
Academic Editor: Massimo Caruso

Received: 28 November 2024

Revised: 19 December 2024

Accepted: 30 December 2024

Published: 3 January 2025

Citation: Xu, H.; Tao, J.; Huang, L.;

Zhang, C.; Zheng J. A Deep

Reinforcement Advantage

Actor-Critic-Based Co-Evolution

Algorithm for Energy-Aware

Distributed Heterogeneous Flexible

Job Shop Scheduling. Processes 2025,

13, 95. https://doi.org/10.3390/

pr13010095

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Deep Reinforcement Advantage Actor-Critic-Based
Co-Evolution Algorithm for Energy-Aware Distributed
Heterogeneous Flexible Job Shop Scheduling
Hua Xu *, Juntai Tao, Lingxiang Huang, Chenjie Zhang and Jianlu Zheng

School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 Li Hu Avenue,
Wuxi 214122, China; taojuntai@gmail.com (J.T.); 6233115011@stu.jiangnan.edu.cn (L.H.);
6233115025@stu.jiangnan.edu.cn (C.Z.); 6233110055@stu.jiangnan.edu.cn (J.Z.)
* Correspondence: xuhua@jiangnan.edu.cn

Abstract: With the rapid advancement of the manufacturing industry and the widespread
implementation of intelligent manufacturing systems, the energy-aware distributed het-
erogeneous flexible job shop scheduling problem (DHFJSP) has emerged as a critical
challenge in optimizing modern production systems. This study introduces an innova-
tive method to reduce both the makespan and the total energy consumption (TEC) in the
context of the DHFJSP. A deep reinforcement advantage Actor-Critic-based co-evolution
algorithm (DRAACCE) is proposed to address the issue, which leverages the powerful
decision-making and perception abilities of the advantage Actor-Critic (AAC) method.
The DRAACCE algorithm consists of three main components: First, to ensure a balance
between global and local search capabilities, we propose a new co-evolutionary strategy.
This enables the algorithm to explore the solution space efficiently while maintaining robust
exploration and exploitation. Next, a novel evolution strategy is introduced to improve the
algorithm’s convergence rate and solution diversity, ensuring that the search process is both
fast and effective. Finally, we integrate deep reinforcement learning with the advantage
Actor-Critic framework to select elite solutions, enhancing the optimization process and
leading to superior performance in minimizing both TEC and makespan. Extensive experi-
ments validate the effectiveness of the proposed DRAACCE algorithm. The experimental
results show that DRAACCE significantly outperforms existing state-of-the-art methods on
all 20 instances and a real-world case, achieving better solutions in terms of both makespan
and TEC.

Keywords: deep reinforcement learning (DRL); co-evolution; dueling deep Q-networks;
distributed heterogeneous flexible job shop scheduling problem (DHFJSP); advantage
actor-critic (AAC)

1. Introduction
With the rapid development of the manufacturing industry and the increasingly fierce

global market competition, enterprises have continuously raised their demands for produc-
tion efficiency and flexibility. To quickly adapt to market demands and shorten production
lead times, components for large-scale equipment are often allocated to multiple factories
for simultaneous manufacturing, a process known as distributed manufacturing [1]. Dis-
tributed manufacturing enables the production of high-quality products at lower costs and
reduced risks [2], which has led to its growing adoption in practice [3].

Processes 2025, 13, 95 https://doi.org/10.3390/pr13010095

https://doi.org/10.3390/pr13010095
https://doi.org/10.3390/pr13010095
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr13010095
https://www.mdpi.com/article/10.3390/pr13010095?type=check_update&version=1

Processes 2025, 13, 95 2 of 23

The distributed flexible job shop scheduling problem (DFJSP) is an extension of HFSP
in the distributed manufacturing environment [4]. As a pivotal issue in the realm of dis-
tributed manufacturing, DFJSP has garnered significant attention from both academia and
industry. Distributed flexible job shop scheduling has been widely applied in industries
such as automotive manufacturing, food processing, precision manufacturing and process-
ing, and pharmaceutical production. DFJSP can be elaborated as follows: Multiple jobs
need to be processed within factories that are geographically dispersed. Each factory boasts
a certain number of interchangeable machines capable of handling the tasks. Each job com-
prises multiple operations, and each operation can potentially be performed on multiple
machines [5]. The scheduling objective, subject to various constraints such as operation
sequence, machine capacity, and processing time constraints, is to optimize one or more
performance metrics. These metrics typically include makespan, total energy consumption,
and overall cost. Due to its complexity and wide range of practical applications, DFJSP
is classified as an NP-hard problem, making it difficult to solve using simple analytical
methods. As a result, researchers have proposed a variety of approaches to solve the DFJSP,
including heuristic algorithms, meta-heuristic algorithms, and intelligent optimization
algorithms. Notable methods include tabu search algorithm [6], genetic algorithms [7,8],
chemical reaction algorithm [9], differential evolution algorithms [10], and estimation of
distribution algorithm [11], among others. Many previous studies have assumed a homo-
geneous factory environment, where each factory is equipped with identical machines,
and each job can be processed on the same set of machines. However, in reality, factories of-
ten differ in terms of machine availability, machine processing times, and types of machines
used, which leads to a heterogeneous factory environment [12].

Knowledge-driven domain structures have been demonstrated to enhance the conver-
gence of populations [13]. The memetic framework is widely used for its efficiency [14].
However, various studies have demonstrated that the memetic framework struggles with
efficiency in solving the DFJSP, especially when multiple objectives are involved. To over-
come this limitation, a co-evolutionary framework has been proposed, inspired by the
interdependent relationships observed in nature. This approach, much like cooperative
evolutionary [15,16], competitive evolutionary [17,18], and memetic evolutionary [19,20]
algorithms, is based on parasitic behavior and aims to model the interactions between
different components of the system.

Reinforcement learning (RL) is an effective method for learning and controlling com-
plex and uncertain environments. In RL, an agent interacts with its environment to learn a
strategy that maximizes cumulative rewards [21,22]. RL comprises five principles: (1) in-
put and output systems; (2) rewards; (3) artificial intelligence environment; (4) Markov
Decision Process (MDP); and (5) training and inference [23]. As a widely recognized and
foundational RL algorithm, the AAC algorithm combines an Actor network and a Critic
network. In policy-based RL, the goal is to directly optimize the policy to maximize re-
wards. In contrast, value-based reinforcement learning focuses on estimating the value
of each state or state–action pair, indirectly determining the optimal policy by selecting
the action that yields the highest reward in each state. The AAC algorithm merges these
two approaches, enabling the policy (Actor) to be optimized based on feedback from the
value function (Critic) [24]. The Actor network generates actions, while the Critic network
estimates the state value function or the state–action value function. Ultimately, both
networks are trained through a policy gradient algorithm. For the Critic, deep Q-networks
(DQNs) can be used to estimate the temporal difference of the action–state value function.
Owing to its benefits, the Actor-Critic framework has found widespread application across
a range of problems.

Processes 2025, 13, 95 3 of 23

In this study, a deep reinforcement advantage Actor-Critic-based co-evolution algo-
rithm (DRAACCE) is proposed to solve the energy-aware DHFJSP. The contributions of
this work are summarized as follows.

(1) The study utilizes the DHFJSP in real-world production scheduling contexts,
specifically addressing the heterogeneity of factories. It recognizes that each factory may
have varying processing times for the same operation, thereby capturing the practical
constraints typically encountered in production environments.

(2) A co-evolutionary framework is introduced. In this framework, two populations
are used to handle global and local searches. Knowledge acquired from the global search is
passed on to the elite population for co-evolution, helping to explore the solution space more
efficiently. Furthermore, a linear ranking-based factory selection operator is introduced to
address the constraints of heterogeneous factories, ensuring the selection of factories with
lower average processing times while also preserving diversity by allowing other factories
a chance to be selected.

(3) The study uses dueling DQN to learn the relationship between the solution space
and the actions of the operators. Unlike a traditional DQN, which calculates the Q-value
for each action separately, a dueling DQN splits the Q-value into two parts: the state-value
function V(s), representing the overall value of a state; and the advantage function A(s, a),
which quantifies the advantage of each action relative to the state. This decomposition
reduces the variance in value estimation, allowing the network to focus on more effi-
cient learning by concentrating on the state’s overall value rather than individual actions.
Additionally, by sharing the state-value function, the dueling DQN avoids redundant
computations, improving computational efficiency.

(4) The core of the proposed method is the DRAACCE algorithm, which combines
the Actor-Critic framework with the co-evolutionary approach. The Actor is responsible
for selecting actions and gathering experience data from the environment. The Critic
evaluates the value of these actions, offering feedback signals based on the dueling DQN
approach. This ensures that the Actor receives more accurate feedback, improving the
learning process.

