Electro-Mineralization of Aqueous Phenazopyridine Using Platinum Nanoparticles Deposited onto Multiwalled Carbon Nanotubes
Abstract
:1. Introduction
2. Experimental Section
2.1. Starting Materials
2.2. Equipment
2.3. Electrode Preparation
- -
- Platinum sheet electrode
- -
- FTO Electrode
- -
- Nano Pt@FTO/Glass electrodes
- (a)
- Thermal spray deposition. H2PtCl6 solution (0.005 M) is prepared by diluting 2.0 mL of stock H2PtCl6 solution (8% w/w, 0.205 M) in 39 mL absolute ethanol to yield a solution of 0.01 M. The solution is sonicated for (5 min), placed in a sprayer and sprayed on FTO substrate surfaces at 80 ℃ for 20 min at a fixed distance. Deposition is performed on 4 FTO substrates, each with a net area (2 cm × 4 cm), where the other part (2 cm × 1 cm) is protected by coating with aluminum foil. The films are left for 24 h to dry, after which they are sintered at 350 °C for 15 min. The electrode, termed PtNP@FTO-T, contains 2.0 × 10−2 g (1.0 × 10−4 mol) Pt distributed over the 8 cm2 area. The approximate specific surface area is 50 (±15%) m2/g.
- (b)
- Electrochemical deposition. The literature [47,48,49] shows that H2PtCl6 can be reduced to metal Pt nanoparticles onto various substrates with special characteristics. The methods are followed here to deposit Pt nanoparticles onto 10 FTO/Glass substrates. Electrodeposition is performed at −0.80 V (vs. SCE) for 300 sec from a stirred solution of H2PtCl6 (4.0 mL of 0.205 M) and KCl (78 mL, 0.10 M). The resulting electrodes are then rinsed with deionized water before drying (room temperature) and storage. The resulting electrode is termed PtNP@FTO-E. The electrode contains 1.5 × 10−2 g, 7.7 × 10−5 mole Pt distributed over 8 cm2. Based on earlier reports [50], the approximate specific surface area is 90 m2/g.
- -
- MWCNT-FTO/Glass electrodes
- -
- MWCNT-FTO electrode coated with Pt nanoparticles
2.4. Electrode Characterization
2.5. Phenazopyridine Electro-Degradation Experiments
2.6. Statistical Analysis
3. Results and Discussion
3.1. Electrode Characterization
- -
- XRD:
- -
- Surface morphology
3.2. Effect of Electrode Type on Phenazopyridine Loss%
- -
- The Pt@FTO electrodes:
- -
- The Pt@MWCNT electrodes:
- -
- Cyclic voltammetry
3.3. PtNP@MWCNT-FTO-E Electrode in Phenazopyridine Removal
3.3.1. Effect of Reaction Parameters
- -
- Applied bias effect:
- -
- Electrolyte type effect:
- -
- Temperature effect:
- -
- Initial pH effect:
- -
- Initial phenazopyridine concentration effect:
- -
- Effect of reaction time:
- -
- Phenazopyridine complete mineralization:
- -
- Electrode stability and reuse:
3.3.2. Kinetics of Phenazopyridine Electrooxidation
3.3.3. A Plausible Mechanism:
- -
- Platinum nanoparticles have higher efficiency than Pt sheets. This is due to the fact that the nanoparticles have a much higher specific surface area than the bulk Pt sheet. This facilitates the charge transfer between the Pt particle surface and other species;
- -
- Pt nanoparticles in PtNP@FTO-E are more efficient than naked MWCNTs. This is rationalized by the higher known conductivity for Pt compared to MWCNTs;
- -
