A Critical Review of Systems for Bioremediation of Tannery Effluent with a Focus on Nitrogenous and Sulfurous Species Removal and Resource Recovery
Abstract
:Abbreviations
1. Introduction
2. Characteristics of Tannery Effluent
pH Units | TSS g/L | COD g/L | BOD5 g/L | TKN mg/L | NH3 mg/L | SO42− g/L | Na mg/L | Cl− mg/L | Cr g/L | Country | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Beamhouse effluent | |||||||||||
6.4 | 0.03 | - | - | 268 | 96 | - | - | - | - | Spain | [18] |
12.0 | 4.32 | 40.3 | - | 3570 | - | 5.53 | 5683 | - | - | Morocco | [21] |
- | 1.06 | 1.15 | - | 109 | - | 0.87 | - | 1700 | - | Spain | [22] |
Chrome tanning effluent | |||||||||||
4.1 | 0.46 | 0.39 | 0.12 | - | - | 0.05 | - | - | 2.00 | Brazil | [23] |
3.6 | 0.04 | 4.19 | 0.02 | - | - | 0.25 | - | - | 2.13 | Egypt | [24] |
3.5 | 2.00 | 1.70 | 0.65 | - | - | - | - | - | - | Sudan | [25] |
Vegetable tanning effluent | |||||||||||
3.5 | 3.30 | 25.5 | 4.05 | - | - | 7.40 | - | - | - | India | [19] |
7.1 | 5.30 | 7.63 | 3.04 | - | 860 | 0.02 | - | 741 | - | Cameroon | [26] |
4.5 | 1.85 | 27.0 | - | - | - | 3.93 | - | - | - | India | [27] |
6.0 | 3.21 | 24.3 | 2.80 | 37.2 | 16.8 | 0.03 | 259 | 751 | - | Ghana | [28] |
3. Bioremediation of Tannery Wastewater
3.1. Introduction
3.2. Conventional and Hybrid Activated Sludge
3.2.1. Conventional Activated Sludge Systems
3.2.2. Hybrid Activated Sludge Systems
TWW | Pre-Treatment | Anaerobic/Anoxic | Selected Operational Parameters (CAS) | Selected Influent Parameters | Removal Efficiency | Country [Ref] |
---|---|---|---|---|---|---|
Full-scale system | ||||||
70% TWW 30% DWW | “Semi-finished” | None | 2-stage CAS HRT: 2.5 and 0.4 days DO: 1–5 mg/L | COD: 2.08 ± 0.52 g/L TN: 61.9 ± 25.1 mg/L NH3-N: 54.2 ± 22.3 mg/L HS−: 2.8 ± 0.3 mg/L | 95% COD removal 76% TN removal 98% NH3-N removal 99% HS− removal | China [40] |
Pilot scale systems | ||||||
Re-tanning TWW | Screening → equalization → pH adjustment | None | HRT: 30 hrs DO: 4.0–4.9 F/M: 0.37–0.75 kgCOD/kgMLVSS·day−1 | COD: 5.5 ± 1.2 g/L NH3-N: 80–160 mg/L NO3−: 200–510 mg/L SO42−: 0.9–2.3 g/L Cl−: 1.2–2.1 g/L | 54–74% COD removal | Italy [47] |
Raw TWW | Biological | Stirred anoxic reactor | HRT: 40 hrs DO: 2.2–5.8 mg/L OLR: 0.72–1.13 1.9 kgCODm−3·day−1 | COD: 5.5 ± 1.2 g/L NH3-N: 80–160 mg/L SO42: 0.36–0.68 g/L | 95–98% COD removal 46–95% NH3-N removal | Ethiopia [50] |
Raw TWW | Screening → Biological | AD | HRT: 24 hrs | COD: 12.5 ± 3.9 g/L TN: 125–258 mg/L NH3-N: 287 ± 178 mg/L SO42: 0.80–0.51 g/L | 97% COD removal 70% TN removal 85% NH3-N removal 96% SO42− removal | Ethiopia [49] |
Laboratory studies | ||||||
Raw TWW | Equalization → C&F→ Biological | MBBR, AD, anoxic | HRT: 30 hrs DO: 1.8–2.5 mg/L SRT: 11–19 days | COD: 1.6 ± 2.2 g/L (range: 1.6–2.3 g/L) | Effluent COD: <0.2 g/L | India [51] |
Raw TWW | Equalization → C&F → Biological | (1) Anoxic (2) AD, oxic | HRT: 30 hrs DO: 1.5–2.5 mg/L SRT: (1) 26–34 days, (2) 21–26 days | COD: 1.9 ± 0.1 g/L (range: 1.7–2.1 g/L) | Effluent COD: 1) 0.25 ± 0.44 g/L 2) 0.16 ± 0.29 g/L | India [52] |
3.3. Laboratory Sequencing Batch Reactors and Other Hybrid Systems
TWW Origination | PRE-Treatment | Selected Operational Parameters | Relevant Influent Parameters | Optimal Performance | Country [Ref] |
---|---|---|---|---|---|
* TWW | Polyelectrolytes, TWW dilution | 6 L SBR HRT: 48 hr MLVSS/MLSS: 0.85 | CODsoluble: 1.5–4.0 g/L BOD: 0.48–1.23 g/L | 75–80% COD removal | Italy [55] |
* TWW | No details provided | 10 L SBR at 30 °C pH 7 Bioaugmented HRT: 5-days | COD: 6.24 g/L OLR: 2 kgCOD/m3·day−1 | 75% COD removal | India [14] |
