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Abstract: This research develops a method for synthesizing linguistic models of fuzzy systems
with fuzzy input and output parameters that are described by linguistic variables. Based on the
proposed method, linguistic models of the Title 1000 catalytic cracking unit for heavy residues at
the Shymkent oil refinery are developed, describing the dependence of the volume and quality of
gasoline on the input and operating parameters of the facility, which are fuzzy. It is substantiated
that the use of a fuzzy approach, which allows the use of the experience, knowledge, and intuition
(intelligence) of the decision maker and subject matter experts, is the most suitable effective method
for synthesizing models of complex, fuzzily described objects and processes for comparison with
other methods. The main idea of the proposed work is to solve the problems of shortage and fuzziness
of initial information when developing models and optimizing the operating modes of a catalytic
cracking unit through the use of knowledge, experience, and intuition of experts in this field. To
solve the problems of the shortage of initial quantitative information and the fuzziness of available
information when developing mathematical models, it is proposed to systematically use statistical
methods, expert assessment methods, and a heuristic method based on fuzzy logic. The scientific
novelty of the research lies in the development of a method for synthesizing linguistic models in a
fuzzy environment and an algorithm for its implementation, which makes it possible to describe the
dependence of the fuzzy values of the object’s output parameters on its fuzzy input and operating
parameters. The proposed approach allows the formalization and synthesis of models of fuzzily
described objects when other methods of model development are not applicable or do not give the
expected results. The results of the work were simulated in the MATLAB Fuzzy Logic Toolbox.

Keywords: catalytic cracking process; linguistic model; fuzzy logic; computer modeling; optimization

1. Introduction

The catalytic cracking unit is one of the main units of oil refineries designed for the
production of high-quality automotive gasoline. The Shymkent Refinery operates a Title
1000 heavy residue catalytic cracking unit. The main process of this unit is the catalytic
cracking of heavy residues. This is a fluidized bed process that converts heavy petroleum
fractions into lighter and more valuable hydrocarbon products. The catalytic cracking
process being examined at the unit is typical of many intricate, insufficiently formalized
technological procedures. It is marked by uncertain initial data regarding the quality of the
resultant gasoline, essential for refining models aimed at enhancing gasoline quality. In
this regard, to describe the dependence of the quality of gasoline produced from a catalytic

Processes 2024, 12, 1543. https://doi.org/10.3390/pr12081543 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12081543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-2109-6999
https://orcid.org/0000-0001-9872-7483
https://doi.org/10.3390/pr12081543
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12081543?type=check_update&version=1


Processes 2024, 12, 1543 2 of 22

cracking unit, a very urgent task is to develop linguistic models in a fuzzy environment
and methods for intellectualizing the process control system of the reactor–regenerator
block of a catalytic cracking unit using linguistic models. At the same time, based on the
representation of expert knowledge, it is necessary to automatically generate membership
functions for the values of linguistic variables in conditions of fuzzy information, based
on the experience, knowledge, and intuition of the decision maker (DM) and subject
matter experts.

The results of the analysis of various sources [1–20] show that decision-making models
developed taking into account fuzziness, based on fuzzy logic, are most effective for com-
plex systems control under conditions of uncertainty. However, the issues of developing
models in a fuzzy environment have not yet been sufficiently studied in research works.
There is no method for synthesizing linguistic models in the conditions of fuzzy input
and output parameters of the object. In this regard, the study of problems of the synthesis
of effective linguistic models that allow solving decision-making problems for complex
fuzzily described chemical-technological systems control remains an urgent task of modern
science and practice.

The purpose of this study includes the following:

• Development of a method for synthesizing linguistic models of fuzzily described
technological systems.

• Concepts for intellectualizing the process control system of the reactor–regenerator
block of a catalytic cracking unit using developed linguistic models. At the same time,
the effective use of expert knowledge with the automatic formation of membership
functions for the values of linguistic variables in conditions of fuzzy information is
based on the experience and intuition of experts.

As a result of the analysis of the principles and methods of developing mathematical
models, decision making, and optimization of industrial objects, it was revealed that
scientific works do not sufficiently cover the issues of developing linguistic models and
optimizing their operating modes. In [1,2], approaches to the development of mathematical
models and optimization of parameters of technological objects, which are characterized
by the fuzziness of the initial information, were studied and proposed. Since 2010, several
works by authors R.A. Aliev, N.R. Yusupbekov, M.F. Azeem, H. Taskin, and P.B. Osofisan
have been published using fuzzy logic methods in catalytic cracking control algorithms.

Works [3,4] focus on developing a model of the catalytic cracking process sensitive to
the composition of the raw material and the properties of the catalyst. We agree that these
indicators affect the yield and quality of gasoline, but they relate to the chemical properties
of the raw materials and catalyst. To achieve the goal, it is not enough to regulate the above
parameters; it is necessary to additionally regulate such parameters as the temperature
and pressure of the reactor, the temperature of the regenerator, and the consumption of
raw materials and catalyst, which are the key controlled parameters of the control object.
It is also necessary to take into account that process parameters may be fuzzy. In this
regard, there is a need to develop linguistic models of a catalytic cracking unit that take
into account fuzzy input and output parameters described by linguistic variables, studied
by our proposed method for their synthesis. This method allows using the experience,
knowledge, and intuition of experts in the field.