The structure of this paper is as follows: Section 2 introduces related work in recent
years. Section 3 introduces the DHFJSP and the MILP model. Section 4 details the proposed
method. Experimental results are provided in Section 5. Section 6 concludes the paper and
outlines directions for future work.

2. Related Work
To the best of our knowledge, previous studies mainly focused on the distributed

job shop scheduling problems in homogeneous factories. De Giovanni and Pezzella [8]
were the first to define the DFJSP and introduce an enhanced genetic algorithm to solve
it. Ying and Lin [25] proposed the distributed hybrid flow shop scheduling problem with
multiprocessor tasks and introduced a self-tuning iterated greedy algorithm to minimize
makespan. Shao et al. [26] proposed a multi-neighbor search-based iterated greedy algo-
rithm to address the distributed hybrid flow shop scheduling problem with the objective of
minimizing makespan. Chang and Liu [7] presented a hybrid genetic algorithm within a
novel encoding mechanism to tackle the DFJSP. Du et al. [11] and Zhang et al. [27] addressed
crane transportation constraints in the DFJS. Du employed an optimization algorithm that
combines estimation of distribution algorithm and variable neighborhood search, while
Zhang applied a Q-learning-based hyper-heuristic evolutionary algorithm.

However, the studies mentioned above assume that all factories are identical, over-
looking the differences in factory characteristics. In reality, factories often vary in terms of
their manufacturing resources and equipment setups, which results in different processing

Processes 2025, 13, 95 4 of 23

times for the same job when handled by different factories. Shao et al. [28] studied the
distributed heterogeneous hybrid flow shop problem and proposed MOEA based on multi-
neighborhood local search. Li et al. [29] proposed an enhanced artificial bee colony (IABC)
algorithm that combines simulated annealing with a solution preservation mechanism to
improve the solution update process. Wang and Wang [30] introduced a bi-population
cooperative memetic algorithm (BCMA), which features a cooperation model based on
key factories and localized integration, utilizing several problem-specific neighborhoods to
improve the local search. Meng et al. [31] developed three new MILP models, alongside
a constraint programming model, to address the problem. However, due to the com-
plexity and challenges of distributed heterogeneous manufacturing systems, research in
this area remains limited. Additionally, the growing environmental concerns have led to
widespread interest in significantly reducing energy consumption. As a result, researching
the energy-aware DHFJSP is of considerable importance. Table 1 presents a comparison of
the related work.

Table 1. Comparison of related work.

Problem Reference Objectives Algorithm Characteristics
of Model

DFJSP
De Giovanni

and
Pezzella [8]

makespan enhanced genetic algorithm homogeneous

DHFSP Ying and
Lin [25] makespan IGA homogeneous

DHFSP Shao et al. [26] makespan
and TEC multi-neighbor search-based IGA homogeneous

DFJSP Chang and
Liu [7] makespan hybrid genetic algorithm homogeneous

DFJSP Du et al. [11] makespan optimization algorithm homogeneous
DFJSP Zhang et al. [27] makespan QHHEA homogeneous

DHHFSP Shao et al. [28] makespan MOEA based on multi-neighborhood local search heterogeneous
DHHFSP Li et al. [29] makespan IABC heterogeneous

DHHFSP Wang and
Wang [30] makespan BCMA heterogeneous

DHFJSP This work makespan
and TEC DRAACCE heterogeneous

3. Problem Description and MILP Model
This section provides a detailed introduction to the DHFJSP and demonstrates the pro-

cess of assigning workpieces to the corresponding machines in the respective factories for
processing. In addition, a MILP model is established for effective mathematical modeling
of the DHFJSP.

3.1. Problem Description

In the DHFJSP, there are F heterogeneous factories with diverse manufacturing capa-
bilities. Each factory uses the same set of flexible machines for every operation. However,
the processing time for each operation on the same machine in different factories can vary.
Each factory possesses m machines within its premises. In factory f (f = 1, 2, . . . , F), the ma-
chines are represented as M f ,k(k = 1, 2, . . . , m), each possessing a power consumption EPU

f ,k .
As shown in Figure 1, n jobs need to be allocated to factories. A job is processed

in sequence on a machine within the assigned factory. Once a job is assigned to a fac-
tory, it cannot be moved to another, and all its operations must be completed within the
same factory. Each job i(i = 1, 2, . . . , n) consists of o operations. If the operation process

Processes 2025, 13, 95 5 of 23

Oi,j(j = 1, 2, . . . , o) is handled by machine M f ,k, it requires t f ,k,i,j time units and consumes
EPU

f ,k × t f ,k,i,j energy units. In addition, ESU
f ,k is usually lower than EPU

f ,k . The DHFJSP seeks
to minimize two objectives: total energy consumption (TEC) and maximum completion
time (MCT).

Figure 1. Example of distributed heterogeneous flexible job shop.

3.2. MILP Model

The Mixed Integer Linear Programming (MILP) model is an optimization technique
that represents complex problems using mathematical formulations. In a MILP model,
the decision variables can comprise both continuous (real-valued) variables and discrete
(integer) variables, while the objective function and all constraint conditions are linear.

The objective of the DHFJSP is to minimize two primary goals: TEC and maximum
completion time (MCT). The relevant indices, parameters, and variables involved in the
formula are explained in Table 2.

Table 2. List of indices, parameters, and variables.

Type Symbol Definition

Index

i Index of job, i = 1, 2, . . . , n
j Index of operation, j = 1, 2, . . . , o
f Index of factory, f = 1, 2, . . . , F
k Index of machine, k = 1, 2, . . . , m

Parameter

n Number of jobs
o Number of operations for each job
F Number of factories
m Number of machines in each factory

M f ,k The kth machine in factory f
Oi,j The jth operation of the ith job

t f ,k,i,j The time units taken by machine M f ,k to process operation Oi,j
EPU

f ,k The power consumption of the machine M f ,k in processing mode per unit time
ESU

f ,k The power consumption of the machine M f ,k in standby mode per unit time

Variable

EP
f ,k Energy consumption of the machine M f ,k in processing mode

ES
f ,k Energy consumption of the machine M f ,k in standby mode

Si,j The start processing time of operation Oi,j
C f ,i,j The completion time of operation Oi,j in the f th factory
Cmax Maximum completion time
x f ,i 1 if job i is assigned in factory f , and 0 otherwise

y f ,k,i,j 1 if Oi,j is processed by machine M f ,k, and 0 otherwise
z f ,i,i′ ,j 1 if Oi,j is processed before Oi′ ,j in factory f , and 0 otherwise

Processes 2025, 13, 95 6 of 23

The MILP model of DHFJSP with minimization of TEC and MCT is described as
follows: {

min F1 = Cmax

min F2 = Etotal (1)

F

∑
f=1

x f ,i = 1, ∀i (2)

m

∑
k=1

y f ,k,i,j = 1, ∀ f , i, j (3)

Si,1 ≥ 0, ∀i (4)

Si,j+1 ≥ Si,j + t f ,k,i,j × y f ,k,i,j, ∀i, j (5)

Si′ ,j − (Si,j + t f ,k,i,j) + (3− y f ,k,i,j − y f ,k,i′ ,j − z f ,i,i′ ,j)

×U ≥ 0, ∀i ̸= i′, j, f , k ∈ {1, 2, . . . , mj}
(6)

z f ,i,i′ ,j + z f ,i′ ,i,j ≤ 1, ∀ f , j, i, i′ (7)

z f ,i,i′ ,j + z f ,i′ ,i,j ≥ y f ,k,i,j + y f ,k,i′ ,j − 1, ∀ f , j, i′ > i (8)

C f ,i,j = Si,j +
F

∑
f=1

m

∑
k=1

y f ,k,i,j × t f ,k,i,j, ∀ f , i, j (9)

Cmax ≥ C f ,i,j, ∀ f , i (10)

EP
f ,k =

n

∑
i=1

y f ,k,i,j × EPU
f ,k × t f ,k,i,j, ∀ f , j, k ∈ {1, 2, . . . , m} (11)

ES
f ,k = ESU

f ,k × {max
i

(C f ,i,j × y f ,k,i,j)−min
i
(Si,j × y f ,k,i,j)

−
n

∑
i=1

y f ,k,i,j × t f ,k,i,j}, ∀ f , j, k ∈ {1, 2, . . . , m}
(12)

Etotal =
F

∑
f=1

o

∑
j=1

m

∑
k=1

(ES
f ,k + EP

f ,k) (13)

x f ,i ∈ {0, 1}, ∀ f , i (14)

y f ,k,i,j ∈ {0, 1}, ∀ f , i, j, k ∈ {1, 2, . . . , m} (15)

z f ,i,i′ ,j ∈ {0, 1}, ∀ f , i, i′, j (16)

Equation (1) aims to minimize both the maximum completion time and the total
energy consumption. Equations (2) and (3) ensure that each job is assigned to exactly
one factory and that each operation is processed on only one machine. Inequalities (4)
and (5) guarantee that the start time of the first operation for each job is non-negative
and that each operation can only begin once the preceding operation of the same job
has been completed. Inequalities (6)–(8) ensure that each machine is assigned to only
one job at a time. Formulas (9) and (10) define the completion time for each job and the
maximum completion time among all jobs, respectively. Formulas (11) and (12) calculate
the energy consumption of the machines during processing mode and standby mode,
respectively. Formula (13) computes the total energy consumption across all machines,
while Formulas (14)–(16) define the binary decision variables.