TWW combined from 128 tanneries | Coagulation, Cr ppt. | 8 L SBR 12 hr cycle | COD: 1.91 ± 0.17 g/L NH3-N: 120 ± 15 mg/L OLR: 1.9 kgCODm−3·day−1 | 80–82% COD removal 83–99% NH3-N removal | India [54] |
TWW combined from 90 tanneries (wet-blue to finished leather) | Coagulation | 6 L SBR 12 hr cycle 4:7:1 (feed:react:decant) 50% ML retained | COD: 1.64 ± 0.21 g/L NH3-N: 132 ± 16 mg/L OLR: 1.9 kgCODm−3·day−1 | Nitrification: 6.9 mg NH4-N/gMLVSS·h−1 Denitrification: 6.24 mg NO3-N/g VSS h−1 | India [58] |
* TWW | Screening (coarse and fine) UASB | React 8–20 hr, Settle 0.5 hr SRT: 30-day MLSS: 4 g/L | COD: 4.20–4.70 g/L NH3-N: 274–317 mg/L | 38% COD removal (SBR) 99% COD removal (system) 84% NH3-N removal | China [59] |
3.4. Systems for Biological Sulfate Reduction and/or Sulfide Oxidation and Sulfur Recovery
TWW Origination | Reactor/s | Operational Parameters | Relevant Influent Parameters | Optimal Performance | Country [Ref] |
---|---|---|---|---|---|
Mixed raw TWW 3 tanneries (ABC) | Pilot STR-UFFR Intermittent UFFR 7.9 L | 35-day operation Temp: UFFR 34 °C pH: 5.6–7.0 HRT: 3.5 day | COD: 8.20 ± 6.19, 5.97 ± 3.08, 2.99 ± 2.87 g/L (A,B,C) SO42−: 1.00 ± 0.55, 1.25 ± 0.85, 0.75 ± 00.29 g/L (A,B,C) | STR SO42− removal: 5%, 38%, 45% (pH 5, 6, 7) UFFR SO42− removal: 43%, 24%, 20% (pH 5, 6, 7) | South Africa [60] |
Mixed raw TWW | Pilot UASB, STR Continuous UASB/STR: 1.5 m3 | 58-day operation Temp: ambient pH: 7.9–8.2 HRT: 4 days | pH: 7.5 COD: 5.32 g/L SO42−: 3.19 g/L | Removal: UASB SRR: 0.6 g SO42−/L·day−1 UASB ORR: 0.5 gCOD−/L·day−1 | South Africa [61] |
Settled mixed TWW (vegetable tanning) | Pilot UAF Continuous 52 L | 160-day operation Temp: 35 °C ± 0.5 pH: 7.3 ± 0.2 HRT: 2.2 ± 0.2 days | COD: 2.53 ± 0.70 g/L SO42−: 1.81 ± 0.60 g/L HS−: 10 ± 5.5 mg/L | COD removal 42% SO42− removal 53% | Italy [62] |
Synthetic N & P supplemented | Aerated laboratory CSTR Continuous 450 L | 53-day operation Temp: 10.7 ± 2.7 °C pH: 2–4 HRT: NG | SO42−: 1.61 ± 0.37 g/L | SOR: 22 mg HS−/L·day−1 | Italy [67] |
Mixed raw TWW (wet-blue tanning) | Pilot AFP Continuous 23 m3 | Temp: ambient pH: 8 HRT: 3–8 days | Loading rates SO42−: 6–182 g/m3·day−1 COD: 0.132–2.27 g/m3·day−1 | Removal: SO42−: 0.385–2.65 g/L COD: 0.723–8.22 g/L | Ethiopia [63] |
Mixed TWW (wet-blue tanning) | Laboratory HLFCR in series Continuous 4 L working volume | 104-day operation Temp: Ambient pH: 7.5 HRT: 4-days | COD: 7.0–27 g/L SO42−: 2.50 g/L HS−: 0.35 g/L | Removal: SO42−: 80% HS−: >97% | South Africa [30] |
Mixed raw TWW (wet-blue tanning) | Laboratory HLFCR in series Continuous 16.2 L working volume | 76-day operation Temp: ambient pH: 7.0–7.7 HRT: 4-days | COD: 22.8 ± 3.7 g/L SO42−: 1.95 ± 0.31 g/L HS−: 1.12 ± 0.00 g/L | Removal: SO42−: 54% HS−: 96% | South Africa [31,44] |
3.5. Anaerobic Digestion
3.6. Membrane Bioreactors
3.7. Treatment Wetlands
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hira, A.; Pacini, H.; Attafuah-Wadee, K.; Sikander, M.; Oruko, R.; Dinan, A. Mitigating Tannery Pollution in Sub-Saharan Africa and South Asia. J. Dev. Soc. 2022, 38, 360–383. [Google Scholar] [CrossRef]
- Swartz, C.D.; Jackson-Moss, C.; Roswell, R.; Mpofu, A.B.; Welz, P.J. NATSURV 10: Water and Wastewater Management in the Tanning and Leather Finishing Industry, 2nd ed.; WRC TT 713/17; Water Research Commission: Pretoria, South Africa, 2017; ISBN 978-1-4312-0881-4. [Google Scholar]
- Buljan, J.; Kral, I. The Framework for Sustainable Leather Manufacturing, 2nd ed.; Beachcroft-Shaw, H., Ed.; The United Nations Industrial Development Organization: Vienna, Austria, 2019. [Google Scholar]