The article [5] proposes to solve the problem using kinetic modeling and structural
grouping of components. These methods require accurate and extensive data for model
verification. When data are insufficient or uncertain, models may be inaccurate. Kinetic
modeling and structural grouping methods have their own advantages, such as high
accuracy and detail in the presence of high-quality data. However, compared to fuzzy
logic, they are less flexible, difficult to adapt to new conditions, and require significant
computing resources. Fuzzy logic, in turn, provides greater flexibility and adaptability,
especially in conditions of uncertainty and lack of data, while integrating expert knowledge
and intuition.
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In [6], the authors solve the problem using hybrid modeling, which depends on
accurate quantitative data. A hybrid model based on structural grouping and the analogy
method is highly accurate in the presence of high-quality data and can effectively optimize
real-time processes. The works [7,8] use artificial intelligence methods based on big data,
machine learning, and deep learning, which require large volumes of high-quality data for
training models. Lack of data or poor data quality can significantly reduce the accuracy
and reliability of these models. Also, the above models are less flexible, difficult to adapt,
and require significant computing resources. Fuzzy logic, on the contrary, provides greater
flexibility and adaptability, especially in conditions of uncertainty and insufficient data,
and effectively integrates expert knowledge, making it a more universal and less resource-
intensive method for modeling and optimizing complex systems.

However, in these and other analyzed works devoted to the modeling and optimiza-
tion of complex, fuzzily described objects, the issues of developing nonlinear models with
fuzzy input and output parameters of the object have not been sufficiently studied. In
addition, in the known methods for solving fuzzy modeling and optimization problems, at
the formulation stage, the fuzzy problem is transformed into a set of crisp problems and
is then solved using existing crisp methods. With this approach, a significant part of the
initial collected fuzzy information (knowledge, experience of experts) is often lost, which
leads to a decrease in the adequacy of the application of the resulting models and solutions
to reality [9,10].

Fuzzy logic is a systematic mathematical formulation for the study and characteriza-
tion of processes with varying levels of uncertainty due to the fuzziness of the available
information. This is the best choice when the mathematical model of the process is too
complex to be evaluated quickly enough in real-time. Fuzzy logic is widely used in modern
research for complex systems control like a robotic manipulator [11]. The use of fuzzy
logic allows modeling systems with fuzzy input and output parameters, which may be
difficult to implement with other methods. This is especially important in conditions of
a shortage of quantitative information. Incorporating the experience, knowledge, and
intuition of experts into the modeling process increases the accuracy and reliability of
models, which can be especially useful in complex and poorly formalized systems. The use
of a fuzzy approach allows the problems of the shortage and fuzziness of initial information
to be effectively solved. This makes the method more flexible and adaptable to different
conditions and scenarios. The development of a fuzzy inference rule base and a knowledge
base for a decision-making system improves the control of technological objects in real-time
and allows a prompt reaction to changes in the production process. The systematic use of
statistical methods, expert assessment methods, and a heuristic method based on fuzzy
logic provides an integrated approach to solving modeling problems.

In [12], the problems of developing models of a reactor block of a catalytic cracking
unit operating at the Atyrau oil refinery in a fuzzy environment were investigated and
solved. The developed models in a fuzzy environment take into account the influence of
only two input variables (raw material supply rate and reactor temperature) on one output
parameter—the volume of catalyzate (produced product). In addition, the rule base for
fuzzy modeling consists of only nine basic rules, i.e., the proposed approach to developing
a fuzzy model is limited and is not universal.

In this paper, a method for synthesizing linguistic models is developed and its algo-
rithmic block diagram is presented, demonstrating the universality of the approach to the
development of linguistic models of various objects and processes in a fuzzy environment.
Based on the proposed method, linguistic models of the Title 1000 heavy residue catalytic
cracking unit at the Shymkent oil refinery are synthesized, describing the dependence of
the volume and quality of gasoline (its density), which are important parameters for this
object, on six input operating parameters, which are fuzzy.

The input operating parameters that quite strongly influence the volume and density
of benzine from the output of the Title 1000 heavy residue catalytic cracking unit of the
Shymkent oil refinery are: 1—raw material consumption—x1, 2—raw material density—x2,
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3—raw material temperature—x3, 4—temperature in the reactor—x4, 5—pressure in the
reactor—x5, and 6—catalyst consumption—x6. The volume of the created rule base in this
work includes 20 fuzzy inference rules, i.e., they cover more widely possible options, and
changes in input and operating parameters.

Based on the analysis results of known methods for modeling catalytic cracking
processes, it was established that they generally have restrictions and are ineffective for
modeling under conditions of uncertainty. Many well-known methods are usually oriented
towards modeling under deterministic conditions, i.e., when there are unambiguous de-
pendencies between the input operating and output parameters of the object of catalytic
cracking units. For example, in works [6,13–18], methods for dynamic modeling of cat-
alytic cracking processes and approaches to developing their models under deterministic
conditions were studied, but the problems of uncertainty that often arise in practice when
developing models of catalytic cracking units were not considered. As is known in practice,
in many cases, catalytic cracking units, like many other production objects, operate under
uncertain conditions caused by the initial data’s randomness and fuzziness.

Studies [19–22] propose approaches to modeling catalytic cracking units under condi-
tions of uncertainty that arise due to the random, stochastic nature of the object’s parameters.
In these and other similar studies, the problems of uncertainty caused by the stochasticity of
the values of the object’s parameters are solved based on the methods of probability theories
and mathematical statistics. However, uncertainty is often caused due to the fuzziness
of the object parameters necessary for developing models. In these situations, stochastic
methods for solving problems of uncertainty are not suitable, since there are no measurable,
quantitative, or statistical data, and the available information is characterized by fuzziness,
which represents the experience, knowledge, and intuition of experts, expressed in natural
language. Thus, in these situations, to model the operation of catalytic cracking units and
other production objects, it is necessary to use a fuzzy approach based on the methods of
expert assessments and fuzzy sets.

