/a H2

180,000 t/a NH3

Under construction

Songwon Hydrogen Energy
Industrial Park Project Songyuan, Jilin

800 MW wind power
100 MW solar
45,000 t/a H2

200,000 t/a NH3
20,000 t/a CH3OH

Under construction

Liaoyuan Power-to-X Project Liaoyuan, Jilin

1.4 GW wind power
0.4 GW solar

100,000 t/a H2
38,000 t/a NH3

620,000 t/a CH3OH

Under construction

Qianguo Power-to-X Project Songyuan, Jilin
1.3 GW wind power

20,000 t/a NH3
400,000 t/a CH3OH

Planning

Xingan League Energy Carbon-
zero Hydrogen Production Project Ulanhot, Inner Mongolia

1.25 GW wind power
56,200 t/a H2

300,000 t/a NH3

Planning

The Lanzhou Liquid Solar Fuel Production Demonstration Project was successfully
tested in January 2020, which is China’s first 1000-ton level project in converting solar energy
into methanol. This project constructed a 10 MW solar photovoltaic power generation
system for hydrogen production by water electrolysis, and then hydrogen was used for
methanol synthesis combined with carbon dioxide. When the project operates at the design
capacity, it could consume 2000 tons of CO2 and produce 1500 tons of methanol annually.
Specifically, the methanol synthesis unit adopts a solid solution bimetallic oxide catalyst
(ZnO-ZrO2) with high methanol selectivity and good stability. The methanol selectivity is
greater than 90%, and the catalyst performance degradation after 3000 h of operation is less
than 2%.

Construction of the Da’an Wind and Solar Green Hydrogen Synthesis Ammonia
Integration Demonstration Project has now commenced, which is also the world’s largest
green synthetic ammonia project that was launched in 2022. The project is located in
an industrial park in the city of Da’an, Jilin province, and it will build a total installed
capacity of 800 MW of wind and solar, providing 32,000 tons of hydrogen production and
180,000 tons of synthetic ammonia annually. Among the hydrogen production system,
50 sets of PEM hydrogen production systems and 39 sets of alkaline hydrogen production
systems are included. The first phase of this project is expected to start operation in 2024.
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7. Conclusions

In China, hydrogen has become an important strategic choice to accelerate energy
transformation and upgrading. Hydrogen can be produced from renewable energy by
electrolysis as the final energy carrier or converted into X. Collectively, power-to-X provides
a cost-effective way to balance the intermittent renewable energy power generation and
demands. This paper provides a review of three hydrogen-driven power-to-X technologies
and their applications in China, which are power-to-hydrogen, power-to-methanol, and
power-to-ammonia. These three hydrogen-driven power-to-X technologies are also the
most promoted technical routes in China.

Currently, China has already become the world’s largest producer and consumer
of hydrogen. Especially for the recent five years, a large number of policies has been
issued intensively. In 2022, China issued a hydrogen national strategy for the first time.
It states that hydrogen shall play a key role in the development of China’s energy sector.
Moreover, it explicitly mentions the exploration and promotion of using hydrogen from
renewable energy for replacing fossil fuels in industries such as synthetic ammonia and
methanol. In conclusion, China attaches importance to the development and application of
hydrogen-driven power-to-X technology.

Among the different methods for power-to-hydrogen, ALK water electrolysis, PEM
water electrolysis, and SOEC water electrolysis are the three mainstream water electrolysis
methods under research. ALK electrolysis is the most mature method; the maximum
hydrogen production rate produced by Chinese electrolyzer manufacturers could reach
3000 Nm3/h. The capacity to integrate with variable renewable energy sources needs
improve due to its low load range and long response time. PEM electrolysis has advantages
in terms of short time response and widened load range between 0 and 150%. Reducing
the cost of cell components could be very challenging. SOEC electrolysis is still less
mature commercially, and the stability at high temperatures needs to be studied. Chinese
electrolyzer manufacturers are capable of producing the above three types of electrolyzers.

Cu-based catalysts and Fe-based catalysts are the most widely used catalysts in indus-
trial methanol and ammonia synthesis, respectively. For power-to-methanol and power-to-
ammonia, it is vitally important for research to proceed on synthetic reaction catalysts with
excellent catalytic performance and high selectivity at different loads, with the ability to
withstand the harsh reaction conditions, and cost-effectiveness. In addition, in order for
both technologies to be applied on larger scales, considerable advances in equipment and
systems have to be achieved.

In China, most commercial or demonstration projects of power-to-hydrogen, power-
to-methanol, and power-to-ammonia are in planning, approval or construction stages.
These projects are located in the regions abundant in wind and solar resources. A few
demonstration projects have already been put into operation, whereas demonstrations are
a key step for technologies towards reaching the market. All these three hydrogen-driven
power-to-X technical routes have very wide popularization and application prospects
in China.

In addition, power-to-X are not limited to the as-mentioned three power-to-X technical
routes. There are other power-to-X pathways, including power-to-methane, power-to-
formic acid, power-to-formaldehyde, and power-to-alkanes, which are rapidly developing
and have great prospects. With the development of these technologies and the increase in
decarbonization demand, other power-to-X technologies will gain more attention in China.
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