- Gatto, A.; Parziale, A. Towards a green and just industry? Insights from traditional leather districts in Southern Italy. Sci. Tot. Environ. 2024, 942, 171552. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.Q.; Yasir, M.U.; Farooq, A.; Khan, M.; Salman, M.; Waqar, M. Tanneries impact on groundwater quality: A case study of Kasur city in Pakistan. Environ. Monit. Assess 2022, 194, 823. [Google Scholar] [CrossRef] [PubMed]
- Dotaniya, M.; Meena, V.; Rajendiran, S.; Coumar, M.V.; Saha, J.; Kundu, S.; Patra, A. Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bull. Environ. Contam. Toxicol. 2017, 98, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Mpofu, A.B.; Oyekola, O.O.; Welz, P.J. Anaerobic Treatment of Tannery Wastewater in the Context of a Circular Bioeconomy for Developing Countries. J. Clean. Prod. 2021, 296, 126490. [Google Scholar] [CrossRef]
- Humayra, S.; Hossain, L.; Hasan, S.R.; Khan, M.S. Water footprint calculation, effluent characteristics and pollution impact assessment of leather industry in Bangladesh. Water 2023, 15, 378. [Google Scholar] [CrossRef]
- De Aquim, P.M.; Hansen, E.; Gutterres, M. Water re-use: An alternative to minimize the environmental impact on the leather industry. J. Environ. Manag. 2019, 230, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Moniro, U.; Mostafa, M.G. Leather industrial effluent and environmental concerns: A review. Sustain. Water Res. Manag. 2023, 9, 181. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kumar, S.; Singh, D. Tannery Effluent Treatment and Its Environmental Impact: A Review of Current Practices and Emerging Technologies. Water Qual. Res. J. 2023, 58, 128–152. [Google Scholar] [CrossRef]
- Nigam, M.; Mishra, P.; Kumar, P.; Rajoriya, S.; Pathak, P.; Singh, S.R.; Kumar, S.; Singh, L. Comprehensive Technological Assessment for Different Treatment Methods of Leather Tannery Wastewater. Environ. Sci. Pollut. Res. 2022, 30, 124686–124703. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Q.; Tang, Y.; Zhou, J.; Guo, H. Tannery Wastewater Treatment: Conventional and Promising Processes, an Updated 20-Year Review. J. Sci. Eng. 2022, 4, 10. [Google Scholar] [CrossRef]
- Durai, G.; Rajasimman, M.; Rajamohan, N. Aerobic Digestion of Tannery Wastewater in a Sequential Batch Reactor by Salt-Tolerant Bacterial Strains. Appl. Water Sci. 2011, 1, 35–40. [Google Scholar] [CrossRef]
- Shi, J.; Sheng, L.; Salmi, O.; Masi, M.; Puig, R. Life Cycle Assessment Insights into Nanosilicates-Based Chrome-Free Tanning Processing towards Eco-Friendly Leather Manufacture. J. Clean. Prod. 2024, 434, 139892. [Google Scholar] [CrossRef]
- Baquero, G.; Sorolla, S.; Cuadros, R.; Ollé, L.; Bacardit, A. Analysis of the Environmental Impacts of Waterproofing versus Conventional Vegetable Tanning Process—A Life Cycle Analysis Study. J. Clean. Prod. 2021, 325, 129344. [Google Scholar] [CrossRef]
- Yang, F.; Huang, Z.; Huang, J.; Wu, C.; Zhou, R.; Jin, Y. Tanning Wastewater Treatment by Ultrafiltration: Process Efficiency and Fouling Behavior. Membranes 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Marsal, A.; Hernández, E.; Cuadros, S.; Puig, R.; Bautista, E.; Font, J. Recovery of Proteins from Wastewater of Tannery Beamhouse Operations: Influence on the Main Pollution Parameters. Water Sci. Technol. 2010, 62, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A.; Kanchinadham, S.B.K.; Kalyanaraman, C. Studies on the Effect of Pre-Treatment of Vegetable Tanning Process Wastewater Prior to Biological Treatment. J. Environ. Chem. Eng. 2020, 8, 104020. [Google Scholar] [CrossRef]
- UNIDO 2000; The Scope for Decreasing Pollution Load in Leather Processing (US/RAS/92/120/11-51). United Nations Industrial Development Organization—Regional Programme for Pollution Control in the Tanning Industry in South-East Asia: Vienna, Austria, 2000.
