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Abstract: This study proposes a framework for anomaly detection in industrial machines
with a focus on robust multiclass classification using acoustic data. Many state-of-the-art
methods only have binary classification capabilities for each machine, and suffer from poor
scalability and noise robustness. In this context, we propose the use of Smoothed Pseudo
Wigner–Ville Distribution-based Mel-Frequency Cepstral Coefficients (SPWVD-MFCCs) in
the framework which are specifically tailored for noisy environments. SPWVD-MFCCs,
with better time–frequency resolution and perceptual audio features, improve the accuracy
of detecting anomalies in a more generalized way under variable signal-to-noise ratio
(SNR) conditions. This framework integrates a CNN-LSTM model that efficiently and
accurately analyzes spectral and temporal information separately for anomaly detection.
Meanwhile, the dimensionality reduction strategy ensures good computational efficiency
without losing critical information. On the MIMII dataset involving multiple machine types
and noise levels, it has shown robustness and scalability. Key findings include significant
improvements in classification accuracy and F1-scores, particularly in low-SNR scenarios,
showcasing its adaptability to real-world industrial environments. This study represents
the first application of SPWVD-MFCCs in industrial diagnostics and provides a noise-
robust and scalable method for the detection of anomalies and fault classification, which is
bound to improve operational safety and efficiency within complex industrial scenarios.

Keywords: industrial anomaly detection; SPWVD-MFCC; CNN-LSTM; multiclass classification;
noise robustness; industrial diagnostics using sound

1. Introduction
Anomaly detection in industrial machinery is critical for ensuring operational relia-

bility, safety, and efficiency. Traditional binary classification methods have been widely
studied and deployed, effectively distinguishing normal and abnormal states of specific
machines [1–3].

Recent advances have introduced various innovative approaches to enhance acous-
tic anomaly detection. For instance, Müller et al. proposed using image classification
pretrained models (e.g., ResNet) for feature extraction in acoustic anomaly detection,
achieving notable improvements over traditional methods [4]. Hojjati et al. developed
a self-supervised framework that learns representations from unlabeled data through
audio-specific data augmentations [5]. Ota and Unoki proposed an anomaly detection
framework that integrates five timbral metrics and two short-term features tailored to
capture machine-specific sound dynamics [6]. Chinnasamy et al. introduced a lightweight
CNN–LSTM model for industrial fault diagnosis, optimized for Artificial Intelligence of
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Things (AIoT) platforms [7]. Chandrakala et al. introduced a CLSTM-AE model leveraging
Spectro-temporal fusion with Mel-Spectro-tempograms to improve anomaly detection [8].

However, despite these advancements, most methods remain constrained by their
focus on a single machine type or fault mode, necessitating a dedicated classifier for each
scenario. This approach inherently increases system complexity, maintenance costs, and
limits scalability in addressing diverse industrial use cases.

To overcome these challenges, some studies have begun exploring multiclass classi-
fication frameworks for anomaly detection in industrial machinery. Multiclass systems
not only distinguish between normal and abnormal states but also classify machine types
and their operational states within a unified framework. Several recent studies [9–11] pro-
posed multiclass models leveraging spectrogram-based (including Mel-spectrogram and
MFCC) feature extraction techniques to represent acoustic signals for fault classification.
However, these methods are still heavily reliant on a time–frequency analysis technique,
namely Short-Time Fourier Transform (STFT). While these features have proven effective
for capturing auditory patterns, they exhibit limited robustness to noise [12] which is a
critical limitation in noisy industrial environments where high-intensity background noise
often obscures fault signatures.

In this study, we introduce Smoothed Pseudo Wigner–Ville Distribution-based Mel-
Frequency Cepstral Coefficients (SPWVD-MFCCs) into industrial acoustic anomaly de-
tection for the first time. Existing methods, such as STFT-based Mel-Frequency Cepstral
Coefficients (MFCCs) and Mel-spectrogram, often suffer from poor noise robustness and
limited time–frequency resolution, making them less effective in complex industrial envi-
ronments. Originally proposed by Peng et al. [12] for robust urban sound classification,
the SPWVD-MFCC provides a higher time–frequency resolution than existing methods,
enabling a more precise representation of non-stationary signals. This property is particu-
larly critical in industrial environments, where background noise is often unpredictable
and high intensity. The enhanced spectral resolution of SPWVD allows for better feature
discrimination, while the MFCC preserves perceptually meaningful auditory features,
ensuring accurate anomaly detection even under low signal-to-noise ratio (SNR) conditions.
By leveraging these advantages, this proposed anomaly detection framework significantly
improves classification performance and generalizability in real-world industrial settings.
Table 1 compares the commonly used features with SPWVD-MFCC in multiple key fields.

Table 1. Comparison of feature extraction methods.