- PtNP@MWCNT-FTO-E is more efficient than PtNP@FTO-E. This is rationalized as follows. In the former electrode, the Pt particles are randomly distributed on the MWCNT surface as isolated particles in a diffused fashion. In the latter electrode, the Pt particles exist inside a packed multilayer film. Therefore, in the former electrode, water and contaminant molecules can penetrate and reach more Pt particles than in the compact film. Logically, in the latter electrode, only upper-layer particles are accessible to molecules. This is further corroborated by the effect of temperature on reaction progress. At higher temperatures, the PtNP@MWCNT-FTO-E activity increases due to increased molecular diffusion;
- -
- The increase in reaction speed at higher contaminant concentration in the case of PtNP@MWCNT-FTO-E is also rationalized by the increased penetration of the contaminant inside the MWCNT matrix;
- -
- As described above, the effect of pH on reaction rate can be explained by two opposing factors: charge and solubility. With increased pH, the phenazopyridine molecules carry less positive charge and become more attracted to the positive electrode. In either route of the proposed mechanism, the ability of the molecules to live in close proximity to the electrode is a condition for electrooxidation. In the case of Route A, the short-lived species (hydroxyl radicals) live for a very short time near the electrode surface. Therefore, the contaminant molecules must be close to the electrode to be affected. Similarly, in Route B, the contaminant molecules must be closer to the electrode surface to be affected. As the pH increases, the contaminant becomes less soluble with less accessibility to the electrode, and consequently, the reaction slows down;
- -
- Based on the pH discussions above, adsorption of phenazopyridine onto the Pt particles is encouraged at nearly neutral pH. With high SSA values, the particles may behave as charge transfer catalysts at the solid/liquid interface.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koul, B.; Poonia, A.K.; Singh, R.; Kajla, S. Strategies to cope with the emerging waste water contaminants through adsorption regimes. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 61–106. [Google Scholar]
- Koul, B.; Sharma, K.; Shah, M.P. Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environ. Technol. Innov. 2022, 25, 102040. [Google Scholar] [CrossRef]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Gurgenidze, D.; Romanovski, V. The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia). Water 2023, 15, 2574. [Google Scholar] [CrossRef]
- Irannezhad, M.; Ahmadi, B.; Liu, J.; Chen, D.; Matthews, J.H. Global water security: A shining star in the dark sky of achieving the sustainable development goals. Sustain. Horiz. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Sandoval, M.A.; Vidal, J.; Calzadilla, W.; Salazar, R. Solar (electrochemical) advanced oxidation processes as efficient treatments for degradation of pesticides. Curr. Opin. Electrochem. 2022, 36, 101125. [Google Scholar] [CrossRef]
- Kairigo, P.; Ngumba, E.; Sundberg, L.-R.; Gachanja, A.; Tuhkanen, T. Contamination of surface water and river sediments by antibiotic and antiretroviral drug cocktails in low and middle-income countries: Occurrence, risk and mitigation strategies. Water 2020, 12, 1376. [Google Scholar] [CrossRef]
- Thomas, B.H.; Whitehouse, L.; Solomonraj, G.; Paul, C. Excretion of phenazopyridine and its metabolites in the urine of humans, rats, mice, and guinea pigs. J. Pharm. Sci. 1990, 79, 321–325. [Google Scholar] [CrossRef]