- Majouli, A.; Tahiri, S.; Younssi, S.A.; Loukili, H.; Albizane, A. Treatment of Effluents Coming from Beamhouse Section of Tannery by Microfiltration through Cordierite/Zirconia and Alumina Tubular Ceramic Membranes. J. Mater. Environ. Sci. 2012, 3, 808–815. [Google Scholar]
- Goltara, A.; Martinez, J.; Mendez, R. Carbon and Nitrogen Removal from Tannery Wastewater with a Membrane Bioreactor. Water Sci. Technol. 2003, 48, 207–214. [Google Scholar] [CrossRef]
- Mella, B.; Glanert, A.C.; Gutterres, M. Removal of Chromium from Tanning Wastewater and Its Reuse. Proc. Saf. Environ. Prot. 2015, 95, 195–201. [Google Scholar] [CrossRef]
- Abdulla, H.M.; Kamal, E.M.; Mohamed, A.H.; El-Bassuony, A.D. Chromium Removal from Tannery Wastewater Using Chemical and Biological Techniques Aiming Zero Discharge of Pollution. In Proceedings of the Fifth Scientific Environmental Conference, Houston, TX, USA, 12–16 July 2010; pp. 171–183. [Google Scholar]
- Islam, B.I.; Musa, A.E.; Ibrahim, E.H.; Sharafa, S.A.A.; Elfaki, B.M. Evaluation and Characterization of Tannery Wastewater. J. Forest Prod. Ind. 2014, 3, 141–150. [Google Scholar]
- Paltahe, A.; Cornelius, T.; Sambo, B.; Christian, D.; Téri, T.; Rallet, D.; Wahabou, A. Physico-Chemical Characterization of Local Tannery Waste Water Before and After Flocculation Treatment. Int. J. Chem. 2019, 11, 77. [Google Scholar] [CrossRef]
- Borchate, S.S.; SKulkarni, D.G.; Kore, S.V.; Kore, V.S. Application of coagulation-flocculation for vegetable tannery wastewater. Int. J. Eng. Sci. Technol. 2012, 4, 1944–1948. [Google Scholar]
- Appiah-Brempong, M.; Essandoh, H.M.K.; Asiedu, N.Y.; Dadzie, S.K.; Momade, F.W.Y. Artisanal Tannery Wastewater: Quantity and Characteristics. Heliyon 2022, 8, e08680. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Mazumder, D.; IPA-Under Creative Commons License 3.0. Scope of Biological Treatment for Composite Tannery Wastewater. Int. J. Environ. Sci. 2014, 5, 607–622. [Google Scholar] [CrossRef]
- Horn, E.J.; Oyekola, O.O.; Welz, P.J.; van Hille, R.P. Biological Desulfurization of Tannery Effluent Using Hybrid Linear Flow Channel Reactors. Water 2021, 14, 32. [Google Scholar] [CrossRef]
- Mpofu, A.B.; Kaira, W.M.; Holtman, G.A.; Oyekola, O.O.; van Hille, R.P.; Welz, P.J. Resource Recovery from Tannery Wastewater Using an Integrated Biological System: Towards a Circular Bioeconomy and Net Positive Tannery Operations. J. Clean. Prod. 2023, 387, 135872. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Z.; Ge, G. Upgrade and Reconstruction of Biological Processes in Municipal Wastewater Treatment Plants. Desalination Water Treat 2024, 317, 100299. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, W. A Review for Tannery Wastewater Treatment: Some Thoughts under Stricter Discharge Requirements. Environ. Sci. Pollut. Res. 2019, 26, 26102–26111. [Google Scholar] [CrossRef]
- Lin, S.; Mackey, H.R.; Hao, T.; Guo, G.; van Loosdrecht, M.C.M.; Chen, G. Biological Sulfur Oxidation in Wastewater Treatment: A Review of Emerging Opportunities. Water Res. 2018, 143, 399–415. [Google Scholar] [CrossRef]
- Hao, T.; Xiang, P.; Mackey, H.R.; Chi, K.; Lu, H.; Chui, H.; van Loosdrecht, M.C.M.; Chen, G.-H. A Review of Biological Sulfate Conversions in Wastewater Treatment. Water Res. 2014, 65, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Daigger, G.T. Oxygen and Carbon Requirements for Biological Nitrogen Removal Processes Accomplishing Nitrification, Nitritation, and Anammox. Water Environ. Res. 2014, 86, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Reemtsma, T.; Jekel, M. Dissolved Organics in Tannery Wastewaters and Their Alteration by a Combined Anaerobic and Aerobic Treatment. Water Res. 1997, 31, 1035–1046. [Google Scholar] [CrossRef]