Recently, research aimed at modeling complex, fuzzily described production objects
such as catalytic cracking units based on a fuzzy approach has intensified. For example,
in works [13,20,23–26], approaches to modeling and control of catalytic cracking units
and other objects with fuzzy initial data based on fuzzy logic and artificial intelligence
methods, neural network technologies were investigated and proposed. These and other
similar works consider the problems of partial fuzziness of parameters, i.e., fuzzy output
parameters of objects, when input operating parameters are considered crisp. In this case,
the proposed approaches are based on the α-level set, and make it possible to transform
fuzzy models on the α-level set to a set of crisp models. Thus, the developed fuzzy model
is presented as being approximately equivalent to crisp models, the number of which
depends on the number of α-level sets.

Then, using known methods of parametric identification, unknown fuzzy parameters
are determined on the α-level set, which, when combined according to the appropriate
formula of the fuzzy sets theory, have one crisp value. However, in this approach, the
problems of fuzziness are solved only partially, and the adequacy of the developed model
is significantly reduced, since a significant part of the collected fuzzy information is lost
and not used. Essentially, the collected fuzzy information, based on knowledge, experience,
and intuition, i.e., the intelligence of experts, is used only at the points at which the α-levels
intersect the membership functions describing the fuzzy parameters. This is the main
disadvantage of approaches to solving fuzziness problems based on multiple α-levels. In
practice, the input operating and output parameters of the modeled object are often fuzzy,
for which the described approach is not applicable. Therefore, it is necessary to develop a
linguistic modeling method that allows, when the input operating and output parameters
of an object are fuzzy, the use of the collected fuzzy information, to synthesize linguistic
models, which makes it possible to effectively model objects in a fuzzy environment.
The main contribution of this paper is the development of a method for synthesizing
such linguistic models of the catalytic cracking unit at the Shymkent oil refinery, which
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makes it possible to effectively simulate and determine the best mode of its operation
in a fuzzy environment. At the same time, this work demonstrates how to effectively
apply existing fuzzy logic tools based on the Fuzzy Logic Toolbox application. In our case,
the output value of gasoline density is a fuzzy output parameter that is not measured in
production by a measuring device and is not determined using traditional measurement
and control methods [27,28]. Therefore, it is determined through laboratory research with
the participation of a human specialist based on his experience and knowledge, which
they are described by fuzziness. It is known that the processes of industrial facilities are
nonlinear, independent of time, and full of uncertainties, which makes them very difficult
to model, control, and manage. For such processes, conventional PID controllers become
ineffective, since they require good mathematical formalization [29,30].

Moreover, the catalytic cracking unit continues to play a key role in any refinery as a
unit for deep processing of oil and petroleum products. For many refineries, they are the
key to profitability. The successful operation of the unit determines whether a refinery can
remain competitive in today’s market. The main purpose of the unit is to convert straight-
run fuel oil or a mixture of straight-run fuel oil and vacuum gas oil into high-quality
high-octane gasoline. A large amount of coke is formed as a by-product. Coke deposits on
the catalyst and reduces its activity. Lighter hydrocarbon products are separated from the
spent catalyst in the reactor. Steam is supplied to remove volatile hydrocarbons from the
catalyst. The catalyst is then returned to the regenerator, where the coke is burned when
exposed to air. This usually occurs by partial or complete combustion. The regenerated
catalyst is then circulated back to be mixed with the incoming feedstock from the crude
oil processing unit [31]. Parameter selection also plays a critical role in the performance of
the catalytic cracking unit. There is a lot of discussion about the correct choice of variables
for fuzzy optimization objects [32,33]. However, the focus of this article is on the key
variables that can be used to control the catalytic cracking process to achieve the desired
results (production of high-quality gasoline with a density of no more than 0.737 t/m3).
These variables can be classified as input, output, or disturbance. The input variables are
consumption, density, raw material temperature, reactor temperature and pressure, and
catalyst consumption. The output variables are gasoline yield (a quantitative indicator)
and gasoline density (a qualitative indicator). Depending on the variables chosen, results
may vary. The dependence of the input and output variables of the unit as a control object
and the results were studied in [34].

The novelty of this research compared to other sources is the development of an
effective method for synthesizing linguistic models of fuzzily described objects. Data and
information for the development of linguistic models are obtained using expert assessment
methods, which are formalized and processed based on the methods of fuzzy set theories.
Based on the developed method for synthesizing linguistic models, linguistic models of
the reactor–regenerator block of the Shymkent oil refinery catalytic cracking unit, which is
the object of the study, are developed. The adequacy of the developed models is checked
by comparing the output data obtained from the developed models and the correspond-
ing real data obtained from the object of study based on experiments. The developed
linguistic models are implemented in the fuzzy logic tool of the MATLAB system. The
resulting linguistic models are one of the main elements of an intellectual decision-making
system (IDSS), which allows making effective decisions on managing complex, fuzzily
described objects.

As a result of analysis and comparison of the current level of development of methods
and modeling results in conditions of data uncertainty, the following was established:

- Currently, research has not yet solved the problems of developing linguistic models of
fuzzily described production objects with fuzzy input operating and output parameters.

- Existing approaches to solving the problems of developing models of fuzzily described
objects under conditions of uncertainty due to the fuzziness of the initial information
have been developed mainly for objects with crisp input operating and fuzzy output
parameters. These approaches are based on transforming the original fuzzy model
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into a set of crisp models using the α-level set of the fuzzy set theories. However, the
developed models of fuzzy objects based on this approach have low adequacy since a
significant part of the collected fuzzy information (experience, knowledge, intuition
of experts) is lost during the transformation process. Therefore, it is very important
and relevant to develop and apply methods for producing models with fuzzy input
operating and output parameters of an object, allowing the synthesizing of adequate,
effective models based on the maximum use of the collected fuzzy expert information.