Processes 2025, 13, 95 7 of 23

4. Proposed Algorithm: DRAACCE
This section provides a detailed description of DRAACCE. First, in Section 4.1,

the framework of DRAACCE is presented, and the entire process is explained in detail.
Next, in Section 4.2, the reasons behind the formation of the DRAACCE framework are
discussed, due to the use of the parasitic behavior-based co-evolutionary framework (PCE),
and PCE itself is explained in detail. Following that, Section 4.3 provides a detailed intro-
duction to and illustration of the composition of the individuals. The remaining sections
describe the various important components of DRAACCE.

4.1. Framework of DRAACCE

The framework of DRAACCE is illustrated in Figure 2. The algorithm begins with a
random initialization method. Then, the individuals are sorted in descending order based
on their fitness. The co-evolution algorithm is employed to evolve the population, thereby
identifying the elite individuals. These elite individuals play a crucial role in guiding the
evolution toward promising solution regions by updating the population. To accelerate the
convergence speed while maintaining population diversity, DRAACCE uses distinct search
strategies for elite and non-elite individuals. Elite individuals undergo further refinement
through a combination of neighborhood search, the advantage Actor-Critic network, and an
energy-saving strategy to enhance their quality.

Figure 2. Framework of DRAACCE.

4.2. Parasitic Behavior-Based Co-Evolutionary Framework

The PCE is illustrated in Figure 3. PCE not only determines the framework of
DRAACCE but also provides a detailed description of the co-evolution process. To enable
the host to thoroughly explore the non-dominated solutions, the framework divides the
evolutionary process into two main components: the host H and the parasite P. This divi-
sion allows for a more dynamic and efficient search for optimal solutions in the scheduling
problem. The evolutionary process unfolds in several key stages: Firstly, the host H under-
goes one generation using NSGA-II [32]. Secondly, the parasites P absorb Pareto solutions
from H. Then, the parasites conduct a local search and AAC network to find more potential

Processes 2025, 13, 95 8 of 23

non-dominated solutions. Afterwards, the parasites adopt an energy-saving strategy to
reduce TEC. Finally, the parasites P produce the ultimate set of non-dominated solutions.

As far as we know, Qin [33] introduced the concept of parasitic cooperative evolution,
and Li [34] has already proposed a PCE algorithm for solving multiple optimization
benchmarks. However, the algorithm proposed is notably distinct from the PCE presented
by Li.

(1) Li’s method employs a tournament selection algorithm for mating selection, where
each individual has the same probability to be selected. In contrast, this paper uses
linear ranking selection, which ranks individuals based on their fitness from highest to
lowest, and the probability of the i-th individual being selected is denoted as P(i), which is
calculated using the following equation.

Q(i) =
a + (b− a)

i−1
ps−1

ps
(17)

P(i) =
Q(i)

∑
ps
i=1 Q(i)

(18)

where ps represents the total number of individuals, both a and b are constants, and
0 ≤ a ≤ 1.

(2) During the crossover process, this paper determines the probability of replacing
parental genes based on the fitness of the parents, whereas Li’s approach involves random
replacement.

(3) Li’s approach uses a precedence operation cross (POX) operation only once on the
parent generation to produce two offspring, often resulting in only one valid offspring.
In contrast, the approach presented in this paper applies fitness-based POX separately to
both parents to generate two offspring. This not only enhances the validity of the generated
offspring but also avoids unnecessary offspring from negatively impacting the population.

4.3. Encoding Scheme

In the DRAACCE, there are three sub-problems that need to be solved concurrently:
determining the processing order for each operation, selecting a factory for each job,
and assigning a processing machine to each operation. Therefore, the solution to the
problem represented in this work adopts a three-level coding model. Figure 4 illustrates
the representation of the solution. The first level is the operation sequence (OS) vector,
the second level is the machine selection (MS) vector, and the third level is the factory
assignment (FA) vector. The individuals in the DERAACCE algorithm are composed of OS,
MS, and FA.

During the decoding process, jobs are allocated to the appropriate heterogeneous
factories according to the FA vector. Then, the OS for each factory is retrieved from the
OS vector. Subsequently, an optional machine is chosen for each operation based on the
MS vector, and the processing time Oi,j for that operation can be obtained. Finally, once
the machine assignments are made, the starting and finishing times for each operation are
computed. From these times, the MCT and TEC for the entire workshop are determined.

Processes 2025, 13, 95 9 of 23

Figure 3. PCE applied to distributed job shop scheduling.

Figure 4. Solution representation for DRAACCE.

4.4. Initialization Population

To achieve significant diversity in the training of the DQN, the algorithm adopts a
method of random initialization. Firstly, it randomly generates a sequence of operations. It
then randomly chooses a machine from a pool of candidate machines for each operation.
Lastly, it randomly assigns each job to a factory.

4.5. Evolution and Environmental Selection

The algorithm employs the POX operator for the OS and adopts the Uniform Crossover
(UX) operator for both FA and MS. The evolutionary process of this algorithm is described
as follows: (1) Two parent individuals are selected based on linear ranking selection. (2) The
two parents undergo the POX and UX operation with a probability of Pc, resulting in two
offspring. (3) Each offspring undergoes two mutation strategies with a rate of Pm: either
randomly changing the MS of two operations or randomly selecting two operations and
swapping their positions. Then, environmental selection is used to select individuals for
the next generation. The environmental selection process is based on the method described
in [32].

Processes 2025, 13, 95 10 of 23

4.6. Local Search

Local search is a powerful technique for improving the efficiency of evolutionary
algorithms by refining existing solutions and accelerating convergence toward optimal
or near-optimal solutions. For the DRAACCE algorithm, the local search focuses on
identifying more non-dominated solutions in the distributed job shop scheduling problem.
The effectiveness of the local search is highly dependent on the selection of key production
factors, such as OS, MS, and FA, which play a significant role in determining the solution
quality. Therefore, this paper proposes nine local search strategies tailored to the problem
characteristics, specifically as follows:

(1) N7: In N7, a block is defined as a sequence of consecutive critical operations that
are performed on the same machine along the entire processing path [35]. These operations
are considered “critical” because any delay or disruption in their execution can significantly
impact the overall schedule. N7 focuses on optimizing the job shop scheduling problem by
modifying the operation sequence (OS) within these critical blocks.

(2) Operation Swap: To increase diversity, two operations in the OS from the factory
with the highest makespan are randomly swapped.

(3) Critical Operation Swap: Select two critical operations and swap their positions in
order to decrease the makespan.

(4) Insert Operation: Randomly select two operations from all the operations from the
factory with maximum makespan and insert the latter before the former.

(5) Insert Critical Operation: Randomly select two operations in the critical factory.
Then, insert the second operation before the first operation.

(6) Randomly Select Factory Assignment: Randomly pick a job from the critical factory
and reassign it to a different factory.

(7) Linear Ranking Factory Assignment: Prior studies have randomly inserted a
job into another factory in an attempt to achieve load balancing and reduce completion
times [36]. However, the success rate of this random approach was very low. To increase
the success rate of reducing makespan, a job is randomly selected from the factory with
the maximum makespan and reassigned to a factory that has a shorter average processing
time. The probability of each factory being selected is Pf , which is calculated using the
following equation:

Q f =
m

∑
k=1

∑n
i=1 ∑o

j=1 y f ,k,i,j × t f ,k,i,j

m
(19)

Pf =
Q f

∑F
f=1 Q f

(20)

(8) Random Machine Selection: Randomly select a critical operation and assign it to a
different available machine within the same factory.