Feature
Extraction
Method

Time–
Frequency
Resolution

Noise
Robustness

Computational
Complexity

Applicable
Scenarios

STFT-MFCC Low Low Low Low-noise
environments

Mel-
Spectrogram Moderate Low Low Low-noise

environments

SPWVD-MFCC High High High Complex-noise
environments

This study represents the first application of SPWVD-MFCCs in industrial audio
anomaly detection, specifically addressing multiclass classification challenges. Its contribu-
tions are summarized as follows:

1. Innovative Use of SPWVD-MFCCs for Anomaly Detection: This study introduces
the SPWVD-MFCC as a feature extraction method for industrial fault detection,



Processes 2025, 13, 544 3 of 18

leveraging its high-resolution time–frequency characteristics to effectively represent
non-stationary signals.

2. Development of a Multiclass Classification Framework: Unlike most previous studies
focusing solely on binary classification, we present a scalable multiclass system capa-
ble of identifying both machine types and operational states. This approach addresses
real-world industrial challenges comprehensively, simplifying the deployment and
management of anomaly detection systems.

3. Robustness in Noisy Environments: The combination of SPWVD’s high-resolution
analysis and the MFCC’s perceptually meaningful auditory features ensures reliable
performance under varying SNR conditions. This robustness is critical for ensuring
consistent and accurate anomaly detection in noisy industrial settings.

The rest of this paper is organized as follows. Section 2 introduces the proposed
SPWVD-MFCC feature extraction method, detailing its mathematical formulation and
advantages over traditional approaches. Section 3 presents the CNN-LSTM-based multi-
class classification framework, explaining the architecture and preprocessing techniques.
Section 4 describes the experimental setup, including dataset details, data preprocessing,
and model configurations. Section 5 discusses the experimental results, comparing the
proposed framework with baseline methods and evaluating its noise robustness. Finally,
Section 6 concludes the paper, summarizing key findings and potential directions for
future research.

2. SPWVD-MFCC in Anomaly Detection
The performance of classification models in industrial anomaly detection heavily

depends on the extraction of meaningful spectral features from sound signals. Spectral fea-
tures encapsulate the frequency and temporal characteristics of the audio signals, enabling
classifiers to distinguish between machine types and detect anomalies effectively.

This study is the first to extend the application of the recently introduced SPWVD-
MFCC [12]—originally designed for robust urban sound classification in noisy environments—to
the domain of industrial machinery fault detection. The SPWVD-MFCC has been demon-
strated to yield superior sound signal representations under complex conditions compared
to the widely used MFCC [12]. This method synergistically integrates SPWVD with the
MFCC through a series of transformations. Specifically, the SPWVD is first processed
through a Mel filter bank to generate the Mel SPWVD. Subsequently, a logarithmic transfor-
mation is applied to produce the log-Mel SPWVD. Finally, the Discrete Cosine Transform
(DCT) is performed to derive the SPWVD-MFCCs. The detailed mathematical formulation
is as follows:

SPWVDx(t, v) =
∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(s − t)x

(
t +

τ

2

)
x∗
(

t − τ

2

)
ds e−j2πvτdτ, (1)

MelSPWVD(t, v) = ∑V−1
v=0 SPWVDx(t, v)Hm(v), (2)

LogMelSPWVD(t, v) = ln(MelSPWVD(t, v)), (3)

MFCCSPWVD(t, v) = ∑M−1
m=0 LogMelSPWVD(t, v)cos

(
πn(m + 0.5)

M

)
, (4)

where h(·) and g(·) are Hamming windows applied in frequency and time domains,
respectively, Hm(v) is a Mel filter bank that maps the v-th frequency bin to the m-th Mel
frequency, V is the total number of frequency bins, M is the total number of Mel filter banks,
t is the window index, and n is the SPWVD-MFCC index.

The SPWVD-MFCC combines the advantages of SPWVD’s high time–frequency res-
olution with the MFCC’s ability to extract perceptually meaningful features, making it



Processes 2025, 13, 544 4 of 18

crucial for effectively representing sound signals. The enhanced time–frequency resolution
enables the SPWVD-MFCC to precisely identify subtle and transient anomalies within non-
stationary audio signals, which often indicate potential machinery faults. By replacing the
STFT used in traditional MFCCs with SPWVD, this method overcomes the fixed resolution
limitations of STFT. This adaptability allows SPWVD-MFCCs to capture the complex and
dynamic characteristics of industrial machinery sounds, ensuring that even the smallest
deviations or irregularities in sound patterns, which are the critical indicators of anomalies,
are accurately represented and detected.

3. The Proposed Framework for Multiclass Classification
This study proposes a novel framework for multiclass industrial machine anomaly

detection using sound data. The framework utilizes a CNN-LSTM model combined with
SPWVD-MFCC features to efficiently detect anomalies across various machine types, elim-
inating the need to design and train separate models for each machine. Notably, the
framework is optimized for low-SNR environments, demonstrating robust noise resis-
tance suitable for complex industrial settings and significantly enhancing its practical
deployment value.