- Ramirez Canon, A.; Angelis-Dimakis, A.; Ospina-Mora, D.C. Evaluation of the Aerobic and Anaerobic Degradation of an Industrial Effluent from Vegetable Tannery Processing of Leather on Batch Reactors. Glob. NEST J. 2020, 23, 22–28. [Google Scholar] [CrossRef]
- Dhir, B. Bioremediation Technologies for the Removal of Pollutants. In Advances in Environmental Biotechnology; Kumar, R., Sharma, A.K., Ahluwalia, S.S., Eds.; Springer: Singapore, 2017; pp. 69–91. [Google Scholar]
- Cheng, Y.; Chon, K.; Ren, X.; Kou, Y.; Hwang, M.-H.; Chae, K.-J. Bioaugmentation Treatment of a Novel Microbial Consortium for Degradation of Organic Pollutants in Tannery Wastewater under a Full-Scale Oxic Process. Biochem. Eng. J. 2021, 175, 108131. [Google Scholar] [CrossRef]
- Xiang, S.; Liu, Y.; Zhang, G.; Ruan, R.; Wang, Y.; Wu, X.; Zheng, H.; Zhang, Q.; Cao, L. New Progress of Ammonia Recovery during Ammonia Nitrogen Removal from Various Wastewaters. World J. Microbiol. Biotechnol. 2020, 36, 144. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Verma, M.; Saratale, G.D.; Saratale, R.G.; Ferreira LF, R.; Mulla, S.I.; Bharagava, R.N. Microalgae: A Green Eco-Friendly Agents for Bioremediation of Tannery Wastewater with Simultaneous Production of Value-Added Products. Chemosphere 2023, 336, 139192. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, W.; Gong, X.; Li, X.; Liu, W.; He, C.; Wang, Z.; Minh, Q.N.; Chen, C.-L.; Wang, J.-Y. Biological Pretreatment of Tannery Wastewater Using a Full-Scale Hydrolysis Acidification System. Int. Biodeterior. Biodegrad. 2014, 95, 41–45. [Google Scholar] [CrossRef]
- Welz, P.J.; De Jonge, N.; Lilly, M.; Kaira, W.; Mpofu, A.B. Integrated Biological System for Remediation and Valorization of Tannery Wastewater: Focus on Microbial Communities Responsible for Methanogenesis and Sulfidogenesis. Bioresour. Technol. 2024, 395, 130411. [Google Scholar] [CrossRef]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A Critical Review of Resource Recovery from Municipal Wastewater Treatment Plants—Market Supply Potentials, Technologies and Bottlenecks. Environ. Sci. 2020, 6, 877–910. [Google Scholar] [CrossRef]
- Matos, R.V.; Peixeiro, M.; Ferreira, F.; Matos, J.S. Model-Driven Strategies for Sulfide Control in a Regional Wastewater System Receiving Tannery Effluents in Portugal. Water 2021, 13, 2838. [Google Scholar] [CrossRef]
- De Gisi, S.; Galasso, M.; De Feo, G. Treatment of Tannery Wastewater through the Combination of a Conventional Activated Sludge Process and Reverse Osmosis with a Plane Membrane. Desalination 2009, 249, 337–342. [Google Scholar] [CrossRef]
- Welz, P.J.; Thobejane, M.P.; van Blerk, G.N. Ammonium Oxidizing Bacterial Populations in South African Activated Sludge Wastewater Treatment Plants. Water Environ. Res. 2023, 95, e10945. [Google Scholar] [CrossRef] [PubMed]
- Desta, A.F.; Assefa, F.; Leta, S.; Stomeo, F.; Wamalwa, M.; Njahira, M.; Appolinaire, D. Microbial Community Structure and Diversity in an Integrated System of Anaerobic-Aerobic Reactors and a Constructed Wetland for the Treatment of Tannery Wastewater in Modjo, Ethiopia. PLoS ONE 2014, 9, e115576. [Google Scholar] [CrossRef] [PubMed]
- Leta, S.; Assefa, F.; Gumaelius, L.; Dalhammar, G. Biological Nitrogen and Organic Matter Removal from Tannery Wastewater in Pilot Plant Operations in Ethiopia. Appl. Microbiol. Biotechnol. 2004, 66, 333–339. [Google Scholar] [CrossRef]
- Sodhi, V.; Bansal, A.; Jha, M.K. Excess Sludge Disruption and Pollutant Removal from Tannery Effluent by Upgraded Activated Sludge System. Bioresour. Technol. 2018, 263, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, V.; Bansal, A.; Jha, M.K. Minimization of Excess Bio-Sludge and Pollution Load in Oxic-Settling-Anaerobic Modified Activated Sludge Treatment for Tannery Wastewater. J. Clean. Prod. 2020, 243, 118492. [Google Scholar] [CrossRef]