(9) Ranking Machine Selection: Randomly select a critical operation from the machine
with the longest processing time and assign it to a machine with a shorter processing
time. The probability of each machine being selected is Pk, which is calculated using the
following equation:

Qk =
n

∑
i=1

o

∑
j=1

y f ,k,i,j × t f ,k,i,j (21)

Pk =
Qk

∑m
k=1 Qk

(22)

4.7. Advantage Actor-Critic-Based Strategy Selection Model

In this paper, we use AAC to choose the most suitable operator. AAC is a powerful
deep reinforcement learning algorithm capable of learning data distributions and making

Processes 2025, 13, 95 11 of 23

correct choices through the analysis of historical experiences. As key components of
reinforcement learning, well-designed actions and states can effectively represent the
scheduling environment, thereby enhancing the efficiency of the learning process. In this
study, a transaction is represented as (St, At, Rt, St+1), where St is the state, At is the
chosen action, Rt is the reward, and St+1 is the subsequent state. St is a vector formed by
combining the OS, MS, and FA. The length of OS and MS corresponds to the total number
of operations, while the length of FA corresponds to the number of jobs. At in AAC consists
of the local search actions described in Section 4. The value of Rt s given by the following
definition: if the old solution is replaced by the new one, Rt is 5; if the new solution and the
old solution are incomparable, Rt is 10; otherwise, Rt is 0 [37]. This model inputs state St

into the AAC network and determines the selected action At based on the ϵ-greedy strategy.
By applying action At to state St, the next state St+1 is generated.

To tackle the challenge of a large and exhaustive state space, AAC utilizes neural
networks to learn the distribution of all states within the environment. The AAC algorithm
is mainly composed of two key components: the Actor and the Critic. The Actor is a policy
network πθ(S) responsible for selecting appropriate actions based on the current state.
The Critic, on the other hand, is a valuation network Vπ(S) used to evaluate the quality
of the policies generated by the Actor. In the Actor-Critic algorithm, there are two update
targets: the policy gradient update for the Actor network and the value function update
for the Critic network. In AAC algorithm, the Actor network employs the REINFORCE
algorithm for gradient updates, while the Critic network adopts the loss function used in
DQNs to estimate the temporal difference of the action–state value function for its updates.

In this paper, we will draw inspiration from dueling DQNs for updating the Critic,
and divide the Critic into two networks, namely Vπ1(S) and Tπ2(S), where Vπ1(S) serves
as the valuation network and Tπ2(S) as the target network. A dueling DQN uses a dual
network and introduces the advantage function A(S, A). The action-value function is
calculated using the following formula:

Qπ(S, A) = Vπ1(S) + Aπ2(S, A)−meanA A(S, A) (23)

where π = (π1, π2). The REINFORCE algorithm is described as follows: At the beginning
of training, Vπ1(S) and Tπ2(S) share the same parameters. Next, randomly select a batch of
transactions from the experience pool S. Then, feed the transaction at time t, denoted as St,
into Vπ1(S), and output the q-values for all actions in the current state as Qπ1(St, :). Simi-
larly, input the next state into Tπ2(S) and obtain the q-values for the next state Qπ2(St+1, :).
In this paper, the REINFORCE algorithm is used to update the policy gradient, and the
formula for this algorithm is as follows:

∇θ J(πθ) = Et[
T

∑
t=0
∇θ logπθ(At|St)R(τ)] (24)

R(τ) = Vπ1(St, At)− Rt − γ× Tπ2(St+1, At+1) (25)

where ∇θ J(πθ) represents the policy gradient and πθ(At|St) represents the probability
of choosing action At in state St. The parameter π1 is updated using the following
loss function:

J(π1) =
1
2

R2(τ) (26)

where J(π) represents the performance of the target policy.
Algorithm 1 illustrates the training part of AAC. By continuously updating πθ and

π1, we can obtain a better evaluation of the Actor network and improve the selection
probability of actions.

Processes 2025, 13, 95 12 of 23

Algorithm 1 Training part of advantage Actor-Critic

1: Input: Experience pool S, policy network πθ(S), valuation network Vπ1(S), target
network Tπ2(S), epochs, counter, maxcount.

2: Output: Policy network πθ(S), valuation network Vπ1(S).
3: count = 0
4: for l = 1 to epochs do
5: if counter % maxcount = 0 then
6: Tπ2(S)← Vπ1(S)
7: end if
8: counter+ = 1
9: Random transition (St, At, Rt, St+1) from S

10: πθ(S)← St
11: Vπ1(S)← (St, At, Rt, St+1)
12: R(τ)← Tπ2(S)← (St, At, Rt, St+1)

13: ∇θ J(πθ) = Et[∑T
t=0∇θ logπθ(At|St)R(τ)]

14: J(π1) =
1
2 R2(τ)

15: Update πθ : πθ = πθ −∇θ J(πθ)
16: Update π1 : π1 = π1 − J(π1)
17: end for

4.8. Energy-Saving Strategy

This paper adopts energy-saving strategies based on fully active scheduling [38].
The detailed description of this strategy is as follows: Firstly, scan the operation sequence
forward to identify potential idle slots and insert the current operation Oi,j into one of them
to reduce idle time. Then, traverse the improved schedule backward to look for positions
where the current operation can be inserted to further minimize idle time. This strategy
not only reduces TEC but also shortens MCT. The produce of DRAACCE is shown in
Algorithm 2.

Algorithm 2 Produce of DRAACCE

1: Input: Crossover rate Pc, mutation probability Pm, learning rate α, discount factory γ,
greedy factor ϵ, batch size bs, experience pool size S, epochs, population size ps, update
threshold β and MAXNFE.

2: Output: The Pareto solutions PS
3: Initial host population H, size equals ps
4: Initial parasite population P size equals zero
5: Initial AAC network: (πθ , π1, π2)← (α, γ, bs, β, S, ϵ)
6: NFE = 0
7: while NFE < MAXNFE do
8: Generate Pool by linear ranking selection
9: Generate Child by crossover and mutation

10: NFE = NFE + |Child|
11: U ← Child ∪ H
12: H ← NSGA−II(U)
13: PF ← GetParetoFront(H)
14: P← PF ∪ P
15: P← DeleteRepeatsolutions(P)
16: AAC-based strategies selection:

[P, (πθ , π1, π2)]← (P, (πθ , π1, π2), ϵ, S)
17: NFE = NFE + |P|
18: P← Energy− saving(P)
19: NFE = NFE + |P|
20: end while
21: PS← GetParetoFront(P)

Processes 2025, 13, 95 13 of 23

5. Experimental Evaluation
We designed parameter calibration, ablation, and comparative experiments to evaluate

the performance of DRAACCE. Algorithms without AAC were coded in MATLAB 2023, while
DRAACCE was coded in Python 3.11 using CUDA 12.0 and PyTorch 1.13.0. The running
environment was on a 13th Gen Intel(R) Core(TM) i5-13500H 2.60 GHz with 128 G RAM,and
RTX 3090 GPU made by NVIDIA Corporation, located in Santa Clara, CA, USA.

5.1. Instances and Metrics

In this section, Li’s benchmark set [34] is adopted to test the performance of the
proposed algorithm. Table 3 presents the parameters of this benchmark and their corre-
sponding values. A total of 20 instances with various scales were generated for testing.
The stopping criterion is defined as MAXNEFs = 200 ×∑n

1 ni.

Table 3. Parameters of the benchmark and their values.

Parameter Value

Number of jobs 10, 20, 30, 40, 50, 100, 150, 200
Number of factories 2, 3, 4, 5, 6, 7

Number of machines in each factory 5
Number of operations in each job 5

Processing time for each operation in each factory [5, 20]
Processing power consumption value 4.0 kWh

Standby power consumption value 1.0 kWh

Hypervolume (HV) and Generation Distance (GD) are used to assess the overall per-
formance, convergence, and diversity of multi-objective evolutionary algorithms (MOEAs).
Specifically, a lower GD value indicates better convergence of the algorithm, while a higher
HV value reflects superior overall performance, as it captures both the quality and diversity
of the solution set.

5.2. Parameters Calibration

Since multiple parameters influence the performance of DRAACCE, determining
the optimal parameter settings for DRAACCE is crucial. DRAACCE consists of eight
parameters and Table 4 presents these parameters and their values. To ensure fairness,
each algorithm with different parameter configurations was run 20 times with the same
stopping criterion. The average values for all performance metrics across each instance
were recorded. Figures 5 and 6 present the main effect plots for the eight parameters relative
to the performance indicators. A higher HV value reflects better performance, while better
convergence and diversity are indicated by lower GD and Spread values. Table 5 presents
the optimal parameter combination for DRAACCE.

Table 4. Parameters of DRAACCE and their values.