- Johnson, W.J.; Chartrand, A. The metabolism and excretion of phenazopyridine hydrochloride in animals and man. Toxicol. Appl. Pharmacol. 1976, 37, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, A.M.; Zarei, M.; Ebratkhahan, M.; Hasanzadeh, A.; Vafaei, F. Removal of Phenazopyridine from wastewater by merging biological and electrochemical methods via Azolla filiculoides and electro-Fenton process. J. Environ. Manag. 2020, 254, 109802. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed]
- Onder, A.M.; Espinoza, V.; Berho, M.E.; Chandar, J.; Zilleruelo, G.; Abitbol, C. Acute renal failure due to phenazopyridine (Pyridium®) overdose: Case report and review of the literature. Pediatr. Nephrol. 2006, 21, 1760–1764. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.C.; Bertoni, F.A.; Giordano, E.D. One-pot synthesis of quaternized microcrystalline cellulose obtained from soybean hulls. Next Mater. 2023, 1, 100029. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Akbour, R.A.; Nidheesh, P.V.; Hamdani, M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process.-Process. Intensif. 2021, 169, 108631. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Ahmed, S.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, A.; Inayat, A.; Mahlia, T.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq. 2020, 298, 112040. [Google Scholar] [CrossRef]
- Magesan, G.N.; Wang, H. Application of municipal and industrial residuals in New Zealand forests: An overview. Soil Res. 2003, 41, 557–569. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huitle, C.A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340. [Google Scholar] [CrossRef] [PubMed]
- Kharouf, M.; Zyoud, A.; Zyoud, S.; Zyoud, S.; Qamhieh, N.; Hajamohideen, A.; Hilal, H. Enhanced photocatalytic degradation of phenazopyridine using rutile TiO2/clay composite: Catalyst recovery and environmental implications. Int. J. Environ. Sci. Technol. 2024, 21, 1–18. [Google Scholar] [CrossRef]
- Zyoud, A.; Ateeq, M.; Helal, M.H.; Zyoud, S.H.; Hilal, H.S. Photocatalytic degradation of phenazopyridine contaminant in soil with direct solar light. Environ. Technol. 2018, 40, 2928–2939. [Google Scholar] [CrossRef] [PubMed]
- Zyoud, A.H.; Saleh, F.; Helal, M.H.; Shawahna, R.; Hilal, H.S. Anthocyanin-Sensitized TiO2 Nanoparticles for Phenazopyridine Photodegradation under Solar Simulated Light. J. Nanomater. 2018, 2018, 2789616. [Google Scholar] [CrossRef]
- Pelalak, R.; Heidari, Z.; Forouzesh, M.; Ghareshabani, E.; Alizadeh, R.; Marjani, A.; Shirazian, S. High performance ozone based advanced oxidation processes catalyzed with novel argon plasma treated iron oxyhydroxide hydrate for phenazopyridine degradation. Sci. Rep. 2021, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- Babaei, T.; Zarei, M.; Hosseini, M.G.; Hosseini, M.M. Electrochemical advanced oxidation process of Phenazopyridine drug waste using different Ti-based IrO2-Ta2O5 anodes. J. Taiwan Inst. Chem. Eng. 2020, 117, 103–111. [Google Scholar] [CrossRef]
- Yagmur, S.; Yilmaz, S.; Sadikoglu, M.; Saglikoglu, G.; Yildiz, M.; Yengin, C.; Kilinc, E. Electrooxidation of phenazopyridine hydrochloride and its voltammetric and HPLC determination in human urine and tablet dosage form. Int. J. Electrochem. Sci. 2013, 8, 6818–6828. [Google Scholar] [CrossRef]