The principal value and importance of this article’s results and presented statements
lies in developing a method for synthesizing linguistic models, using effective linguistic
models of objects in a fuzzy environment. The developed linguistic models of the catalytic
cracking unit at the Shymkent oil refinery allow for the modeling of various operating
modes and the selection of the most effective operating modes of the object under study.
These and other research results justify the theoretical value and importance of developing
modeling methods in a fuzzy environment with fuzzy input and output data. The results
of the obtained linguistic models of the object under study using the Fuzzy Logic Toolbox
show their practical significance and the ability to apply the proposed linguistic modeling
approach for other objects with fuzzy input and output parameters.

2. Materials and Methods

The object of study of this work is the reactor–regenerator unit of the Title 1000
heavy residue catalytic cracking unit of the Shymkent oil refinery (Shymkent, Kazakhstan).
The Title 1000 heavy residue catalytic cracking unit is designed to produce high-octane
components of motor gasoline and liquefied hydrocarbon gases through the process of
catalytic cracking of straight-run fuel oil (C-100) or a mixture of fuel oil and vacuum gas
oil at high temperatures and moderate pressure, in the presence of a fluidized circulating
highly dispersed aluminosilicate-based catalyst. The main technological process takes place
in the reactor–regenerator block of the unit. The sections of this block are the reactor and
the regenerator, which are closely interconnected. The main cracking process occurs in the
reactor by adding a catalyst to the unit feedstock. As a result of cracking, coke is formed,
which reduces the activity of the process. The resulting coke on the catalyst is burned off
during the regeneration process.

Figure 1 shows a technological diagram of the reactor–regenerator block of the catalytic
cracking unit at the Shymkent oil refinery.

The process flow diagram (Figure 1) includes a comprehensive catalytic cracking
system, including a reactor, regenerator, heat exchangers, and control systems for efficiently
converting raw materials into gasoline. The focus is on maintaining temperature and
pressure, as well as catalyst regeneration and control to maintain the efficiency of the
cracking process. Fuzzy logic is used to control process parameters such as the reactor’s
temperature, regenerator, reactor pressure, supply of raw materials and catalyst, and
regulation of other main parameters of the system. The goal is to optimize product yield
and maintain the required product quality. To achieve the goal, fuzzy rules are created
based on a survey of subject area experts.

Fuzzy logic is a system that simulates human expert decisions. Thus, it is intuitively
easy for people to understand and apply it in engineering and non-engineering applications.
The results of fuzzy logic do not require further elaboration or explanation because the
results are often described in terms that are easy for anyone to understand. Implementing
fuzzy logic requires the knowledge and experience of an expert. The experience is written
in a rule-based format, which is used to create a database as well as fuzzy rules. The more
precise the rules, the more applicable the results will be. It should be noted that these rules
are approximate; this is the same as human decisions. The human expert can be replaced
by a combination of a fuzzy rule-based block system called a defuzzifier. The sensory crisp
data are then transferred to a system where physical values are represented or compressed
into heuristic variables based on appropriate membership functions. These linguistic
variables will then be used in if–then conditions and will be modified, and revised to a crisp
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(numerical) result that is an approximation of the actual result y(t) in the defuzzification
process. The key point of fuzzy logic is that it does not require deep knowledge about
the object itself or how processes occur within it, which is necessary for the use of PID
controllers [33,35].
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The proposed method for synthesizing linguistic models with fuzzy input and output
parameters of a reactor–regenerator unit is based on methods of expert assessments and
the rule of fuzzy conditional inference.

Fuzzy logic, which serves to implement fuzzy control methods, more naturally de-
scribes the nature of human thinking and the course of its reasoning than traditional formal
logical systems. That is why the use of mathematical tools to represent fuzzy initial informa-
tion allows us to build models that most adequately reflect various aspects of uncertainty.
Linguistic uncertainty is associated with the inaccuracy of the description of the situation
or event itself, regardless of the time of its consideration [36].

Probability theory cannot be used to solve such problems since ideas about the subjec-
tive categories present in human thinking processes are not fully consistent with its axioms.

Method for synthesis of linguistic models. A block diagram of the developed method
for synthesizing linguistic models based on fuzzy input and output parameters of an object
is shown in Figure 2. We provide a detailed description of the main blocks of the algorithm
for implementing the developed method for synthesizing linguistic models of objects
in a fuzzy environment with fuzzy input operating and output parameters. In block 2,
fuzzy input and process parameters

∼
x i, i = 1, n, are selected to influence the optimized

output parameters
∼
y j, j = 1, m, which are also fuzzy. In blocks 3 and 4, the terms and

universes of the selected levels
∼
x i and

∼
y j are defined. In this case, terms (fuzzy sets) are

fuzzy descriptions of the values of the corresponding levels of parameters, and universes
are the intervals of their numerical display.
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In block 5, the fuzzification procedure is implemented, i.e., membership functions are
constructed that describe the degrees of membership in fuzzy sets (terms). In this case, it is
recommended to build membership functions using the Fuzzy Logic Toolbox application
of the MATLAB system (version 7.0). In block 6, a rule base and linguistic models are built,
consisting of logical rules for conditional inference:

IF
∼
x1 ∈

∼
A1 ∨

∼
x2 ∈

∼
A2, . . . ,∨∼

xn ∈
∼
An THEN

∼
y j ∈

∼
Bj, j = 1, m. (1)
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Linguistic models verbally describe the influences of fuzzy
∼
x i, i = 1, n on

∼
y j, j = 1, m

and are built based on a rule base, which is determined based on expert assessment methods
and fuzzy set theories. For convenience, the rule base can be presented as a table in which,
using term sets (selected in block 3), fuzzy values of input and operating parameters

∼
x i

and the corresponding fuzzy values of output parameters
∼
y j are given.