Parameter Value

Crossover rate Pc 0.8, 0.9, 1.0
Population size ps 100, 150, 200
Mutation rate Pm 0.1, 0.15, 0.2
Learning rate α 0.001, 0.005, 0.01

Batch size bs 8, 16, 32
Greedy factor ϵ 0.9, 0.925, 0.95

Discount factor γ 0.9, 0.925, 0.95
Experience replay buffer size SE 512, 768, 1024

Processes 2025, 13, 95 14 of 23

Figure 5. Main effect for HV metrics.

Figure 6. Main effect for GD metrics.

Table 5. Optimal parameter combination for DRAACCE.

Parameter Value

Crossover rate Pc 1.0
Population size ps 100
Mutation rate Pm 0.2
Learning rate α 0.001

Batch size bs 16
Greedy factor ϵ 0.9

Discount factor γ 0.9
Experience replay buffer size SE 512

5.3. Ablation Experiment

To assess the effectiveness of the various improvements in DRAACCE, eight different
algorithms have been designed as follows: (1) Li’s approach: PCE assisted by the DQN
(DQCE) [34]; (2) PCE using linear ranking selection assisted by the DQN (DQCE-LR);
(3) DQCE with proposed evolution strategy (DQCE-ES); (4) PCE assisted by AAC (AACCE);
(5) DQCE-LR with proposed evolution strategy (DQCE-LRES); (6) PCE using linear ranking

Processes 2025, 13, 95 15 of 23

selection assisted by AAC (AACCE-LR); (7) AACCE with a proposed evolution strategy
(AACCE-ES); (8) DRAACCE. To ensure a fair comparison, each algorithm is independently
executed 20 times on all instances using the same stopping criterion (MAXNFEs = 200
×∑n

1 ni).
Tables 6 and 7 present the statistical results of all metrics for each variant algorithm.

In these tables, the first column contains the basic information for each dataset, where
“J” represents jobs and “F” represents factories, so “100J6F” indicates that this dataset
has 100 jobs and 6 factories. The symbols “-” and “+” indicate significant inferiority and
superiority to DRAACCE, respectively. The symbol “=” denotes no significant difference
between the variant algorithm and DRAACCE. Additionally, the best value for each metric
is marked in bold. Table 8 displays the results of the Friedman’s rank sum test, with a
confidence level of α = 0.05. From the experimental outcomes, the following conclusions
can be made. (1) A p-value of less than 0.05 demonstrates that DRAACCE outperforms
all variants; and (2) the effectiveness of PCE using linear ranking selection, DQCE with
proposed evolution strategy, and AAC can be ensured by analyzing the data in the table.

Table 6. Statistical performance of HV metrics for each variant algorithm across all instances.

Ins DQCE DQCE-
LR DQCE-ES AACCE DQCE-

LRES
AACCE-

LR
AACCE-

ES DRAACCE

10J2F 0.931- 1.286= 0.862- 0.868- 0.807- 0.888- 0.965- 1.256
20J2F 0.077- 0.849- 1.196- 1.194- 0.861- 1.214- 0.574- 1.562
20J3F 0.125- 0.727- 0.620- 0.431- 0.717- 1.040- 0.765- 1.733
30J2F 0.512- 1.108= 0.694- 0.484- 0.717- 0.610- 0.756- 1.225
30J3F 0.062- 0.624- 1.043- 1.307= 1.324= 1.294= 1.224= 1.334
40J2F 0.527- 0.772- 0.143- 0.520- 0.747- 1.056- 1.423- 2.462
40J3F 0.774- 0.801- 0.902- 0.892- 1.418- 1.417- 0.678- 2.164
40J4F 0.730- 1.485- 2.495- 2.230- 2.072- 2.257- 2.652- 4.002
50J3F 0.884- 0.687- 1.412= 0.459- 0.558- 0.798- 0.400- 1.400
50J4F 0.633- 1.070- 1.332- 1.116- 1.226- 1.771- 1.299- 2.751
50J5F 0.308- 0.098- 0.391- 0.372- 0.041- 0.564= 0.381- 0.698

100J4F 0.556- 0.509- 0.631= 0.499- 0.669= 0.039- 0.568- 0.738
100J5F 0.262- 0.773= 0.247- 0.171- 0.770= 0.553- 0.487- 0.766
100J6F 0.803- 1.202- 1.217- 1.197- 1.218- 1.871= 1.375- 1.772
100J7F 0.823- 1.041- 1.080- 1.202- 0.637- 1.205- 1.191- 2.667
150J5F 0.780- 1.240- 1.260- 1.221- 1.116- 0.530- 1.434= 1.606
150J6F 1.005- 1.163- 0.665- 1.221- 1.387- 1.350- 1.322- 1.617
150J7F 0.054- 0.264- 0.878= 0.829= 0.844= 0.277- 0.560- 0.820
200J6F 0.824- 1.968- 1.221- 1.616- 3.702- 2.964- 2.151- 3.909
200J7F 0.328- 2.302- 1.385- 3.910- 4.573- 3.942- 5.042- 5.725

-/=/+ 20/0/0 17/3/0 17/3/0 18/2/0 16/4/0 17/3/0 18/2/0

Table 7. Statistical performance of GD metrics for each variant algorithm across all instances.

Ins DQCE DQCE-
LR DQCE-ES AACCE DQCE-

LRES
AACCE-

LR
AACCE-

ES DRAACCE

10J2F 0.593- 0.271= 0.449- 0.259= 0.242= 0.488- 0.268= 0.224
20J2F 0.777- 0.626- 0.611- 0.726- 0.730- 0.697- 0.620- 0.405
20J3F 0.724- 0.703- 0.815- 0.537= 0.670= 0.582= 0.809- 0.487
30J2F 0.990- 0.720- 0.554- 0.453- 0.439- 0.239= 0.543- 0.216
30J3F 0.939- 0.766- 0.726- 0.899- 0.887- 0.821- 0.731- 0.527
40J2F 1.581- 1.301- 0.883- 0.877- 0.735= 0.936- 0.768= 0.670
40J3F 1.490- 1.233- 1.452- 1.310- 1.428- 0.810= 0.793= 0.764

Processes 2025, 13, 95 16 of 23

Table 7. Cont.

Ins DQCE DQCE-
LR DQCE-ES AACCE DQCE-

LRES
AACCE-

LR
AACCE-

ES DRAACCE

40J4F 1.562- 1.231- 1.339- 1.242- 1.343- 0.876- 1.305- 0.620
50J3F 1.346- 1.208- 1.079- 1.264- 0.908- 0.977- 1.025- 0.603
50J4F 1.325- 1.415- 0.767= 1.116- 1.226- 1.771- 1.299- 0.767
50J5F 2.617- 2.465- 2.249- 2.735- 1.762- 1.307= 1.211= 1.336

100J4F 2.898- 2.807- 2.793- 2.508- 1.948- 1.169= 1.020= 1.124
100J5F 2.722- 2.231- 2.111- 2.541- 2.243- 2.317- 2.050- 1.801
100J6F 3.212- 2.502- 3.226- 3.123- 2.897- 2.806- 2.574- 2.223
100J7F 4.386- 3.751- 3.620- 4.251- 2.811- 2.254- 2.415- 1.567
150J5F 3.656- 3.593- 3.549- 3.338- 3.411- 3.337- 3.763- 2.421
150J6F 5.249- 4.702- 3.315- 3.446- 3.289- 3.777- 2.325- 2.110
150J7F 4.682- 4.630- 4.214- 3.139- 3.394- 4.009- 3.634- 2.611
200J6F 9.311- 4.502- 3.839- 3.244= 4.176- 3.948- 3.888- 3.235
200J7F 8.966- 4.193- 3.206- 5.182- 3.928- 4.499- 3.035- 2.818

-/=/+ 20/0/0 19/1/0 19/1/0 17/3/0 17/3/0 15/5/0 15/5/0

Table 8. Rankings from Friedman rank sum test for variant algorithms (α = 0.05).