- Demirtas, C.; Yilmaz, S.; Saglikoglu, G.; Sadikoglu, M. Electrochemical determination of phenazopyridine hydrocloride using poly (p-aminobenzene sulfonic acid) film modified glassy carbon electrode. Int. J. Electrochem. Sci. 2015, 10, 1883–1892. [Google Scholar] [CrossRef]
- Amani, S.; Rostamizadeh, M.; Ghadimi, A. Highly active Fe-doped ZIF-8 nanocatalyst in electrochemical degradation of pharmaceutical pollutant in neutral environment. J. Water Environ. Nanotechnol. 2021, 6, 138–149. [Google Scholar]
- Gholizadeh, A.M.; Zarei, M.; Ebratkhahan, M.; Hasanzadeh, A. Phenazopyridine degradation by electro-Fenton process with magnetite nanoparticles-activated carbon cathode, artificial neural networks modeling. J. Environ. Chem. Eng. 2021, 9, 104999. [Google Scholar] [CrossRef]
- Gangwar, D.; Malik, R.; Kaur, J. Degradation of toxic heterocyclic compound 2-aminopyridine by using voltammetric technique: A kinetic study. Rasayan J. Chem. 2021, 14, 1953–1958. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl. Catal. B Environ. 2007, 75, 95–101. [Google Scholar] [CrossRef]
- Li, X.-Y.; Cui, Y.-H.; Feng, Y.-J.; Xie, Z.-M.; Gu, J.-D. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 2005, 39, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
- Gattrell, M.; Kirk, D.W. A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J. Electrochem. Soc. 1993, 140, 1534. [Google Scholar] [CrossRef]
- Bonfatti, F.; Ferro, S.; Lavezzo, F.; Malacarne, M.; Lodi, G.; De Battisti, A. Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J. Electrochem. Soc. 1999, 146, 2175. [Google Scholar] [CrossRef]
- Brillas, E.; Baños, M.; Garrido, J.A. Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochim. Acta 2003, 48, 1697–1705. [Google Scholar] [CrossRef]
- Johnson, S.K.; Houk, L.L.; Feng, J.; Houk, R.S.; Johnson, D.C. Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry. Environ. Sci. Technol. 1999, 33, 2638–2644. [Google Scholar] [CrossRef]
- Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 1975, 60, 275–283. [Google Scholar] [CrossRef]
- Cakir, O.; Biçer, E. A polarographic, voltammetric and coulometric study of phenazopyridine hydrochloride. Port. Electrochim. Acta 1998, 16, 11–24. [Google Scholar]
- Khan, M.A.R.; Al Mamun, M.S.; Ara, M.H. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem. J. 2021, 171, 106840. [Google Scholar] [CrossRef]
- Guénin, E.; Fromain, A.; Serrano, A.; Gropplero, G.; Lalatonne, Y.; Espinosa, A.; Wilhelm, C. Design and evaluation of multi-core raspberry-like platinum nanoparticles for enhanced photothermal treatment. Commun. Mater. 2023, 4, 84. [Google Scholar] [CrossRef]
- Pashley, R.M.; Karaman, M.E. Applied Colloid and Surface Chemistry; Wiley: New York, NY, USA, 2022. [Google Scholar]
- Glasstone, S.; Lewis, D. Elements of Physical Chemistry, 2nd ed.; Macmilan Press Ltd.: Mumbai, India, 1983. [Google Scholar]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Kloke, A. Highly Porous Platinum Electrodes for the Use in Potentially Implantable Glucose Fuel Cells. Ph.D. Dissertation, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany, 2012. [Google Scholar]
- Li, Y.; Jiang, Y.; Chen, M.; Liao, H.; Huang, R.; Zhou, Z.; Tian, N.; Chen, S.; Sun, S. Electrochemically shape-controlled synthesis of trapezohedral platinum nanocrystals with high electrocatalytic activity. Chem. Commun. 2012, 48, 9531–9533. [Google Scholar] [CrossRef] [PubMed]