Figure 1 illustrates the framework’s workflow. The input consists of 10 s audio
recordings with an 8 kHz sampling rate. These recordings are processed through a feature
extraction module to generate SPWVD-MFCC features. The features are calculated with
a hop length of 32, resulting in a feature matrix with a shape of (20, 2500), representing
20 coefficients at each timestep with 2500 timesteps for each audio segment. Next, the data
undergo dimensionality reduction along the time axis using a sliding window approach.
Averaging within each window reduces the feature matrix’s dimensionality. By adjusting
the window length and hop size, various reduced-dimensional representations can be
obtained. In the proposed workflow, a window length of 200 and a hop size of 100
were used, reducing the timesteps from 2500 to 24. This method effectively reduces
feature dimensions while retaining critical frequency and temporal information, eliminating
redundant data and providing a streamlined input for the classifier.

The reduced SPWVD-MFCC features, now with a shape of (20, 24), are fed into the
CNN-LSTM model for final classification. The CNN-LSTM architecture combines the
strengths of convolutional and recurrent networks to extract both spatial and temporal
information efficiently. This idea has been utilized in many urban sound classification
systems, such as the one proposed in study [13]. Specifically, the CNN layers analyze
local spatial features within the frequency domain for each timestep, while the LSTM
layers capture long-term temporal dependencies using their gated mechanisms. This
combination is particularly well suited for tasks such as anomaly detection and machine
type classification based on temporal signal variations. The implemented CNN-LSTM
model is designed to accept inputs with the shape of (1, 20, 24), where the dimensions
represent the number of channels, coefficients, and timesteps, respectively. Table 2 details
the model architecture which includes the following components:

• Four CNN modules: Each module consists of a convolutional layer, batch normaliza-
tion, an activation function, and a dropout layer. The convolutional layers extract local
spatial features, batch normalization accelerates training and stabilizes the model, and
dropout prevents overfitting.

• Two LSTM layers: These layers model temporal dependencies across timesteps, cap-
turing sequential relationships. A dropout layer is added between the LSTM layers to
enhance generalization and reduce overfitting risk.

• A fully connected layer: This layer combines all extracted features and generates the
final predictions.
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Figure 1. Overview of the proposed workflow.

Table 2. Details of the CNN-LSTM.

Layer Hyperparameters Output Shape

Input (Feature segment) - (1, 20, 24)

Conv-1
Output channel = 64; Kernel size = (3, 1); Stride = (2, 1);

Padding = (1, 0); Norm = Batch Norm;
Activation = Leaky ReLU; Dropout = 30%

(64, 10, 24)

Conv-2
Output channel = 128; Kernel size = (3, 1); Stride = (2, 1);

Padding = (1, 0); Norm = Batch Norm;
Activation = Leaky ReLU; Dropout = 30%

(128, 5, 24)

Conv-3
Output channel = 256; Kernel size = (3, 1); Stride = (2, 1);

Padding = (1, 0); Norm = Batch Norm;
Activation = Leaky ReLU; Dropout = 30%

(256, 3, 24)

Conv-4
Output channel = 512; Kernel size = (3, 1); Stride = 1;

Padding = 0; Norm = Batch Norm;
Activation = Leaky ReLU; Dropout = 30%

(512, 1, 24)

Reshape,
Swap axes - (24, 512)

LSTM-1 Hidden size = 128 (24, 128)

Dropout Dropout = 30% (24, 128)

LSTM-2 Hidden size = 128 (24, 128)

Data select - (128)

BN1D Feature number = 128 (128)

FC Output feature = 8;
Activation = Softmax (8)

Output - (8)

This architecture effectively integrates spatial features in the frequency domain with
long-term temporal dependencies, enabling accurate classification of machine types and



Processes 2025, 13, 544 6 of 18

anomaly detection. Moreover, the flexible sliding window-based dimensionality reduction
ensures adaptability to varying input feature resolutions, maintaining robust performance
across different scenarios. Unlike traditional binary classification approaches that require
separate models for different machine types, the proposed framework enables a unified
anomaly detection model that simultaneously classifies multiple machine types and oper-
ational states. This significantly simplifies system deployment and reduces maintenance
costs. Furthermore, by jointly learning anomaly patterns across diverse machines, the
model enhances generalization to unseen data, making it well suited for complex industrial
environments. Since the framework leverages SPWVD-MFCCs for feature extraction and
a CNN-LSTM for classification, adding new machine types or fault modes requires only
minor model fine-tuning rather than complete retraining, thereby improving scalability
and long-term applicability. This approach simplifies the development of multimachine
anomaly detection systems and significantly improves their feasibility and efficiency for
real-world industrial applications.

4. Experiments
The tests conducted in this study use audio samples from the Malfunctioning Indus-

trial Machine Investigation and Inspection (MIMII) dataset [14]. The data preprocessing
steps, including dataset split, oversampling for data balancing, and feature windowing for
classification, are applied on the MIMII dataset. This section introduces detailed informa-
tion for experimental setup.