MOEAs
HV GD

Rank p-Value Rank p-Value

DQCE 6.55

8.95× 10−10

7.55

9.24× 10−15

DQCE-LR 5.30 6.00
DQCE-ES 4.85 4.85
AACCE 5.45 4.80

DQCE-LRES 4.35 4.15
AACCE-LR 3.75 3.85
AACCE-ES 4.30 3.65
DRAACCE 1.35 1.15

5.4. Comparison Experiment

To assess the performance of DRAACCE, it is compared with six other algorithms:
MOEA/D [39], NSGA-II [32], TS-NSGA-II [40], HSLFA [36], LRVMA [41], and MOEA/D-
DQN [37]. Wang et al. [42] proposed a MOEA/D algorithm for energy-efficient schedul-
ing in distributed heterogeneous welding flow shop, demonstrating the effectiveness of
MOEA/D in energy-saving DHFJSP. NSGA-II is a classical multi-objective evolutionary
algorithm and has been widely applied in the field of the multi-objective flexible job shop
scheduling problem. TS-NSGA-II algorithm is a recently proposed algorithm. TS-NSGA-II
is divided into two stages: in the first stage, the algorithm primarily uses global search to
obtain an initial set of solutions; in the second stage, the algorithm performs local search
on the solutions obtained from the first stage to further enhance the convergence and
diversity of the solution set. TS-NSGA-II has demonstrated strong performance in solving
the multi-objective flexible job shop scheduling problem. Meng et al. developed a new
MILP model and proposed a state-of-the-art algorithm, HSLFA, to solve the energy-efficient
DFJSP. The LRVMA algorithm is used to solve the multi-objective energy-efficient FJSP with
type-2 processing times, considering the minimization of makespan and TEC. DRAACCE
fully combines the advantages of the aforementioned six algorithms and effectively avoids
their shortcomings.

For a fair comparison, the parameters for the all algorithms are set according to the
values provided in their respective references: Pc = 1.0, ps = 100 and Pm = 0.2. Both
MOEA/D-DQN and MOEA/D use a neighborhood size of 10. The reinforcement learning

Processes 2025, 13, 95 17 of 23

parameters for LRVMA and MOEA/D-DQN are set to match those of DRAACCE. To en-
sure fairness, all MOEAs incorporate the same local search and energy-saving strategies.
Additionally, all comparison algorithms use the same stopping criterion. Each algorithm is
run 20 times independently across all instances.

Tables 9 and 10 list the statistical results for each algorithm. In the final row of each
table, the symbols “-/+” indicate that the compared algorithm is significantly inferior or
superior to DRAACCE, respectively, while “=” denotes no significant difference between
the algorithms. Additionally, the best value for each metric is marked in bold. According
to the results in Tables 9 and 10, DRAACCE significantly outperforms all the compared
algorithms in terms of the HV and GD metrics. Table 11 presents the Friedman’s rank
sum test results for all algorithms across all instances, with a confidence level of α = 0.05.
DRAACCE ranks first in all metrics, with a p-value < 0.05, indicating that DRAACCE is
superior to the compared algorithms. Figure 7 shows the Pareto front of all the comparison
algorithms on 200J7F. As shown in Figure 7, DRAACCE can find better Pareto solutions than
the other comparison algorithms, indicating that the DRAACCE algorithm outperforms
the others. In addition, it also shows a conflicting relationship between makespan and TEC,
and can roughly reflect the relationship between them. By combining the analysis of the
relationship with practical considerations, the Pareto solution that best meets the actual
requirements can be identified from the Pareto front.

Table 9. Statistical performance of HV metrics for each comparison algorithm across all instances.

Ins NSGA-II MOEA/D TS-NSGA-II HSLFA LRVMA MOEA/D-
DQN DRAACCE

10J2F 1.126- 1.237- 1.125- 1.154- 1.273- 1.012- 1.829
20J2F 1.038- 1.272- 1.131- 1.154- 1.258- 0.996- 1.538
20J3F 1.263- 1.484- 1.352- 1.327- 1.473- 1.174- 2.153
30J2F 1.026- 1.147- 1.083- 1.059- 1.075- 0.947- 1.827
30J3F 1.047- 1.253- 1.173- 1.248- 1.241- 1.038- 2.157
40J2F 0.947- 1.048- 0.989- 0.968- 1.026- 0.875- 2.206
40J3F 1.126- 1.238- 1.373- 1.341- 1.164- 1.074- 1.985
40J4F 1.052- 1.241- 1.172- 1.218- 1.283- 0.973- 1.967
50J3F 1.042- 1.148- 1.083- 1.153- 1.196- 0.952- 2.658
50J4F 1.182- 1.305- 1.282- 1.235- 1.381- 1.016- 2.386
50J5F 1.391- 1.572- 1.431- 1.389- 1.528- 1.218- 2.879

100J4F 0.934- 1.054- 1.058- 1.135- 1.058- 0.852- 1.938
100J5F 0.792- 0.941- 0.902- 0.872- 0.982- 0.681- 1.763
100J6F 0.874- 1.027- 0.947- 0.967- 1.027- 0.769- 1.876
100J7F 0.969- 1.107- 1.080- 1.101- 1.181- 0.942- 1.790
150J5F 1.092- 1.298- 1.168- 1.198- 1.307- 0.984- 1.870
150J6F 1.128- 1.337- 1.253- 1.232- 1.374- 1.072- 2.224
150J7F 1.087- 1.237- 1.158- 1.143- 1.298- 1.102- 2.198
200J6F 0.931- 1.209- 1.174- 1.144- 1.252- 0.874- 1.889
200J7F 0.982- 1.103- 0.988- 0.982- 1.138- 0.865- 1.776

-/=/+ 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0

Processes 2025, 13, 95 18 of 23

Table 10. Statistical performance of GD metrics for each comparison algorithm across all instances.

Ins NSGA-II MOEA/D TS-NSGA-
II HSLFA LRVMA MOEA/D-

DQN DRAACCE

10J2F 0.883- 0.679- 0.839- 0.847- 0.749- 1.039- 0.292
20J2F 0.980- 0.732- 0.835- 0.948- 0.539- 1.129- 0.347
20J3F 1.498- 1.173- 1.234- 1.367- 0.985- 1.642- 0.558
30J2F 1.377- 1.112- 1.322- 1.402- 1.209- 1.531- 0.883
30J3F 1.076- 0.912- 1.027- 1.073- 0.884- 1.223- 0.667
40J2F 0.855- 0.875- 0.860- 0.828- 0.999- 1.117- 0.483
40J3F 1.165- 0.998- 1.055- 1.093- 0.836- 1.336- 0.583
40J4F 1.257- 1.231- 1.338- 1.365- 1.267- 1.558- 0.895
50J3F 1.375- 1.127- 1.264- 1.326- 1.268- 1.587- 0.689
50J4F 1.645- 1.364- 1.484- 1.536- 1.245- 1.976- 0.870
50J5F 1.458- 1.247- 1.386- 1.405- 1.253- 1.758- 0.689

100J4F 1.503- 1.284- 1.358- 1.412- 1.063- 1.795- 0.754
100J5F 1.458- 1.186- 1.372- 1.407- 1.093- 1.658- 0.693
100J6F 1.648- 1.264- 1.375- 1.462- 1.104- 2.034- 0.859
100J7F 1.589- 1.134- 1.462- 1.385- 1.087- 2.039- 0.826
150J5F 1.385- 1.103- 1.273- 1.337- 0.936- 1.847- 0.582
150J6F 1.573- 1.161- 1.231- 1.315- 0.885- 1.739- 0.483
150J7F 1.448- 1.128- 1.375- 1.426- 0.864- 1.758- 0.539
200J6F 1.257- 0.974- 1.184- 1.224- 0.792- 1.663- 0.448
200J7F 1.570- 1.237- 1.446- 1.428- 1.038- 2.004- 0.836

-/=/+ 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0

Table 11. Rankings from Friedman rank sum test for comparison algorithms (α = 0.05).

MOEAs
HV GD

Rank p-Value Rank p-Value

NSGA-II 5.75

7.65× 10−20

5.65

1.03× 10−20

MOEA/D 2.90 2.85
TS-NSGA-II 4.35 4.10

HSLFA 4.35 4.85
LRVMA 2.70 2.55

MOEA/D-DQN 6.95 7.00
DRAACCE 1.00 1.00

Figure 7. Approximate Pareto front found by each algorithm on 200J7F.

Processes 2025, 13, 95 19 of 23

5.5. Real-World Case

To better assess the effectiveness of DRAACCE, the comparison algorithms are tested
using a real-world case [34]. The detailed information of the real-world case can be found
in the Appendix A. The algorithms discussed in Section 5.4 are compared with DRAACCE,
using the same settings as in the previous section. Table 12 presents the statistical results
for each algorithm. The best value is marked in bold. According to the results in Table 12,
DRAACCE significantly outperforms all the compared algorithms in terms of the HV and
GD metrics in the real-world case. The p-value < 0.05 suggests that DRAACCE outperforms
the compared algorithms.

Table 12. Statistical performance of two metrics for each comparison algorithm in real-world case
(α = 0.05).