- Asai, M.; Onoe, T.; Kanoh, H.; Kaneko, K. Synthesis and characterization of nanoporous metallic platinum. Colloids Surf. A Physicochem. Eng. Asp. 2005, 253, 199–202. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Meikandan, M.; Kumar, P.G.; Sakthivadivel, D.; Vigneswaran, V.; Mohan, K.M. Multi-wall carbon nanotubes coating on a copper substrate using airbrush spray coating. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021, 235, 285–291. [Google Scholar] [CrossRef]
- Jandai, B.; Woointranont, P.; Chaiyasith, S.; Pecharapa, W. NiO/MWCNTs coated F-doped Tin Oxide Working Electrode for Hydrogen Peroxide Detection. Energy Procedia 2011, 9, 575–580. [Google Scholar] [CrossRef]
- Nassar, H.; Zyoud, A.; Helal, H.H.; Kim, T.W.; Hilal, H.S. Effective and selective electroreduction of aqueous nitrate catalyzed by copper particles on multi-walled carbon nanotubes. J. Environ. Manag. 2022, 305, 114420. [Google Scholar] [CrossRef]
- Birch, M.E.; A Ruda-Eberenz, T.; Chai, M.; Andrews, R.; Hatfield, R.L. Properties that influence the specific surface areas of carbon nanotubes and nanofibers. Ann. Work. Expo. 2013, 57, 1148–1166. [Google Scholar]
- Tian, Z.Q.; Jiang, S.P.; Liang, Y.M.; Shen, P.K. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B 2006, 110, 5343–5350. [Google Scholar] [CrossRef]
- Fagan-Murphy, A.; Kataria, S.; Patel, B.A. Electrochemical performance of multi-walled carbon nanotube composite electrodes is enhanced with larger diameters and reduced specific surface area. J. Solid State Electrochem. 2016, 20, 785–792. [Google Scholar] [CrossRef]
- Dobrzańska-Danikiewicz, A.D.; Łukowiec, D. Synthesis and characterization of Pt/MWCNT s nanocomposites. Phys. Status Solidi B 2013, 250, 2569–2574. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction, Courier Corporation; Dover Publication Inc.: Mineola, NY, USA, 1990. [Google Scholar]
- Miyazawa, K.I.; Shimomura, S.; Yoshitake, M.; Tanaka, Y. Structure and Facet Characterization of Platinum Nanoparticles Loaded on Carbon Black Particles using HRTEM. J. Eng. Res. Appl. 2018, 8, 13–21. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1926. [Google Scholar]
- Addinsoft, U. XLSTAT Statistical and Data Analysis Solution; Addinosoft: Long Island, NY, USA, 2021; Available online: https://www.xlstat.com (accessed on 30 July 2024).
- Wang, Z.-B.; Zuo, P.-J.; Chu, Y.-Y.; Shao, Y.-Y.; Yin, G.-P. Durability studies on performance degradation of Pt/C catalysts of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2009, 34, 4387–4394. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ding, L.; Zhang, W. Study on resistance switching properties of Na0.5Bi0.5TiO3 thin films using impedance spectroscopy. Nanoscale Res. Lett. 2009, 4, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T. The Development of Instrumentation for Thin-Film X-ray Diffraction; ACS Publications: Washington, DC, USA, 2001. [Google Scholar]
- Slavcheva, E.; Topalov, G.; Ganske, G.; Radev, I.; Lefterova, E.; Schnakenberg, U. Influence of sputtering pressure on surface structure and oxygen reduction reaction catalytic activity of thin platinum films. Electrochim. Acta 2010, 55, 8992–8997. [Google Scholar] [CrossRef]