Based on the table in Figure 2, it is possible to formalize fuzzy mappings
∼
Rij, that allow

us to determine the relationship between linguistic input and output parameters
∼
x i and

∼
y j.

For a p-level term from term sets, the fuzzy mapping is defined as the Cartesian

product of the corresponding universal sets:
∼
R

p

ij =
∼
A

p

i ×
∼
B

p

j . To carry out calculations, it is

necessary to construct matrices of fuzzy relations µ∼
Rij

(∼
x i,

∼
y j

)
based on the membership

functions of the fuzzy mapping
∼
Rijµ∼

Rij

(∼
x i,

∼
y j

)
. In general, such a matrix for a p-level term

has the following form:

µ∼
Rij

(∼
x i,

∼
y j

)
= min

[
µ

p
∼
Ai

(xi), µ
p
∼
Bj

(
yj
)]

, i = 1, n, j = 1, m.

In block 7 of the method, to determine a set of fuzzy values of the output parameters
of the process, the compositional inference rule can be used:

∼
Bj =

∼
Ai

◦∼Rij, (2)

where
∼
Ai ⊂ X,

∼
Bj ⊂ Y, and X, Y—universal sets, i.e., universes.

Based on this rule, the values of the membership function of the output parameters
can be determined using the following formula:

µ
p
∼
Bj

(
y′j
)
= max

xi∈X
{min[µ∼

Ai
(x*

i ), µRij(
∼
x i, yM

j )]}. (3)

In Formula (3) x∗i denotes the fuzzy values of operating parameters assessed by experts.
Then the desired set, in which the current values of the operating parameters belong, is
determined by the formula µAi (x∗i ) = maxµAi (xi), i.e., as a set in which the values of the
operating parameters have the maximum value of the membership function.

To defuzzify the results, i.e., determine the numerical values of the output pa-
rameters yM

j from a set of fuzzy solutions, the following expression can be applied:

yM
j = arg max

y′j
µBj

(
y′j
)

, j = 1, m. Thus, the numerical values of the output parameters are

selected as an argument for the maximum value of the membership function of the output
parameters. The application of the described approach to determining the numerical value
of the output parameter yM

j is justified in the case of an acute form of the membership
function in the area of the maximum value. If the graph of the membership function in the
area of the maximum value contains many points with similar values, their average value
can be chosen as the numerical value of the output parameter yM

j .
The novelty of the developed and used method for synthesizing linguistic models with

fuzzy input, mode, and output parameters of the object under study lies in the following:

- The developed method for synthesizing linguistic models of fuzzily described objects
using linguistic variables based on expert assessment methods, theories of fuzzy
sets, and fuzzy rules of conditional inference is presented as a specific algorithm
for its implementation. There are no specific algorithms for their synthesis in the
well-known works in which linguistic models are studied; only general ideas about
such models are given. In this work, based on a systematic approach, with the help of
various methods of collecting, formalizing, and using fuzzy information and rules,
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the proposed method for synthesizing linguistic models was applied to a specific
algorithm that allows it to be effectively used for the synthesis of linguistic models.

- Using the algorithm for implementing the proposed method for synthesizing linguistic
models constructed in Figure 2, linguistic models of the catalytic cracking unit at the
Shymkent oil refinery, the object of this research, were synthesized. The resulting lin-
guistic models make it possible to effectively model various object operation modes in
this research in a fuzzy environment. The novelty and effectiveness of the synthesized
linguistic models of the catalytic cracking unit under study are confirmed by the excel-
lent consistency of the obtained model results with the presentation of experts and
with the actual data of the research object as a result of the experiments performed.

Thus, the proposed algorithm for implementing the developed method contributes to
developing and expanding the theory and methods of modeling complex, fuzzily described
production objects. The developed method for synthesizing linguistic models of fuzzily
described objects with fuzzy input and output parameters is of practical importance since
it allows, by fuzzy modeling, many production objects to determine the effective mode of
their operation.

3. Results

Statistical data were taken from the technological regulations of the Title 1000 heavy
residue catalytic cracking RFCC unit of the Shymkent oil refinery. To model the operation
of the unit, and its input and operating parameters, those independent variables were
selected that affect the operating modes and the output parameters of the unit, which are
the optimized parameters of the object (product yield and quality).

The input parameters of the model are: x1—raw material consumption, x2—raw
material density, x3—raw material temperature, x4—reactor temperature, x5—reactor
pressure, and x6—catalyst consumption. The following parameters are accepted as output
parameters of the model: y1—gasoline output and y2—gasoline density. Table 1 shows the
main variables in the unit process, including controlled and measured variables.

Table 1. Main process parameters.

Parameter Name Parameter Designation

Raw material consumption x1, t/day
Raw material density x2, t/m3

Raw material temperature x3, C
Reactor temperature x4, C

Reactor pressure x5, kgf/cm2

Catalyst consumption x6, t/day
Gasoline yield y1, %

Gasoline density y2, t/m3

When constructing a fuzzy production model, the listed technological parameters are
interpreted as linguistic variables of the following form:

◦
Xi =

{〈
X j

i Uxi , X̃i

〉 }
, X j

i ∈ T∗
i (u), i = 1, 6 ;

◦
Yl =

{〈
Yk

l , VYl , Ỹ
〉

l

}
, Yk

l ∈ T∗
l (u), l = 1, 2

where Uxi , VYj —universes.

X̃i =
∫

UXi

µXi (u)/u , i = 1, 6 ; Ỹl =
∫

VYl

µYl (υ)/υ, l = 1, 2

Fuzzy sets described by membership functions:
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µXi (u); UXi → [0, 1]; µYl (υ); VY → [0, 1]; T∗
i (u), T∗

l (υ)

Extended term sets of linguistic variables with the same names as parameters, respec-
tively, for the input and output of the unit; j, k—indices of the corresponding numbers of
linguistic terms specified in Table 2.