MOEAs HV GD

NSGA-II 1.558 1.307
MOEA/D 1.462 1.486

TS-NSGA-II 1.569 1.432
HSLFA 1.404 1.483
LRVMA 1.457 1.526

MOEA/D-DQN 1.493 1.574
DRAACCE 1.763 1.135

p-value 3.82× 10−19 1.63× 10−20

6. Conclusions
This paper presents a deep reinforcement advantage Actor-Critic-based co-evolutionary

algorithm for the energy-efficient DHFJSP. First, a PCE using linear ranking selection was
proposed to solve the problem. Then, a new evolution strategy was adopted to enhance
convergence and diversity. Furthermore, a deep reinforcement learning algorithm AAC
with a dueling DQN was used to model the solution distribution and choose the most
suitable local search strategy. Finally, the performance of the DRAACCE algorithm in
DHFJSP was verified through numerical experiments conducted on 20 instances and a
real-world case.

For future work, the following aspects can be considered. First, incorporating an
end-to-end network for the DHFJS, which could enhance its generalization ability. Second,
extending the model to address the differential DHFJSP, which includes variations in the
number of machines, machine failures, or maintenance scenarios, could further improve
its robustness and applicability. Finally, researching on dynamic DHFJSP, which includes
factors commonly encountered in real-world environments, such as machine failures,
emergency order insertion, and maintenance scheduling.

Author Contributions: Conceptualization, H.X., J.T., J.Z. and L.H.; methodology, H.X., J.T. and C.Z.;
software, H.X., J.T. and J.Z.; validation, H.X., J.T. and L.H.; formal analysis, J.T. and C.Z.; writing—
original draft preparation, H.X. and J.T.; writing—review and editing, L.H., J.Z. and C.Z.; visualization,
H.X. and J.T.; supervision, L.H., J.Z. and C.Z.; project administration, H.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code in this article cannot be published due to privacy, and can be
obtained from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

Processes 2025, 13, 95 20 of 23

Appendix A
The real-world case describes the model stamping workshop provided by a large

equipment company’s factory in China. The material feeding system converts steel into
parts of different sizes for processing in the subsequent machining workshop. Batch
orders are considered a basic processing operation and there are three steps to process
a batch: cutting, clamping, and bevel cutting. However, due to business confidentiality,
the processing data for each stage are not provided, and each operation only includes a
single integer operation called blanking. In the real-world case, there are 55 jobs, each with
two characteristics: weight and difficulty coefficient. Additionally, in this scenario, there
are two factories, each with four worker teams. Each team operates one machine, and the
teams have different capabilities (tons of steel processed per hour weight). The processing
time for each job can be calculated using the formula: weight× coe f f icient× 1000/capacity.
Therefore, the processing time for each operation is different for each team. Additionally,
each team of workers can handle all the jobs. Our goal is to minimize the MCT and TEC in
this real-world case. Thus, the case is formulated as DHFJSP. The detailed information can
be found in Tables A1 and A2.

Table A1. Details of all the jobs in the real-world case.

Job Index 1 2 3 4 5

weight 0.668 0.491 22.666 0.493 8.306
difficulty 1 0.8 1 0.7 0.7

Job Index 6 7 8 9 10

weight 2.537 3.338 0.205 0.205 1.958
difficulty 0.7 0.8 1 1 1

Job Index 11 12 13 14 15

weight 10.855 10.961 41.317 2.018 3.802
difficulty 1 1 1 1 1

Job Index 16 17 18 19 20

weight 2.065 2.255 2.355 1.475 0.585
difficulty 1 1 1 1 1

Job Index 21 22 23 24 25

weight 0.162 5.009 3.733 0.981 18.799
difficulty 1 0.8 1 0.8 0.8

Job Index 26 27 28 29 30

weight 2.029 0.298 5 4 9.816
difficulty 1 1 1 1 1

Job Index 31 32 33 34 35

weight 0.426 1.363 0.543 4.51 4.798
difficulty 1 1 1 0.8 0.8

Job Index 36 37 38 39 40

weight 0.607 0.435 1 0.159 0.159
difficulty 0.8 0.8 0.8 1 1

Job Index 41 42 43 44 45

weight 0.267 0.371 10.559 0.348 0.311
difficulty 1 1 0.8 1 1

Processes 2025, 13, 95 21 of 23

Table A1. Cont.

Job Index 46 47 48 49 50

weight 10.649 0.348 7 4 2.122
difficulty 1 1 1 1 1

Job Index 51 52 53 54 55

weight 3.336 0.236 2.786 0.893 0.286
difficulty 1 1 1 1 1

Table A2. Details of all the groups in the real-world case.

Group Index Capacities/KG/h Worker Number Work Time/Day

G1 in factory1 74.6 KG/h 13

8 h/d

G2 in factory1 76.1 KG/h 16
G3 in factory1 80.4 KG/h 14
G4 in factory1 80.9 KG/h 17
G1 in factory2 80 KG/h 14
G2 in factory2 78 KG/h 15
G3 in factory2 79 KG/h 14
G4 in factory2 78 KG/h 15

References
1. Zhang, G.; Wang, L.; Xing, K. Dual-Space Co-Evolutionary Memetic Algorithm for Scheduling Hybrid Differentiation Flowshop

with Limited Buffer Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6822–6836. [CrossRef]
2. Rifai, A.P.; Nguyen, H.T.; Dawal, S.Z.M. Multi-objective adaptive large neighborhood search for distributed reentrant permutation

flow shop scheduling. Appl. Soft Comput. 2016, 40, 42–57. [CrossRef]
3. Shih-Wei Lin, K.C.Y.; Huang, C.Y. Minimising makespan in distributed permutation flowshops using a modified iterated greedy

algorithm. Int. J. Prod. Res. 2013, 51, 5029–5038. [CrossRef]
4. Pan, Z.; Lei, D.; Wang, L. A Bi-Population Evolutionary Algorithm with Feedback for Energy-Efficient Fuzzy Flexible Job Shop

Scheduling. IEEE Trans. Syst. Man Cybern.-Syst. 2022, 52, 5295–5307. [CrossRef]
5. Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for

solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [CrossRef]
6. Xu, W.; Hu, Y.; Luo, W.; Wang, L.; Wu, R. A multi-objective scheduling method for distributed and flexible job shop based on

hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission. Comput. Ind. Eng. 2021, 157,
107318. [CrossRef]

7. Chang, H.C.; Liu, T.K. Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms.
J. Intell. Manuf. 2017, 28, 1973–1986. [CrossRef]

8. De Giovanni, L.; Pezzella, F. An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem. Eur.
J. Oper. Res. 2010, 200, 395–408. [CrossRef]

9. Marzouki, B.; Driss, O.B.; Ghedira, K. Solving Distributed and Flexible Job shop Scheduling Problem using a Chemical Reaction
Optimization metaheuristic. Procedia Comput. Sci. 2018, 126, 1424–1433. [CrossRef]

10. Wu, X.; Liu, X. An Improved Differential Evolution Algorithm for Solving a Distributed Flexible Job Shop Scheduling Problem.
In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (Case), Munich, Germany,
20–24 August 2018.

11. Du, Y.; Li, J.q.; Luo, C.; Meng, L.l. A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with
crane transportations. Swarm Evol. Comput. 2021, 62, 100861. [CrossRef]

12. Lu, C.; Gao, L.; Yi, J.; Li, X. Energy-Efficient Scheduling of Distributed Flow Shop with Heterogeneous Factories: A Real-World
Case From Automobile Industry in China. IEEE Trans. Ind. Inform. 2021, 17, 6687–6696. [CrossRef]

13. Peng, K.; Deng, X.; Zhang, C.; Pan, Q.K.; Ren, L.; Pang, X. An improved imperialist competitive algorithm for hybrid flowshop
rescheduling in steelmaking-refining-continuous casting process. Meas. Control 2020, 53, 1920–1928. [CrossRef]

14. Li, R.; Gong, W.; Lu, C. Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy
processing time. Comput. Ind. Eng. 2022, 168,108099. [CrossRef]

http://doi.org/10.1109/TSMC.2021.3102658
http://dx.doi.org/10.1016/j.asoc.2015.11.034
http://dx.doi.org/10.1080/00207543.2013.790571
http://dx.doi.org/10.1109/TSMC.2021.3120702
http://dx.doi.org/10.1016/j.cie.2020.106347
http://dx.doi.org/10.1016/j.cie.2021.107318
http://dx.doi.org/10.1007/s10845-015-1084-y
http://dx.doi.org/10.1016/j.ejor.2009.01.008
http://dx.doi.org/10.1016/j.procs.2018.08.114
http://dx.doi.org/10.1016/j.swevo.2021.100861
http://dx.doi.org/10.1109/TII.2020.3043734
http://dx.doi.org/10.1177/0020294020960187
http://dx.doi.org/10.1016/j.cie.2022.108099