- Zhou, Z.; Yuan, S.; Fan, J.; Hou, Z.; Zhou, W.; Du, Z.; Wu, S. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: Synthesis and performance optimization. Nanoscale Res. Lett. 2012, 7, 652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Gupta, S.; Chang, C.; Wei, J.; Tai, N.-H. Layered composites composed of multi-walled carbon nanotubes/manganese dioxide/carbon fiber cloth for microwave absorption in the X-band. RSC Adv. 2019, 9, 19217–19225. [Google Scholar] [CrossRef]
- Ashery, M.H.; Elsehly, E.M.; Elnouby, M.; EL Maghraby, E.-M.M. Controlled synthesis of MWCNTs/V2O5 nanocomposite by hydrothermal approach for adsorption and photodegradation processes. Water Sci. Technol. 2023, 88, 392–407. [Google Scholar] [CrossRef]
- Nie, P.; Min, C.; Song, H.-J.; Chen, X.; Zhang, Z.; Zhao, K. Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol. Lett. 2015, 58, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Wang, D.; Zheng, W. Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs. J. Mater. Sci. Mater. Electron. 2019, 30, 1706–1713. [Google Scholar] [CrossRef]
- Gibson, C.T. The attachment of carbon nanotubes to atomic force microscopy tips using the pick-up method. Appl. Sci. 2020, 10, 5575. [Google Scholar] [CrossRef]
- Francisco, W.; Ferreira, F.V.; Ferreira, E.V.; Cividanes, L.D.S.; Coutinho, A.D.R.; Thim, G.P. Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J. Aerosp. Technol. Manag. 2015, 7, 289–293. [Google Scholar] [CrossRef]
- Okpalugo, T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- YLei, Y.; Gao, G.; Liu, W.; Liu, T.; Yin, Y. Synthesis of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes by ultraviolet initiated photo-reduction method. Appl. Surf. Sci. 2014, 317, 49–55. [Google Scholar]
- Gong, H.; Kim, S.-T.; Lee, J.D.; Yim, S. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl. Surf. Sci. 2013, 266, 219–224. [Google Scholar] [CrossRef]
- Shen, J.; Adnot, A.; Kaliaguine, S. An ESCA study of the interaction of oxygen with the surface of ruthenium. Appl. Surf. Sci. 1991, 51, 47–60. [Google Scholar] [CrossRef]
- Mun, C.; Ehrhardt, J.; Lambert, J.; Madic, C. XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings. Appl. Surf. Sci. 2007, 253, 7613–7621. [Google Scholar] [CrossRef]
- Park, K.C.; Jang, I.Y.; Wongwiriyapan, W.; Morimoto, S.; Kim, Y.J.; Jung, Y.C.; Toya, T.; Endo, M. Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. J. Mater. Chem. 2010, 20, 5345–5354. [Google Scholar] [CrossRef]
- Rolison, D.R.; Hagans, P.L.; Swider, K.E.; Long, J.W. Role of hydrous ruthenium oxide in Pt− Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity. Langmuir 1999, 15, 774–779. [Google Scholar] [CrossRef]
- Huang, D.-Q.; Chen, C.; Wu, Y.-M.; Zhang, H.; Sheng, L.-Q.; Xu, H.-J.; Liu, Z.-D. The Determination of Dopamine Using Glassy Carbon Electrode Pretreated by a Simple Electrochemical Method. Int. J. Electrochem. Sci. 2012, 7, 5510–5520. [Google Scholar] [CrossRef]
- Stern, C.M.; Meche, D.D.; Elgrishi, N. Impact of the choice of buffer on the electrochemical reduction of Cr(vi) in water on carbon electrodes. RSC Adv. 2022, 12, 32592–32599. [Google Scholar] [CrossRef]
- Hörmann, N.G.; Reuter, K. Thermodynamic cyclic voltammograms: Peak positions and shapes. J. Phys. Condens. Matter 2021, 33, 264004. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/caddis/ph#:~:text=U.S.%20EPA%20water%20quality%20criteria,reduced%20biological%20diversity%20in%20streams (accessed on 25 July 2024).