4.1. MIMII Dataset

The MIMII dataset comprises four types of machines sampled at 16 kHz, with each
type containing four individual machines labeled as ID 00, 02, 04, and 06. To simulate real-
world factory environments, factory noise was added to the dataset, resulting in three levels
of SNR: 6 dB, 0 dB, and −6 dB. A lower SNR indicates that higher-power noise has been
added, making the classification task increasingly challenging.

Table 3 provides a breakdown of the number of normal and abnormal audio samples
for each machine, with each audio sample having a duration of 10 s. The total number of
samples across different machine types reveals a significant imbalance in the dataset, par-
ticularly between normal and abnormal samples. The pump exhibits the most pronounced
imbalance, with the number of normal samples being eight times that of abnormal samples.
Similarly, the valve data is also highly unbalanced, with the ratio of normal to abnormal
samples nearing 8:1. In addition to the imbalance within individual machine types, there
is also a discrepancy in the total number of samples across machine types. The fan has
the highest number of samples, totaling 5550, while the other machine types each have
approximately 4100 samples. This uneven distribution further underscores the challenges
associated with training models on this dataset.

Table 3. MIMII dataset.

Machine Type Machine ID Number of Normal
Samples

Number of
Abnormal Samples

Fan

00 1011 407

02 1016 359

04 1033 348

06 1015 361

Total 4075 1475
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Table 3. Cont.

Machine Type Machine ID Number of Normal
Samples

Number of
Abnormal Samples

Pump

00 1006 143

02 1005 111

04 702 100

06 1036 102

Total 3749 456

Slider

00 1068 356

02 1068 267

04 534 178

06 534 89

Total 3204 890

Valve

00 991 119

02 708 120

04 1000 120

06 992 120

Total 3691 479

4.2. Data Preparation

In this study, we undertook a series of data preparation steps, as illustrated in Figure 2.
First, the original audio data were downsampled from 16 kHz to 8 kHz to reduce computa-
tional costs. Then, we addressed the issue of class imbalance. Since each machine type had
fewer abnormal samples than normal samples, we randomly selected an equal number
of normal samples to match the abnormal ones for each machine, then merged them to
form a new dataset. This ensured that each machine had the same number of normal and
abnormal samples, effectively mitigating class bias. Consequently, we obtained four types
of machines, each with normal and abnormal states, resulting in a total of eight categories
of data.

Next, we adopted a feature extraction approach based on SPWVD-MFCCs. Specifically,
for the 8 kHz audio data, we employed a hop length of 32 samples and 512 frequency bins
to construct the SPWVD-MFCC features with 20 coefficients at each timestep. Each audio
sample was 10 s long, leading to a SPWVD-MFCC feature matrix of size (20, 2500), where
20 represents the number of feature coefficients and 2500 denotes the number of timesteps.
To simplify the input for the subsequent classification model, we used only static features,
excluding the delta and delta–delta coefficients.

To evaluate the model’s performance in both familiar and noisier environments,
two types of experiments were conducted. For the first type, we trained and tested the
model on datasets with the same SNR, aiming to assess classification accuracy under
normal conditions. Here, the dataset for a specific SNR was split into training, validation,
and testing sets at a ratio of 6:2:2. For the second type, we trained on the high-SNR dataset
and tested on the low-SNR dataset to examine the model’s noise robustness. The high-SNR
dataset was partitioned at a ratio of 7.5:2.5 for training and validation, while the entire
low-SNR dataset was used for testing. Good performance under these circumstances would
demonstrate strong anti-noise capability and greater potential for real-world applications.



Processes 2025, 13, 544 8 of 18Processes 2025, 13, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 2. Workflow for data preparation. 

Next, we adopted a feature extraction approach based on SPWVD-MFCCs. 
Specifically, for the 8 kHz audio data, we employed a hop length of 32 samples and 512 
frequency bins to construct the SPWVD-MFCC features with 20 coefficients at each 
timestep. Each audio sample was 10 s long, leading to a SPWVD-MFCC feature matrix of 
size (20, 2500), where 20 represents the number of feature coefficients and 2500 denotes 
the number of timesteps. To simplify the input for the subsequent classification model, 
we used only static features, excluding the delta and delta–delta coefficients. 

To evaluate the model’s performance in both familiar and noisier environments, two 
types of experiments were conducted. For the first type, we trained and tested the model 
on datasets with the same SNR, aiming to assess classification accuracy under normal 
conditions. Here, the dataset for a specific SNR was split into training, validation, and 
testing sets at a ratio of 6:2:2. For the second type, we trained on the high-SNR dataset and 
tested on the low-SNR dataset to examine the model’s noise robustness. The high-SNR 
dataset was partitioned at a ratio of 7.5:2.5 for training and validation, while the entire 
low-SNR dataset was used for testing. Good performance under these circumstances 
would demonstrate strong anti-noise capability and greater potential for real-world 
applications. 