- Sodhi, V.; Bansal, A.; Jha, M.K. Investigation of Activated Sludge Characteristics and Their Influence on Simultaneous Sludge Minimization and Nitrogen Removal from an Advanced Biological Treatment for Tannery Wastewater. Environ. Technol. Innov. 2021, 24, 102013. [Google Scholar] [CrossRef]
- Ganesh, R.; Balaji, G.; Ramanujam, R.A. Biodegradation of Tannery Wastewater Using Sequencing Batch Reactor—Respirometric Assessment. Bioresour. Technol. 2006, 97, 1815–1821. [Google Scholar] [CrossRef]
- Balaguer-Arnandis, E.; Cuartas-Uribe, B.; Bes-Piá, M.A.; Mendoza-Roca, J.A.; Galiana-Aleixandre, M.V. Performance Improvement of a Sequencing Batch Reactor for Treating Tannery Wastewaters. Chem. Eng. Technol. 2017, 40, 1666–1673. [Google Scholar] [CrossRef]
- Melesse, A.G.; Velmurugan, N.; Shanmugham Venkatachalam, S.; Pothanamkandathil Chacko, S.; Demissie, B.A. Startup of Granulation of Sludge in Sequencing Batch Airlift Reactor for Simultaneous Removal of Nitrogen and Organic Carbon from Tannery Wastewater. J. Water Proc. Eng. 2020, 38, 101605. [Google Scholar] [CrossRef]
- Liu, W.-H.; Zhang, C.-G.; Gao, P.-F.; Liu, H.; Song, Y.-Q.; Yang, J.-F. Advanced Treatment of Tannery Wastewater Using the Combination of UASB, SBR, Electrochemical Oxidation and BAF. J. Chem. Technol. Biotechnol. 2017, 92, 588–597. [Google Scholar] [CrossRef]
- Ganesh, R.; Sousbie, P.; Torrijos, M.; Bernet, N.; Ramanujam, R.A. Nitrification and Denitrification Characteristics in a Sequencing Batch Reactor Treating Tannery Wastewater. Clean. Technol. Environ. Policy 2015, 17, 735–745. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, M.; Du, Q.; Yang, H. Application of Immobilized Biological Fillers for the Hydrolytic Acidification and Denitrification of Sulfide-Containing Tannery Wastewater. Biochem. Eng. J. 2024, 208, 109342. [Google Scholar] [CrossRef]
- Genschow, E.; Hegemann, W.; Maschke, C. Biological Sulfate Removal from Tannery Wastewater in a Two-Stage Anaerobic Treatment. Water Res. 1996, 30, 2072–2078. [Google Scholar] [CrossRef]
- Boshoff, G.; Duncan, J.; Rose, P.D. Tannery Effluent as a Carbon Source for Biological Sulphate Reduction. Water Res. 2004, 38, 2651–2658. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, A.; Munz, G.; Mori, G.; Lubello, C. Factors affecting biological sulphate reduction in tannery wastewater treatment. Environ. Eng. Manag. 2014, 13, 1005–1012. [Google Scholar] [CrossRef]
- Tadesse, I.; Green, F.B.; Puhakka, J.A. The Role of Sulphidogenesis in Anaerobic Treatment Phase of Tannery Wastewater Treatment in Advanced Integrated Wastewater Pond System. Biodegradation 2003, 14, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Mpofu, A.B.; Kibangou, V.A.; Kaira, W.M.; Oyekola, O.O.; Welz, P.J. Anaerobic Co-Digestion of Tannery and Slaughterhouse Wastewater for Solids Reduction and Resource Recovery: Effect of Sulfate Concentration and Inoculum to Substrate Ratio. Energies 2021, 14, 2491. [Google Scholar] [CrossRef]
- Alex Kibangou, V.; Lilly, M.; Busani Mpofu, A.; de Jonge, N.; Oyekola, O.O.; Jean Welz, P. Sulfate-Reducing and Methanogenic Microbial Community Responses during Anaerobic Digestion of Tannery Effluent. Bioresour. Technol. 2022, 347, 126308. [Google Scholar] [CrossRef]
- Jennita Jacqueline, P.; Saravanakumar, M.P. Removal and Recovery of Sulphate from RO Rejects Tannery Wastewater by Double-Jacketed Agitated Crystallizer via Gypsum Crystallization. Chem. Eng. J. 2024, 486, 150341. [Google Scholar] [CrossRef]
- Giordano, C.; Spennati, F.; Melone, A.; Petroni, G.; Verni, F.; Munz, G.; Mori, G.; Vannini, C. Biological Sulfur-Oxidizing Potential of Primary and Biological Sludge in a Tannery Wastewater Treatment Plant. Water Air Soil Pollut. 2015, 226, 391. [Google Scholar] [CrossRef]