Table 2. Terms of linguistic variables and their abbreviations for constructing their membership
functions and forming a rule base.

Terms of Fuzzy Parameters Designation

L significantly below the norm
BA below average
A Average

AA above average
H significantly higher than the norm

In contrast to traditional control methods, fuzzy logic circuits provide a more efficient
method for analyzing and controlling nonlinear, time-varying systems that are relatively
complex and difficult to model mathematically [36]. The fuzzy logic controller allows the
general characteristics of a nonlinear system to be expressed through linguistic expressions
by creating if–then rules [37].

Fuzzy logic is a language that allows complex natural language sentences to be
translated into mathematical formalism. Knowledge is acquired and processed inferentially
and deductively through symbolic reasoning [38].

A fuzzy controller determines the behavior of variables and their relationships with
each other by creating dynamic nonlinear graphs known as surface graphs. Six input
and two output variables are selected based on their importance and significance level
in the process and all the factors influencing the unit’s operating modes and outputs.
Measurement and control parameters are also defined to optimize the unit.

When creating a rule-based fuzzy system, the following steps are performed to process
the rules for the fuzzy controller:

• Input and output variables and ranges of their values are determined;
• A fuzzy membership function of degrees of truth is created;
• A rule base for controller design is created;
• Interaction of rules is defined;
• Rules merging is executed.

Let us consider the results of applying the algorithm to identify, using a fuzzy obser-
vation model, the main indicators of the technological process occurring in the reactor–
regenerator block of a catalytic cracking unit. Clustering data for membership functions
are shown in Table 2. Based on “historical” data on changes in the values of technological
parameters used in controlling the cracking process, membership functions were created
for the linguistic terms, for each output variable of the technological process coordinates,
as follows: L—significantly below the norm; BA—below average; A—average; AA—above
average; H—significantly higher than the norm. For each variable, five terms were taken,
which makes it possible to control both minor and significant deviations from the normal
operating mode and to form, by the algorithm, proportional control of the position of the
valves at the inlet and outlet of the reactor. As the number of terms increases, the number
of logical rules increases, which increases the probability of an error in control decision
making. This can lead to a decrease in the quality of control according to the algorithm that
uses the results of object identification by the method under consideration.

The knowledge base contains all the inference rules based on the production model of
knowledge representation (if–then), characterizing the goals and policies used by experts to
implement management. An inference engine refers to a computational procedure used to
evaluate fuzzy rules. This is the core of fuzzy logic control as it is responsible for executing
the knowledge base by generating responses.
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The base of rules and knowledge was created with the involvement of the decision
maker (DM), who manages the work of the research object, and experts from the ShOR.
As a result of a survey of DM and experts, a range of values of fuzzy parameters was
determined and configured according to Table 3. The rules were configured using the
technical regulations of the plant.

Table 3. Range of values of fuzzy parameters x1, x2, x3, x4, x5, x6, y1, y2.

Variables L BA A AA H

x1 0–100 120–160 180–240 260–320 320–400
x2 0.4–0.5 0.6–0.7 0.8–0.9 1–1.2 1.3–1.6
x3 0–180 190–205 210–215 220–235 240–255
x4 0–440 450–475 480–542 550–570 570–600
x5 0.5–0.9 1–1.4 1.53–2.6 2.7–2.9 3–3.5
x6 1480–1580 1580–1670 1680–1790 1800–1900 1910–1990
y1 0–35 38–47 48–50 50–55 56–70
y2 0.43–0.525 0.53–630 0.635–0.735 0.74–0.84 0.85–0.95

A base of fuzzy production models of the actions of the operator-technologist (DM)
managing the technological process was formed. The list of rules connecting fuzzy input
variables with fuzzy output parameters of an object is given below. These rules were
implemented in the fuzzy rules editor Fuzzy Logic Toolbox of MATLAB to create logical
inference and a nonlinear surface model. The number of compiled rules transmitted to the
system in the form of fuzzy rules is limited in such a way that only those rules that affect
the catalytic cracking process were taken into account.

If (x1 is L) and (x2 is L) then (y1 is L)(y2 is L)
If (x1 is L) and (x2 is A) then (y1 is L)(y2 is A)
If (x1 is A) and (x2 is A) then (y1 is A)(y2 is A)
If (x1 is BA) and (x2 is A) then (y1 is BA)(y2 is A)
If (x1 is A) and (x2 is AA) then (y1 is A)(y2 is AA)
If (x1 is H) and (x2 is H) then (y1 is H)(y2 is H)
If (x1 is H) and (x2 is L) then (y1 is AA)(y2 is BA)
If (x4 is H) and (x6 is L) then (y1 is H)(y2 is L)
If (x4 is L) and (x6 is H) then (y1 is L)(y2 is H)
If (x4 is BA) and (x6 is A) then (y1 is BA)(y2 is A)
If (x4 is A) and (x6 is BA) then (y1 is A)(y2 is BA)
If (x4 is AA) and (x6 is AA) then (y1 is AA)(y2 is AA)
If (x2 is L) and (x5 is L) then (y1 is L)(y2 is L)
If (x2 is BA) and (x5 is A) then (y1 is L)(y2 is BA)
If (x2 is AA) and (x5 is BA) then (y1 is AA)(y2 is AA)
If (x3 is L) and (x5 is L) then (y1 is H)(y2 is H)
If (x3 is BA) and (x5 is L) then (y1 is AA)(y2 is H)
If (x3 is AA) and (x5 is BA) then (y1 is BA)(y2 is BA)
If (x3 is A) and (x5 is BA) then (y1 is AA)(y2 is AA)
If (x3 is H) and (x5 is L) then (y1 is H)(y2 is L)
Figures 3–10 show the eight membership functions used in this study. Since the system