Then, we applied a sliding window approach to aggregate data along the time axis, 
reducing the number of timesteps to achieve dimensionality reduction and sequence 
length control. In the proposed framework, the window size and hop length were set to 
200 and 100, respectively. By averaging data within each window along the time axis, the 
timesteps were reduced from 2500 to 24. Additionally, we compared this configuration 
with other window and hop combinations, including (100, 50), (500, 250), (1000, 500), 

Figure 2. Workflow for data preparation.

Then, we applied a sliding window approach to aggregate data along the time axis,
reducing the number of timesteps to achieve dimensionality reduction and sequence length
control. In the proposed framework, the window size and hop length were set to 200 and
100, respectively. By averaging data within each window along the time axis, the timesteps
were reduced from 2500 to 24. Additionally, we compared this configuration with other
window and hop combinations, including (100, 50), (500, 250), (1000, 500), (1500, 1000), and
a single window length of 2500. These configurations reduced the timesteps to 48, 9, 4,
2, and 1, respectively. It is important to note that having only 1 or 2 timesteps limits the
effectiveness of LSTM models for processing temporal sequences. As such, these reduced
representations were not used for testing the CNN-LSTM model but instead were evaluated
with alternative classification models, whose details are discussed in the following section.

As a comparison for averaging within windows, we also employed Principal Compo-
nent Analysis (PCA) for dimensionality reduction. A separate PCA model was built for
each coefficient, extracting one principal component per window. We selected PCA as a
comparison method primarily due to its widespread application and strong theoretical foun-
dation in high-dimensional data dimensionality reduction. PCA, an unsupervised learning
technique, effectively captures the directions of maximum variance in the data, providing
an optimal linear representation. This comparison helps us evaluate the performance differ-
ences between time-axis averaging and PCA across various classification models, offering
valuable insights for selecting the most suitable dimensionality reduction approach.

Although balancing the number of normal and abnormal samples within each machine
type partially addressed class imbalance, significant differences remained in the total data
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volume across machine types. For instance, the Fan category contained substantially
more data than other types. To further mitigate class imbalance and enhance the model’s
performance, we applied the Synthetic Minority Oversampling Technique (SMOTE) to the
training set. This method ensured that all classes were matched to the largest class in terms
of data volume, which not only improved the model’s ability to learn from minority class
samples but also enhanced the robustness of the overall classifier.

Finally, the standardization step using Z-Score transformation further improved the
model’s training and prediction performance. This comprehensive sequence of data prepa-
ration and preprocessing steps significantly enhanced the consistency and representa-
tiveness of the extracted features, laying a solid foundation for effective model training
and evaluation.

4.3. Models for Comparison

Given this study’s focus on multiclass classification, we only considered the models
based on supervised learning. Statistical models have been heavily used in the past
anomaly detection tasks. Among the statistical supervised learning algorithms, Support
Vector Machine (SVM) and Random Forest (RF) were selected for performance comparison
in this study:

• Support Vector Machine (SVM): The SVM is one of the fundamental machine learning
algorithms that has turned out to be effective in fault detection, classification, and
regression problems [15]. They work by finding the optimal hyperplane or the set of
hyperplanes which maximizes the margin between classes in the feature space. This
margin-based approach not only aids in attaining robust performance but also reduces
overfitting to a greater degree, especially on smaller or moderately sized datasets.
Though originally designated for binary classification, their work can be extended to
multiclass problems by means of strategies such as one-vs-all. A single binary classifier
would thereby be trained per class; thus, in general, the total number of classifiers
increases with the number of classes. In this approach, multiple fault types may be
detected within a single SVM framework but at the cost of a greater computational
overload as the number of classes increases.

• Random Forest (RF): The RF is a widely utilized supervised learning algorithm known
for its robustness and versatility in classification tasks, including multiclass classifica-
tion [16]. RF operates as an ensemble learning method by constructing a multitude of
decision trees during training and outputting the class that is the mode of the classes
of the individual trees. This ensemble approach effectively addresses the overfitting
problem commonly observed in decision trees, leading to improved generalization
performance. Each tree in the forest is built using a random subset of the training
data and a random selection of features, which introduces diversity among the trees.
This diversity enhances the algorithm’s ability to handle complex, non-linear decision
boundaries and reduces sensitivity to noise in the data. Compared to the SVM, RFs are
computationally less expensive in training multiclass models, as they do not require
one-vs-all strategies or kernel transformations. However, the size and complexity of
the model can increase with the number of trees, potentially impacting inference time.
Nevertheless, the trade-off often results in high accuracy and robustness, making RF a
popular choice for multiclass classification tasks.