- Horn, E.J.; van Hille, R.P.; Oyekola, O.O.; Welz, P.J. Functional Microbial Communities in Hybrid Linear Flow Channel Reactors for Desulfurization of Tannery Effluent. Microorganisms 2022, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Mpofu, A.B.; Kaira, W.M.; Oyekola, O.O.; Welz, P.J. Anaerobic Co-Digestion of Tannery Effluents: Process Optimisation for Resource Recovery, Recycling and Reuse in a Circular Bioeconomy. Proc. Saf. Environ. Prot. 2022, 158, 547–559. [Google Scholar] [CrossRef]
- Fernández-Medrano, V.; Cuartas-Uribe, B.; Bes-Piá, M.A.; Mendoza-Roca, J.A. Application of Nanofiltration and Reverse Osmosis Membranes for Tannery Wastewater Reuse. Water 2022, 14, 2035. [Google Scholar] [CrossRef]
- Mendoza-Roca, J.A.; Galiana-Aleixandre, M.V.; Lora-García, J.; Bes-Piá, A. Purification of Tannery Effluents by Ultrafiltration in View of Permeate Reuse. Sep. Purif. Technol. 2010, 70, 296–301. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Maliha, M.; Tujjohra, F.; Munmun, S.A.; Alam, M.S.; Islam, M.A.; Rahman, M.M. Treatment of Tannery Wastewater by Different Membrane Bioreactors: A Critical Review. Environ. Adv. 2024, 15, 100478. [Google Scholar] [CrossRef]
- Banerjee, S.; Santra, B.; Kar, S.; Banerjee, D.; Ghosh, S.; Majumdar, S. Performance Assessment of the Indigenous Ceramic UF Membrane in Bioreactor Process for Highly Polluted Tannery Wastewater Treatment. Environ. Sci. Pollut. Res. 2022, 29, 48620–48637. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.S.; Vo TK, Q.; Dang, T.B.; Nguyen, P.T.; Nguyen, K.Q.; Hoang, Q.H.; Le, L.T.; Nguyen, T.T.; Bui, X.T. Anaerobic Baffled Reactor Coupled with Membrane Bioreactor Treating Tannery Wastewater. Case Stud. Chem. Environ. Eng. 2022, 5, 100185. [Google Scholar] [CrossRef]
- Alemu, T.; Lemma, E.; Mekonnen, A.; Leta, S. Performance of Pilot Scale Anaerobic-SBR System Integrated with Constructed Wetlands for the Treatment of Tannery Wastewater. Environ. Process. 2016, 3, 815–827. [Google Scholar] [CrossRef]
- Alemu, A.; Gabbiye, N.; Lemma, B. Evaluation of Tannery Wastewater Treatment by Integrating Vesicular Basalt With Local Plant Species in a Constructed Wetland System. Front. Environ. Sci. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- García-Valero, A.; Martínez-Martínez, S.; Faz, Á.; Terrero, M.A.; Muñoz, M.Á.; Gómez-López, M.D.; Acosta, J.A. Treatment of WASTEWATER from the Tannery Industry in a Constructed Wetland Planted with Phragmites Australis. Agronomy 2020, 10, 176. [Google Scholar] [CrossRef]
- Zapana JS, P.; Arán, D.S.; Bocardo, E.F.; Harguinteguy, C.A. Treatment of Tannery Wastewater in a Pilot Scale Hybrid Constructed Wetland System in Arequipa, Peru. Int. J. Environ. Sci. Technol. 2020, 17, 4419–4430. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed Wetland Systems Vegetated with Different Plants Applied to the Treatment of Tannery Wastewater. Water Res. 2007, 41, 1790–1798. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Evaluation of Different Substrates to Support the Growth of Typha Latifolia in Constructed Wetlands Treating Tannery Wastewater over Long-Term Operation. Bioresour. Technol. 2008, 99, 6866–6877. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. The Effects of Tannery Wastewater on the Development of Different Plant Species and Chromium Accumulation in Phragmites Australis. Arch. Environ. Contam. Toxicol. 2008, 55, 404–414. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Quitério, P.V.B.; Silva, G.; Crispim, L.F.C.; Brix, H.; Moura, S.C.; Castro, P.M.L. Use of Constructed Wetland Systems with Arundo and Sarcocornia for Polishing High Salinity Tannery Wastewater. J. Environ. Manage 2012, 95, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Dotro, G.; Palazolo, P.; Larsen, D. Chromium Fate in Constructed Wetlands Treating Tannery Wastewaters. Water Environ. Res. 2009, 81, 617–625. [Google Scholar] [CrossRef]