is nonlinear, the Gaussian type of membership function was chosen to more effectively
reflect the membership function. The system works with fuzzy sets that do not have
ideally defined boundaries, with a gradual transition between the membership and non-
membership of variables in a given set. Membership functions enable modeling of flexibility
through the use of linguistic variables. The first step in the fuzzy inference process is
fuzzification. This is responsible for converting inputs into fuzzy information that the
inference engine can understand and process. In a transformation, each input has its own
set of membership functions. These functions must be representative for the variable; hence,
they cover all possible input values.
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The graph in Figure 3 shows the Gaussian membership function for the input variable
x1 (raw material consumption) with a range of values from 0 to 400. The graph in Figure 4
shows the Gaussian membership function for the input variable x2 (raw material density)
with a range of values from 0.4 to 1.6. The graph in Figure 5 shows the membership function
for variable x3 (raw material temperature) with a range of values from 0 to 255. The graph
in Figure 6 shows the membership function for input variable x4 (reactor temperature) with
a range of values from 0 to 600. The graph in Figure 7 shows the membership function for
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the input variable x5 (reactor pressure) with a range of values from 0.5 to 3.5. The graph in
Figure 8 shows the membership function for the input variable x6 (catalyst consumption)
with a range of values from 1480 to 1990. The graph in Figure 9 shows the membership
function for the output parameter y1 (gasoline yield) with a range of values from 0 to 70. The
graph in Figure 10 shows the membership function for the output parameter y2 (gasoline
density) with a range of values from 0.635 to 0.735. Using membership functions and
rules, the system can predict the output values y1 and y2 based on the input variables
x1 − x6. Thus, fuzzy logic rules establish relationships between raw material consumption
(Figure 3), density (Figure 4), raw material temperature (Figure 5), temperature in the
reactor (Figure 6), pressure in the reactor (Figure 7), and catalyst consumption (Figure 8),
and their influence on both gasoline yield (Figure 9) and density (Figure 10). Below in
Figure 11 are the results of creating rules in the Fuzzy Logic Toolbox environment.
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In fuzzy control the emphasis is on the use of rules, while in conventional control this
level of emphasis is on ordinary differential equations (Figure 11). Using linguistic rules
rather than a mathematical system is more natural to human cognition. In a fuzzy rule, the
rules are always true, but at different levels, from zero to one. The inference system first
checks whether the rule premises are valid for the current case.

The defuzzification interface maps the outputs of the inference engine to obtain control
action. For this purpose, it uses membership functions similar to those used by a fuzzifier.
The two most important and widely used fuzzy inference methods are the Mamdani
method and the Sugeno method. The main difference between these methods lies in the
consequences of fuzzy logic rules. Mamdani-type fuzzy inference methods use fuzzy sets
as consequences of rules, while Sugeno-type systems use linear functions [39]. In this study,
the Mamdani inference algorithm is selected to interpret the rules and generate the output.
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Figures 12 and 13 show interfaces displaying the rule base browser in the MATLAB
environment and the dependence of the yield and density of gasoline on the input parameters.
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Based on surface graphs (Figure 13) and rules, it can be concluded how input variables
affect output variables and are consistent with the rule base formed above. If the premises
satisfy the requirements, these rules are selected. This step is also known as “Compliance”.
The inference system makes decisions afterward.

The results of the considered method indicate the possibility of its use for formalizing
data and using it in the synthesis of a control algorithm for a reactor–regenerator block,
for example, based on a fuzzy production model. With such a formalization of data, it is
advisable to choose the number of terms from a series of odd natural numbers, starting from
three, since the central term corresponds to the normal operating mode of the technological
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process, and neighboring terms correspond to deviations from it. The more terms, the more
accurately you can react (control) to changes in process parameters. However, this leads
to an increase in logical production rules when controlling the process, which reduces its
reliability during implementation.

The main reasons for choosing fuzzy learning in the presented work are as follows:
the fuzzy nature of the input operating and output parameters of the object under study,
described on the basis of the knowledge, experience, and intuition of the decision maker
and subject area experts; the presence of experienced decision makers and experts who
make effective decisions for managing the operating modes of the object under study—the
catalytic cracking unit at the Shymkent oil refinery; and the ability to build, based on the
collected fuzzy information, considerations, and conclusions, a rule base that effectively
and quite adequately describes the process of obtaining high-quality gasoline.

4. Discussion

The developed method for synthesizing linguistic models is based on the mathematical
apparatus of fuzzy set theories, logical rules of conditional inference, and the use of
the experience, knowledge, and intuitions of a group of experts. When developing a
fuzzy production model of the reactor–regenerator block of a catalytic cracking unit, the
most informative parameters that characterize the quality of the process were found.
Additionally, by changing the parameters, the process is controlled to produce gasoline
in the required quantity. Using the rules browser, the progress of fuzzy inference can be
tracked for each rule and the defuzzification procedure can be executed (Figure 12).

The rules browser interface displays all the rules involved in the system. This allows
us to see which rules are triggered under the current input values and visualizes the degree
of activity of each rule. The degree of activation of each rule is displayed as a graph or
numeric value that shows how much each rule affects the output values y1 and y2. Based
on the activated rules and their activation degrees, the rule browser calculates a fuzzy
output value of y1 and y2, which is then defuzzified to produce a crisp value. This allows
us to effectively tune and optimize the system to achieve the desired results in the catalytic
cracking process. Many combinations of antecedents and consequences are presented for
clarity in the form of a graph in three-dimensional space (Figure 13). A surface graph shows
the dependence of the output variables y1 and y2 on the input variables x1 and x2. A color
gradation from blue to green and yellow indicates the heights of y1 and y2. For certain
values of x1 and x2, the output of y1 reaches its maximum value (yellow area). The same
surface graphs were obtained for other process input parameters—x3—x6; the dependence
of outputs y1 and y2 on input parameters x1–x6 was analyzed.