Table 4 lists the hyperparameter values for the SVM and RF models used in this
study. These parameters replicate the configurations from previous research [10], which
achieved excellent results, providing a foundation to demonstrate the advantages of the
new features. To investigate the impact of timesteps on statistical models, each model
group in this study processes features from a single timestep (20-dimensional data). For
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instance, if the input consists of 24 timesteps, 24 separate model groups are trained, each
handling one timestep. The predicted probabilities from all groups are then averaged, and
the class with the highest probability is selected as the final prediction. By splitting the
data this way, the dimensionality burden on each individual model is reduced, thereby
simplifying model complexity. However, this approach requires training and evaluating
multiple model groups for each timestep, resulting in additional computational overhead.

Table 4. Hyperparameter values for selected machine learning algorithms.

Algorithm Hyperparameters Value

SVM

C 1

kernel rbf

gamma scale

RF
criterion Gini

n_estimators 100

4.4. Evaluation Metrics

In this study, we employ both accuracy and F1-score metrics to evaluate fault detection
approaches. Accuracy is a commonly used classification metric that measures the overall
rate of correct classifications across all samples. It is expressed as

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where the following applies:

• TP (True Positives) count the instances correctly classified as positive;
• TN (True Negatives) count the instances correctly classified as negative;
• FP (False Positives) count the instances that are actually negative but were incorrectly

classified as positive;
• FN (False Negatives) count the instances that are actually positive but were incorrectly

classified as negative.

Although accuracy is straightforward and widely used, it becomes less informative in
cases where the test set is imbalanced (i.e., the positive and negative classes are not roughly
equal in size). Under such circumstances, even a model that trivially predicts the majority
class can yield high accuracy yet fail to detect minority-class instances effectively. Therefore,
it is crucial to consider additional metrics that account for performance in both classes. To
address this limitation, we also evaluate our models using the F1-score, which provides a
single measure balancing Precision and Recall. These metrics are defined as follows:

• Precision indicates the proportion of positive predictions that are actually positive,
and it is defined by

Precision =
TP

TP + FP
. (6)

• Recall reflects the model’s ability to identify all actual positives, and it is defined by

Recall =
TP

TP + FN
. (7)

• F1-score is computed as the harmonic mean of Precision and Recall:

F1 = 2 × Precision×Recall
Precision+Recall

= 2×TP
2×TP+FP+FN .

(8)
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By incorporating both Precision and Recall into a single figure of merit, the F1-score
ensures that the model’s capability to identify positive instances (Recall) and its accuracy
in labeling them (Precision) are both accounted for. In imbalanced scenarios, the F1-score
offers a more robust depiction of the model’s predictive power compared to accuracy alone.

In summary, relying solely on accuracy can mask a model’s inability to identify critical
minority-class instances. By contrast, combining accuracy with the F1-score provides a
more comprehensive understanding of the model’s overall performance, ensuring that
both prevalent and rare classes are properly represented in the evaluation process.

5. Results and Discussion
In this section, experimental results are presented and analyzed using supervised

approaches for multiclass classification to detect not only abnormalities but also the types
of machines. Three experiments were conducted in this study to evaluate the model’s
performance in both familiar and noisier environments.

• Test the Feature Performance: We examine the performance of the new SPWVD-MFCC
features for anomaly detection in industrial machines using sound. For comparison,
we replicated the multiclass classification systems proposed by Gantert et al. [10],
which utilized the SVM and Light Gradient Boosting Machine (LGBM) to classify
multiple spectral features, including MFCC, Spectral Centroid, Spectral Bandwidth,
Spectral Roll-off, and Zero Crossing Rate.

• Test on Framework Performance: This experiment aims to validate the performance of
the proposed classification framework, which employs a CNN-LSTM model to classify
temporally aggregated SPWVD-MFCC features across 24 timesteps.

• Test on Framework Robustness: This experiment focuses on the robustness of the
proposed classification framework. Here, the model is trained on a higher-SNR dataset
and tested on a lower-SNR dataset, simulating real-world environments where noise
levels vary significantly.

These experiments collectively provide a comprehensive evaluation of the proposed
methods under different conditions, highlighting their effectiveness and adaptability in real-
world scenarios. The experiments were run on a lab workstation with Intel(R) Core(TM)
i7-11700 CPU @ 2.50 GHz, NVIDIA T400 GPU with 4 GB of memory, and 48 GB of RAM.

5.1. Performance of SPWVD-MFCCs in Anomaly Detection

We first explored the performance of the SPWVD-MFCC feature in industrial machine
anomaly detection. This experiment replicated the method described in study [10], includ-
ing both the features and classifiers (SVM and LGBM), to compare the results obtained by
using SPWVD-MFCC features with the SVM. The results are shown in Figure 3.

First, we compared the classification performance under conditions where training
and testing were conducted with the same SNR (Figure 3A–C, representing 6 dB, 0 dB, and
−6 dB, respectively). The results indicate that the SVM using SPWVD-MFCCs achieved a
comparable classification performance to the reproduced SVM method. Notably, there was
a slight improvement of approximately 1% in accuracy at 0 dB and F1-score at −6 dB. This
suggests that the SPWVD-MFCC has a comparable ability to express features for industrial
machine anomaly detection as traditional MFCC and other STFT-based spectral features
and even outperforms them in certain scenarios.