- Saeed, T.; Afrin, R.; Muyeed, A.A.; Sun, G. Treatment of Tannery Wastewater in a Pilot-Scale Hybrid Constructed Wetland System in Bangladesh. Chemosphere 2012, 88, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Dotro, G.; Castro, S.; Tujchneider, O.; Piovano, N.; Paris, M.; Faggi, A.; Palazolo, P.; Larsen, D.; Fitch, M. Performance of Pilot-Scale Constructed Wetlands for Secondary Treatment of Chromium-Bearing Tannery Wastewaters. J. Hazard Mater. 2012, 239–240, 142–151. [Google Scholar] [CrossRef]
- Mader, A.E.; Holtman, G.A.; Welz, P.J. Treatment Wetlands and Phyto-Technologies for Remediation of Winery Effluent: Challenges and Opportunities. Sci. Total Environ. 2022, 807, 150544. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Naveed, M.; Afzal, M.; Seleiman, M.F.; Al-Suhaibani, N.A.; Zahir, Z.A.; Mustafa, A.; Refay, Y.; Alhammad, B.A.; Ashraf, S.; et al. Unveiling the Potential of Novel Macrophytes for the Treatment of Tannery Effluent in Vertical Flow Pilot Constructed Wetlands. Water 2020, 12, 549. [Google Scholar] [CrossRef]
- Holtman, G.A.; Haldenwang, R.; Welz, P.J. Biological Sand Filter System Treating Winery Effluent for Effective Reduction in Organic Load and PH Neutralisation. J. Water Process. Eng. 2018, 25, 118–127. [Google Scholar] [CrossRef]
- Song, U.; Park, H. Importance of Biomass Management Acts and Policies after Phytoremediation. J. Ecol. Environ. 2017, 41, 13. [Google Scholar] [CrossRef]
- Avellán, T.; Gremillion, P. Constructed Wetlands for Resource Recovery in Developing Countries. Renew. Sustain. Energ. Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
TW Type | TWW | Media | Plants | Influent Parameters | Average Removal Performance | Country [Ref] |
---|---|---|---|---|---|---|
Pilot HSSF | 50% | Basalt gravel | Pennisetum purpureum, Typha domingensis, Cyprus latifolius, Echinochloa pyramidalis | COD: 1.19 ± 0.6 g/L NO3−_N: 30 ± 8 mg/L TSS: 427 ± 306 mg/L | 79–84% COD (334–355 kg COD/ha/day) 63–71% % NO3−-N 69–71% TSS | Ethiopia [76] |
Pilot HSSF in series | Treated: 2-stage AD | Basalt gravel | Phragmites karka | COD: 1.14 ± 0.3 g/L TN: 220 ± 18 mg/L SO42−: 433 ± 162 mg/L S2−: 6.6 ± 0.4 mg/L TSS: 427 ± 306 mg/L Cr: 11.7 ± 7.0 | 93% COD (537 kg COD/ha/day) 78% TN 78% SO42− 93% S2− TSS NG 97% Cr | Ethiopia [75] |
Pilot HSSF | Treated: PC, DAF | Granitic gravel 5–8 mm | Typha latifolia | COD: 2.1 g/L TSS: 208 mg/L Cr: 1.1 mg/L | 53% COD (771 kg COD/ha/day) 69% TSS 50% Cr | Argentina [85] |
Pilot HSSF batch mode | Treated: PC, secondary | Limestone gravel 23–40 cm, sand (top) | Phragmites australis | TKN: 816 ± 12 mg/L Cr: 0.23 ± 0.0 mg/L | 10% TKN 48% Cr | Spain [77] |
Lab-scale VF → HSSF → VF | “Raw” | Peat → slag 20 mm → pea gravel 1.2–2.3 mm | Phragmites australis | COD: 11.6 ± 6 g/L NH4+: 111 ± 39 mg/L NO3−: 66 ± 35 mg/L TSS: 27.6 ± 10.2 g/L | 98% COD (377 kg COD/ha/day) 86% NH4+ 50% NO3− 55% TSS | Bangladesh [84] |
Pilot HSSF → FWSF | Treated: PC | Gravel and sand | Isolepsis cernua → Nasturtium aquaticum | COD: 2.4 ± 1.3 mg/L TSS: 272 ± 118 mg/L Cr: 8.11 ± 4.86 mg/L | 89% COD 90% TSS 100% Cr | Peru [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngobeni, P.V.; Mpofu, A.B.; Ranjan, A.; Welz, P.J. A Critical Review of Systems for Bioremediation of Tannery Effluent with a Focus on Nitrogenous and Sulfurous Species Removal and Resource Recovery. Processes 2024, 12, 1527. https://doi.org/10.3390/pr12071527
Ngobeni PV, Mpofu AB, Ranjan A, Welz PJ. A Critical Review of Systems for Bioremediation of Tannery Effluent with a Focus on Nitrogenous and Sulfurous Species Removal and Resource Recovery. Processes. 2024; 12(7):1527. https://doi.org/10.3390/pr12071527
Chicago/Turabian StyleNgobeni, Philadelphia V., Ashton B. Mpofu, Amrita Ranjan, and Pamela J. Welz. 2024. "A Critical Review of Systems for Bioremediation of Tannery Effluent with a Focus on Nitrogenous and Sulfurous Species Removal and Resource Recovery" Processes 12, no. 7: 1527. https://doi.org/10.3390/pr12071527