- Çelebier, M.; Koçak, E.; Doğan, A.; Altınöz, S.; Başçı, N.E. Investigating the physicochemical properties of phenazopyridine hydrochloride using high-performance liquid chromatography and UV-visible spectrophotometry. J. Res. Pharm. 2018, 22, 528–535. [Google Scholar] [CrossRef]
- Avdeef, A. Disolution and solubility. In Comprehensive Medicinal Chemistry II; Taylor, J.B., Triggle, D.J., Eds.; ADME-Tox Approach; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Lee, J. Reaction Order Ambiguity in Integrated Rate Plots. J. Chem. Educ. 2008, 85, 141. [Google Scholar] [CrossRef]
- Ryan, M.A.; Ingle, J.D. Fluorometric reaction rate method for the determination of thiamine. Anal. Chem. 1980, 52, 2177–2184. [Google Scholar] [CrossRef]
- House, J.E. Principles of Chemical Kinetics; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Justi, R. Teaching and learning chemical kinetics. In Chemical Education: Towards Research-Based Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; pp. 293–315. [Google Scholar]
- Nidheesh, P.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 2018, 197, 210–227. [Google Scholar] [CrossRef]
- Yousefi, F.; Nezamzadeh-Ejhieh, A. Photodegradation of phenazopyridine in an aqueous solution by CdS-WO3 nanocomposite. Desalination Water Treat. 2020, 182, 299–308. [Google Scholar] [CrossRef]
- Fathinia, M.; Khataee, A.; Aber, S.; Naseri, A. Development of kinetic models for photocatalytic ozonation of phenazopyridine on TiO2 nanoparticles thin film in a mixed semi-batch photoreactor. Appl. Catal. B Environ. 2016, 184, 270–284. [Google Scholar] [CrossRef]
- Attia, K.A.; El-Abasawi, N.M.; El-Olemy, A.; Abdelazim, A.H. Comparative study of different electrochemical sensors for determination of phenazopyridine hydrochloride in the presence of its computationally selected degradation product. Anal. Chem. Lett. 2017, 7, 765–778. [Google Scholar] [CrossRef]
- Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.; Lamy, C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563, 81–89. [Google Scholar] [CrossRef]
- Chang, Q.; Hong, Y.; Lee, H.J.; Lee, J.H.; Ologunagba, D.; Liang, Z.; Kim, J.; Kim, M.J.; Hong, J.W.; Song, L.; et al. complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes. Proc. Natl. Acad. Sci. USA 2022, 119, e2112109119. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.Y.; Lee, K.-J.; Sung, Y.-E. Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C 2016, 120, 9028–9035. [Google Scholar] [CrossRef]
- Elnabawy, A.O.; Herron, J.A.; Liang, Z.; Adzic, R.R.; Mavrikakis, M. Formic acid electrooxidation on Pt or Pd monolayer on transition-metal single crystals: A first-principles structure sensitivity analysis. ACS Catal. 2021, 11, 5294–5309. [Google Scholar] [CrossRef]
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Martín-Pozo, L.; del Carmen Gómez-Regalado, M.; García-Córcoles, M.T.; Zafra-Gómez, A. Removal of quinolone antibiotics from wastewaters and sewage sludge. In Emerging Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 381–406. [Google Scholar]
- Lapchuk, I.; Shyichuk, A.; Tatarchuk, T. Application of hybrid advanced oxidation and adsorption processes for pharmaceutical wastewater treatment. In The Treatment of Pharmaceutical Wastewater; Elsevier: Amsterdam, The Netherlands, 2023; pp. 247–275. [Google Scholar]