Then, to evaluate the noise robustness of the features, we trained the models on
high-SNR datasets (e.g., 6 dB or 0 dB) and tested them on low-SNR datasets (e.g., 0 dB or
−6 dB); therefore, analyzing the feature performance in complex environments. As shown
in Figure 3D–F:
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• When trained on the 6 dB dataset, SPWVD-MFCCs significantly outperformed the
reproduced method during testing at 0 dB and −6 dB (with a maximum improvement
of 5%, observed in the −6 dB test).

• When trained on the 0 dB dataset and tested on the −6 dB dataset, SPWVD-MFCCs
also demonstrated a superior F1-score and accuracy.
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Figure 3. Test the SPWVD-MFCC feature performance by comparing it with the duplicated systems.

Therefore, the experiment indicates that the SPWVD-MFCC not only exhibits a classifi-
cation performance comparable to traditional MFCCs and spectral features under consistent
SNR conditions but also demonstrates remarkable robustness in noisy environments, which
is critical in complex industrial settings. This highlights the SPWVD-MFCC as a highly
promising feature extraction method for industrial machine anomaly detection, paving the
way for improved anomaly detection in challenging noise conditions.

5.2. Performance of the Proposed Framework

In the second experiment, we validated the effectiveness of the suggested framework
using SPWVD-MFCCs for the multiclass industrial machine anomaly detection task. This
experiment explores various combinations in window length, temporal aggregation meth-
ods, and classifiers. The proposed framework uses a combination: window length of
500 samples with a step size of 250 samples, which yielded a new feature with the length
of 24; temporal aggregation method: mean; classifier: CNN-LSTM. In this experiment,
window lengths are chosen as 100, 500, 1000, 1500, and 2500, while the step size is half
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of the window length. This creates new feature sets with 48, 24, 9, 4, 2, and 1 timesteps,
respectively. Temporal aggregation methods considered in this experiment are mean and
PCA, while the classifiers include SVM, RF, and CNN-LSTM.

Figure 4 presents the results of this experiment. By comparing bar lengths in each
subfigure, it is easy to notice that the aggregated SPWVD-MFCC with 24 timesteps has
always outperformed the other configurations. This is in terms of either F1-score, accuracy,
or both. For CNN-LSTM, increasing or decreasing the number of timesteps resulted
in a performance drop. This might be because increasing timesteps means that more
sequential information has to be handled by the LSTM model, which may cause information
overload or inconsistent learning, thus affecting the effectiveness of training. On the other
hand, fewer timesteps may lead to an insufficiency of sequential information, preventing
the LSTM from effectively modeling long-term dependencies. Hence, SPWVD-MFCC
features with 24 timesteps would obtain the best balance between information retention
and temporal pattern learning, thus providing the optimum classification performance.
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Moreover, the SVM and RF tend to degrade in performance with an increased number
of timesteps. This may be because the information in each timestep becomes sparser as
the number of timesteps increases. Since each timestep is processed by an independent
model and the final classification is made through a voting mechanism, the reduced
feature information per model limits the accuracy of classification, hence lowering the
voting accuracy.

It can be observed from the comparison of the left and right subfigures in the same
row of Figure 4 that the results obtained using the mean and PCA methods are nearly
identical. It means that when the training and testing are performed on datasets of the
same SNR for a given window length and classifier, the choice of the temporal aggregation
method will not significantly influence performance. This could be because the SPWVD-
MFCC has already extracted features effectively, and the mean aggregation method can
smooth the data efficiently. Although PCA can reduce feature dimensions and remove some
redundant information, its additional effect seems limited. Therefore, in this experiment,
both methods are enough to retain useful information and do not affect the classification
performance significantly.

In summary, this experiment demonstrates that the proposed framework using SPWVD-
MFCCs, with a window length of 200 samples, a hop length of 100 samples, and CNN-LSTM
as the classifier, provides effective performance for multiclass industrial machine anomaly
detection tasks, regardless of using mean or PCA in the temporal aggregation.

5.3. Robustness of the Proposed Framework

The final experiment investigates the proposed framework’s robustness to noise.
Unlike the previous experiment, in which training and testing were consistently made on
datasets of the same SNR, this experiment trained models using high-SNR datasets (e.g.,
6 dB or 0 dB) and tested them by using low-SNR datasets (e.g., 0 dB or −6 dB). This would
ensure that the classification performance of the framework holds well for noisier and more
complex environments. As in the previous experiment, this work also examined multiple
combinations of components for their performance in low-SNR conditions.