According to the results of the analysis and the comparison of the results in the rules
browser, if the temperature in the reactor is lower than the set one, despite the large quantity
of raw materials used and catalyst consumption, the gasoline yield decreases. A qualitative
indicator—the density of gasoline—is more dependent on the density and temperature of
the raw materials used, and the pressure in the reactor. The lower the density of gasoline,
the higher the quality of gasoline is considered. The linguistic models developed through
the method of synthesis of linguistic models make it possible to select the optimal operating
mode of the unit, which makes it possible to control the catalytic cracking process and
obtain the desired product yield in the required quality.

The restrictions of the developed models also include the need to improve their
performance in terms of ease of use and efficiency in obtaining results with the necessary
adequacy, for example, rule base optimization by introducing their weighting coefficients
and priorities, as well as removing unimportant overlapping rules, etc. This can lead to
increased adequacy and ease of use. Improvement can be achieved through the use of more
complex rule algorithms for processing fuzzy data and synthesizing linguistic models, for
example, to illustrate the real-life conditions in which the model is used, considering the
operating scenario of a catalytic cracking unit at the Shymkent oil refinery.
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This article presents the main process parameters used for modeling. Figures 3–10 show
the dependence of the output parameters on the input operating parameters. These data
were obtained through on-site experiments and analysis of actual production conditions.
These examples and data demonstrate how the model responds to changes in input param-
eters and help better to understand its behavior in real-world production environments. To
improve the adequacy of the model, experiments can be conducted by adding additional
input parameters, creating additional rules, and comparing the values of the output pa-
rameters. At the same time, it is necessary to ensure the speed of obtaining results, i.e., the
performance of the models. This is usually achieved by minimizing the number of rules
in the database and their ease of use. It is also possible to improve the performance of
the model by introducing additional data sources, such as data on the state of equipment,
the chemical composition of raw materials and catalyst, and external conditions. Adding
additional parameters can improve the accuracy of models.

Thus, to solve problems of increasing the performance of the proposed models, in
fact, it is necessary to formalize and solve decision-making problems that provide the best
compromise solution that ensures high adequacy and performance of the models.

Even though the proposed approach to controlling the catalytic cracking process based
on developed linguistic models and on the use of a fuzzy model is acceptable, from the
point of view of their practical implementation, it has some limitations. As the results of the
study showed, the catalytic cracking process is carried out under conditions of frequently
changing disturbances from the qualitative characteristics of the raw materials, as well
as the practical uncontrolled adequacy of the catalyst. The available information on the
composition of the raw materials used, in the form of individual points of the fractional
composition, carries very superficial information about the chemical composition of the
raw materials.

The main restriction of the proposed approach is that, from the technical perspective, it
is quite difficult to construct a rule using several input or output parameters simultaneously.
Also, the correctness of the constructed model depends on the knowledge and experience
of subject area experts who participate in the survey as part of the study. To address these
issues in future research, the authors plan to use the methodology of system research,
decomposition, and improvement of the method of conducting expert assessment and
processing the results obtained to increase the adequacy of the developed models.

5. Conclusions

As a result of the study, the input, output, intermediate, and control parameters of
the unit for catalytic cracking of petroleum fractions and cracking of vacuum gas oil in
a moving catalyst bed were determined. A method for synthesizing linguistic models
of fuzzy systems was developed, based on the use of expert assessment methods and
the mathematical apparatus of fuzzy set theories. Using the proposed method, linguistic
models were developed and catalytic cracking processes were simulated. Using the results
of mathematical modeling, the rule base was adjusted and the performance of the control
approach was assessed when introducing external disturbances from changes in the compo-
sition of the raw material, accompanied by changes in the pressure and temperature of the
reactor in the reactor–regenerator block of the catalytic cracking unit. The ranges and norms
of term values were obtained based on the production data of the Shymkent oil refinery
with an additional survey of several experts from this plant. The use of tools of the Fuzzy
Logic Toolbox package can significantly reduce the time spent on fuzzy modeling, reduce
the number of possible errors, and reduce the labor intensity of developing a fuzzy model.

The presented approaches were implemented by creating mathematical models and
solving problems related to the selection of optimal operating modes of the reactor–
regenerator block of a catalytic cracking unit used for the production of high-octane gasoline
in a fuzzy environment.

The proposed model for the synthesis of linguistic models in a fuzzy environment
solves the problem of a shortage of initial information by integrating expert knowledge and
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applying fuzzy logic. This approach allows effective modeling and control of the catalytic
cracking process under conditions of uncertainty and initial data fuzziness.

The results of the study are considered theoretically promising, expanding the bound-
aries of practical problems to be solved for modeling, optimization, and control of chemical
technological systems, and making it possible to model and control the operating modes of
a complex chemical and engineering system, taking into account the multiple criteria and
fuzziness of the initial information.

Author Contributions: Study conception and design: B.O. and N.B.; data collection: N.B., V.M., L.R.
and Y.O.; analysis and interpretation of results: B.O., N.B. and I.K.; draft manuscript preparation:
B.O., L.K. and N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting the results of this study were obtained from the
Shymkent Oil Refinery, but restrictions apply to the availability of these data, which were used
under license for the current study, and are therefore not publicly available. However, the data
are available from the authors upon reasonable request and with the permission of a third party
(Shymkent Refinery). To request data from this study in the future, you can contact the author by
correspondence: Narkez Boranbayeva, ades_98@mail.ru.

Conflicts of Interest: The authors declare no conflicts of interest.

References
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