- Bhandari, V.M.; Ranade, V.V. Advanced physico-chemical methods of treatment for industrial wastewaters. In Industrial Wastewater Treatment, Recycling and Reuse; Elsevier: Amsterdam, The Netherlands, 2014; pp. 81–140. [Google Scholar]
- Chavoshani, A.; Hashemi, M.; Amin, M.M.; Ameta, S.C. Pharmaceuticals as emerging micropollutants. In Micropollutants and Challenges: Emerging in the Aquatic Environments and Treatment Processes; Elsevier: Amsterdam, The Netherlands, 2020; Volume 35. [Google Scholar] [CrossRef]
Electrode | 2θ ° | FWHM | Species | Particle Size * (nm) | Average Particle Size * (nm) | d (Å) | (hkl) |
---|---|---|---|---|---|---|---|
PtNP@FTO-E | 39.80 | 0.44 | Pt | 20.06 | 38.60 | 2.8 | (111) |
46.33 | 0.22 | Pt | 41.04 | 2.0 | (200) | ||
67.62 | 0.14 | Pt | 71.37 | 1.4 | (220) | ||
81.84 | 0.22 | Pt | 49.94 | 1.2 | (311) | ||
PtNP@FTO-T | 40.22 | 0.62 | Pt | 14.26 | 21.65 | 2.2 | (111) |
46.68 | 0.40 | Pt | 22.60 | 1.9 | (200) | ||
68.18 | 0.45 | Pt | 22.28 | 1.4 | (220) | ||
82.23 | 0.50 | Pt | 22.04 | 1.2 | (311) |
Electrode | 2θ (°) | FWHM | Species | Particle Size (nm) * | Average Particle Size (nm) * | d (Å) | (hkl) |
---|---|---|---|---|---|---|---|
MWCNTs-FTO | 26.40 | 0.26 | MWCNTs | 32.79 | 32.79 | 3.4 | (002) |
PtNP@MWCNT-FTO-E (fresh) | 26.40 | 0.24 | MWCNTs | 35.52 | 45.60 | 3.4 | (002) |
39.80 | 0.44 | Pt | 20.06 | 2.8 | (111) | ||
46.33 | 0.22 | Pt | 41.04 | 2.0 | (200) | ||
67.62 | 0.14 | Pt | 71.37 | 1.4 | (220) | ||
81.84 | 0.22 | Pt | 49.94 | 1.2 | (311) | ||
PtNP@MWCNT-FTO-E (used) | 26.40 | 0.18 | MWCNTs | 47.37 | 40.11 | 3.4 | (002) |
40.22 | 0.62 | Pt | 16.26 | 2.2 | (111) | ||
46.68 | 0.40 | Pt | 36.60 | 1.9 | (200) | ||
68.18 | 0.45 | Pt | 55.28 | 1.4 | (220) | ||
82.23 | 0.50 | Pt | 45.04 | 1.2 | (311) |
Electrode | Element | Atomic% | Mass% |
---|---|---|---|
Fresh | C K | 37.4 | 3.3 |
Pt M | 56.7 | 88.4 | |
Sn L | 8.7 | 8.3 | |
Used | C K | 34.6 | 3.3 |
Pt M | 56.7 | 88.4 | |
Sn L | 8.7 | 8.3 |
Entry # | Electrode | Peak Voltage (V) vs. SCE | Peak Oxidation Current Density (mA/cm2) |
---|---|---|---|
1 | PtNP@MWCNT-FTO-E | 1.0 | 25 |
2 | Pt sheet | 1.0 | 10 |
3 | PtNP@FTO-E | 0.8 | 17 |
4 | MWCNT-FTO | 1.0 | 0.5 |
5 | Naked FTO | 1.0 | 1.5 |
TOC Analysis * | HPLC Analysis | |||
---|---|---|---|---|
Time (min) | TOC (ppm) | % Loss | HPLC (μV s) | % Loss |
0 | 40 | 0 | 7,152,571 | 0 |
60 | 22 | 46 | 3,939,397 | 44 |
120 | 10 | 75 | 2,246,713 | 69 |
180 | 3 | 93 | 527,963.0 | 92 |
240 | <1 | 98 | 104,903.0 | 98 |
300 | <<1 | 99 | 4291.000 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassar, I.M.; Nassar, H.; Assali, M.; Helal, M.H.S.; Han, H.; Kim, T.W.; Salman, M.; Hilal, H.S. Electro-Mineralization of Aqueous Phenazopyridine Using Platinum Nanoparticles Deposited onto Multiwalled Carbon Nanotubes. Processes 2024, 12, 1625. https://doi.org/10.3390/pr12081625
Nassar IM, Nassar H, Assali M, Helal MHS, Han H, Kim TW, Salman M, Hilal HS. Electro-Mineralization of Aqueous Phenazopyridine Using Platinum Nanoparticles Deposited onto Multiwalled Carbon Nanotubes. Processes. 2024; 12(8):1625. https://doi.org/10.3390/pr12081625
Chicago/Turabian StyleNassar, Ibrahim M., Heba Nassar, Mohyeddin Assali, Muath H. S. Helal, Hyobin Han, Tae Woo Kim, Mazen Salman, and Hikmat S. Hilal. 2024. "Electro-Mineralization of Aqueous Phenazopyridine Using Platinum Nanoparticles Deposited onto Multiwalled Carbon Nanotubes" Processes 12, no. 8: 1625. https://doi.org/10.3390/pr12081625