The results, shown in Figure 5, highlight several key findings. First, the proposed
framework, the CNN-LSTM model with 24 temporal steps of SPWVD-MFCC features
aggregated by the mean method, consistently achieved the highest performance, showing
excellent robustness within a noisy environment. Furthermore, it is noted that for the
CNN-LSTM model, the performance was considerably lower when using PCA aggregation
compared to when the aggregation is carried out by the mean method. This is because the
mean method effectively suppresses noise by averaging out fluctuations within each win-
dow, resulting in smoother and more stable input features that capture global trends more
effectively. In contrast, although PCA reduces dimensionality, it might inadvertently dis-
card critical temporal correlations and local details that adversely impact the performance
of CNN-LSTM.

On the other hand, for the SVM and RF models, their performances are not sensitive
to the choice of temporal aggregation methods. This stability could be explained by the fact
that those models rely on the timestep voting strategy, which renders them less sensitive
to variations in temporal feature aggregation. Contrary to the results of the preceding
experiment, higher numbers of time steps did not negatively influence the classification
result. On the contrary, F1-scores and accuracy showed slight improvements in some cases.
This may be because additional temporal steps allow the model to leverage more data for
analysis—a critical advantage in complex scenarios.
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Figure 5. Test of the robustness of the proposed framework.

In summary, the proposed multiclass detection framework for industrial machine
anomaly sounds demonstrates exceptional noise robustness. Leveraging a CNN-LSTM
classifier combined with SPWVD-MFCC features aggregated using the mean method over
24 temporal steps, the framework consistently achieves significantly higher F1-scores and
accuracy in noisy environments. This underscores its strong potential for application in
complex and noise-intensive scenarios. Combined with the findings from Experiment 2,
there is sufficient evidence to confidently assert that the proposed framework is the optimal
solution for this task.
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6. Limitations and Future Work
While the proposed framework demonstrates a strong performance in industrial

anomaly detection, there are several limitations that should be addressed in future re-
search. By addressing these limitations, the proposed framework can be further refined to
achieve greater adaptability, efficiency, and robustness in large-scale industrial anomaly
detection systems.

6.1. Sensitivity to Hyperparameters

The model’s performance is influenced by various hyperparameters, including the
number of CNN layers, LSTM hidden units, and feature extraction parameters. While
we conducted sensitivity analyses to determine optimal values, these hyperparameters
may require retuning for different industrial setups. Future work could explore automated
hyperparameter optimization techniques, such as Bayesian optimization or evolutionary
algorithms, to enhance adaptability across diverse datasets.

6.2. Computational Cost and Real-Time Deployment

While the CNN-LSTM model achieves high accuracy, it also introduces greater com-
putational complexity compared to traditional classifiers like the SVM or Random Forest.
This can be a challenge for real-time industrial monitoring, especially on edge computing
devices with limited processing power. To enhance efficiency, future optimizations could
focus on reducing computational overhead through model compression techniques such as
knowledge distillation or quantization. Additionally, adopting lightweight architecture,
such as streamlined CNN models, may improve performance in real-time applications.
Hardware acceleration, utilizing GPUs or FPGAs, could further enhance inference speed,
making deployment more feasible in industrial environments.

6.3. Generalization and Data Diversity

This current study primarily evaluates the framework using the MIMII dataset, which
includes four machine types under different noise conditions. However, real-world indus-
trial environments present greater complexity, with diverse machine sounds, environmen-
tal variations, and unseen anomalies. To enhance generalizability, future research should
validate the model on additional datasets, such as ToyADMOS or other publicly avail-
able industrial sound datasets. Deploying and testing the model in real-world industrial
settings would provide valuable insights into its robustness under varying operational
conditions. Furthermore, implementing domain adaptation techniques could improve
model transferability, ensuring effective performance across different machine types and
acoustic environments.

7. Conclusions
This study proposes a new framework for industrial anomaly detection using SPWVD-

MFCCs with a CNN-LSTM model. This method overcomes some major lacunae in the
existing techniques related to poor scalability, limited noise robustness, and restriction to
binary classification. Extensive experimentation with the MIMII dataset demonstrates that
the proposed framework is superior for multiclass classification tasks and sustains high
accuracy and F1-scores across a wide variation of signal-to-noise ratios.

The key results are that the SPWVD-MFCC presents a robust feature representation
that boosts anomaly detection, especially in a low-SNR environment. By integrating CNN-
LSTM, both spatial and temporal features of industrial acoustic signals are effectively
extracted for fault classification on different machine types compared to the SVM and RF.
Furthermore, the dimensionality reduction strategy guarantees computational efficiency
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by preserving critical information, thus making the framework scalable for real-world
industrial applications.

By improving both classification accuracy and noise resilience, this research presents a
significant advancement in industrial diagnostics. With the robustness and scalability of the
proposed method, there is great potential for practical deployment in noisy, complex factory
environments where the detection of real-time anomalies has important implications for
the maintenance of operational efficiency and safety. Real-time implementation on edge
devices could be explored along with further optimizations to deploy them across diverse
industrial settings.
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