Processes 2025, 13, 95 22 of 23

15. Ma, X.; Li, X.; Zhang, Q.; Tang, K.; Liang, Z.; Xie, W.; Zhu, Z. A Survey on Cooperative Co-Evolutionary Algorithms. IEEE Trans.
Evol. Comput. 2019, 23, 421–441. [CrossRef]

16. Miguel Antonio, L.; Coello Coello, C.A. Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art.
IEEE Trans. Evol. Comput. 2018, 22, 851–865. [CrossRef]

17. Wang, X.; Zhang, K.; Wang, J.; Jin, Y. An Enhanced Competitive Swarm Optimizer with Strongly Convex Sparse Operator for
Large-Scale Multiobjective Optimization. IEEE Trans. Evol. Comput. 2022, 26, 859–871. [CrossRef]

18. Tian, Y.; Zheng, X.; Zhang, X.; Jin, Y. Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer.
IEEE Trans. Cybern. 2020, 50, 3696–3708. [CrossRef] [PubMed]

19. Ong, Y.S.; Lim, M.H.; Chen, X. Memetic Computation-Past, Present & Future. IEEE Comput. Intell. Mag. 2010, 5, 24–31. [CrossRef]
20. Wang, J.; Ren, W.; Zhang, Z.; Huang, H.; Zhou, Y. A Hybrid Multiobjective Memetic Algorithm for Multiobjective Periodic

Vehicle Routing Problem with Time Windows. IEEE Trans. Syst. Man Cybern.-Syst. 2020, 50, 4732–4745. [CrossRef]
21. Chen, R.; Yang, B.; Li, S.; Wang, S. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop

scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]
22. Shao, Z.; Pi, D.; Shao, W. Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in

distributed environment. Expert Syst. Appl. 2020, 145, 113147. [CrossRef]
23. Zhao, F.; Di, S.; Wang, L. A Hyperheuristic with Q-Learning for the Multiobjective Energy-Efficient Distributed Blocking Flow

Shop Scheduling Problem. IEEE Trans. Cybern. 2023, 53, 3337–3350. [CrossRef]
24. Zheng, J.; Kurt, M.N.; Wang, X. Stochastic Integrated ActorCritic for Deep Reinforcement Learning. IEEE Trans. Neural Netw.

Learn. Syst. 2024, 35, 6654–6666. [CrossRef]
25. Ying, K.C.; Lin, S.W. Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks.

Expert Syst. Appl. 2018, 92, 132–141. [CrossRef]
26. Shao, W.; Shao, Z.; Pi, D. Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop

scheduling problem. Knowl.-Based Syst. 2020, 194, 105527. [CrossRef]
27. Zhang, Z.Q.; Wu, F.C.; Qian, B.; Hu, R.; Wang, L.; Jin, H.P. A Q-learning-based hyper-heuristic evolutionary algorithm for the

distributed flexible job-shop scheduling problem with crane transportation. Expert Syst. Appl. 2023, 234, 121050. [CrossRef]
28. Shao, W.; Shao, Z.; Pi, D. An Ant Colony Optimization Behavior-Based MOEA/D for Distributed Heterogeneous Hybrid Flow

Shop Scheduling Problem Under Nonidentical Time-of-Use Electricity Tariffs. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3379–3394.
[CrossRef]

29. Li, Y.; Li, X.; Gao, L.; Zhang, B.; Pan, Q.K.; Tasgetiren, M.F.; Meng, L. A discrete artificial bee colony algorithm for distributed
hybrid flowshop scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 2021, 59, 3880–3899. [CrossRef]

30. Wang, J.J.; Wang, L. A Bi-Population Cooperative Memetic Algorithm for Distributed Hybrid Flow-Shop Scheduling. IEEE Trans.
Emerg. Top. Comput. Intell. 2021, 5, 947–961. [CrossRef]

31. Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Zhang, C. Novel MILP and CP models for distributed hybrid flowshop scheduling
problem with sequence-dependent setup times. Swarm Evol. Comput. 2022, 71, 101058. [CrossRef]

32. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

33. Qin, Q.; Cheng, S.; Zhang, Q.; Li, L.; Shi, Y. Biomimicry of parasitic behavior in a coevolutionary particle swarm optimization
algorithm for global optimization. Appl. Soft Comput. 2015, 32, 224–240. [CrossRef]

34. Li, R.; Gong, W.; Wang, L.; Lu, C.; Dong, C. Co-Evolution with Deep Reinforcement Learning for Energy-Aware Distributed
Heterogeneous Flexible Job Shop Scheduling. IEEE Trans. Syst. Man Cybern.-Syst. 2024, 54, 201–211. [CrossRef]

35. Zhang, C.; Li, P.; Guan, Z.; Rao, Y. A tabu search algorithm with a new neighborhood structure for the job shop scheduling
problem. Comput. Oper. Res. 2007, 34, 3229–3242. [CrossRef]

36. Meng, L.; Ren, Y.; Zhang, B.; Li, J.Q.; Sang, H.; Zhang, C. MILP Modeling and Optimization of Energy- Efficient Distributed
Flexible Job Shop Scheduling Problem. IEEE Access 2020, 8, 191191–191203. [CrossRef]

37. Tian, Y.; Li, X.; Ma, H.; Zhang, X.; Tan, K.C.; Jin, Y. Deep Reinforcement Learning Based Adaptive Operator Selection for
Evolutionary Multi-Objective Optimization. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 1051–1064. [CrossRef]

38. Li, R.; Gong, W.; Wang, L.; Lu, C.; Zhuang, X. Surprisingly Popular-Based Adaptive Memetic Algorithm for Energy-Efficient
Distributed Flexible Job Shop Scheduling. IEEE Trans. Cybern. 2023, 53, 8013–8023. [CrossRef]

39. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

40. Ming, F.; Gong, W.; Wang, L. A Two-Stage Evolutionary Algorithm with Balanced Convergence and Diversity for Many-Objective
Optimization. IEEE Trans. Syst. Man Cybern.-Syst. 2022, 52, 6222–6234. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2018.2868770
http://dx.doi.org/10.1109/TEVC.2017.2767023
http://dx.doi.org/10.1109/TEVC.2021.3111209
http://dx.doi.org/10.1109/TCYB.2019.2906383
http://www.ncbi.nlm.nih.gov/pubmed/30951490
http://dx.doi.org/10.1109/MCI.2010.936309
http://dx.doi.org/10.1109/TSMC.2018.2861879
http://dx.doi.org/10.1016/j.cie.2020.106778
http://dx.doi.org/10.1016/j.eswa.2019.113147
http://dx.doi.org/10.1109/TCYB.2022.3192112
http://dx.doi.org/10.1109/TNNLS.2022.3212273
http://dx.doi.org/10.1016/j.eswa.2017.09.032
http://dx.doi.org/10.1016/j.knosys.2020.105527
http://dx.doi.org/10.1016/j.eswa.2023.121050
http://dx.doi.org/10.1109/TASE.2021.3119353
http://dx.doi.org/10.1080/00207543.2020.1753897
http://dx.doi.org/10.1109/TETCI.2020.3022372
http://dx.doi.org/10.1016/j.swevo.2022.101058
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.asoc.2015.03.050
http://dx.doi.org/10.1109/TSMC.2023.3305541
http://dx.doi.org/10.1016/j.cor.2005.12.002
http://dx.doi.org/10.1109/ACCESS.2020.3032548
http://dx.doi.org/10.1109/TETCI.2022.3146882
http://dx.doi.org/10.1109/TCYB.2023.3280175
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TSMC.2022.3143657

Processes 2025, 13, 95 23 of 23

41. Li, R.; Gong, W.; Lu, C.; Wang, L. A Learning-Based Memetic Algorithm for Energy-Efficient Flexible Job-Shop Scheduling with
Type-2 Fuzzy Processing Time. IEEE Trans. Evol. Comput. 2023, 27, 610–620. [CrossRef]

42. Wang, G.; Li, X.; Gao, L.; Li, P. Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a
modified MOEA/D. Swarm Evol. Comput. 2021, 62, 100858. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TEVC.2022.3175832
http://dx.doi.org/10.1016/j.swevo.2021.100858

	Introduction
	Related Work
	Problem Description and MILP Model
	Problem Description
	MILP Model

	Proposed Algorithm: DRAACCE
	Framework of DRAACCE
	Parasitic Behavior-Based Co-Evolutionary Framework
	Encoding Scheme
	Initialization Population
	Evolution and Environmental Selection
	Local Search
	Advantage Actor-Critic-Based Strategy Selection Model
	Energy-Saving Strategy

	Experimental Evaluation
	Instances and Metrics
	Parameters Calibration
	Ablation Experiment
	Comparison Experiment
	Real-World Case

	Conclusions
	Appendix A
	References

