An Investigation of MnOx and K/MnOx-Based Catalysts on MnO2 and Fe3O4 Supports for the Deep Oxidation of Cyclohexane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Synthesis Methods
2.3. Catalyst Characterization
2.3.1. Brunauer–Emmett–Teller (BET) Surface Area
2.3.2. X-Ray Diffraction (XRD)
2.3.3. Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS)
2.3.4. Thermal Gravimetric Analyses (TGA)
2.3.5. Fourier Transform Infrared (FTIR) Spectrometry
2.3.6. Electron Paramagnetic Resonance (EPR)
2.4. Catalyst Performance Tests
3. Results
3.1. Catalyst Characteristics
3.2. Catalyst Performance
4. Discussion
4.1. The Effect of K on MnOx Catalysts
4.2. The Effect of FeOx as a Support for K/MnOx-Based and MnOx-Based Catalysts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Zhou, X.; Wang, C.; Zhou, H. Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere 2023, 313, 137489. [Google Scholar] [CrossRef] [PubMed]
- Technical Overview of Volatile Organic Compounds, US EPA. Available online: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds (accessed on 5 January 2025).
- Baskaran, D.; Dhamodharan, D.; Behera, U.S.; Byun, H.-S. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. Environ. Res. 2024, 251, 118472. [Google Scholar] [CrossRef] [PubMed]
- Annual Volatile Organic Compounds (VOC) Emissions in the United States from 1970 to 2023. Available online: https://www.statista.com/statistics/501310/volume-of-volatile-organic-compounds-emissions-us/ (accessed on 5 January 2025).
- De Alwis, D.; Limaye, V.S. The Costs of Inaction: The Economic Burden of Fossil Fuels and Climate Change on Health in the United States. National Resource Defense Council and The Medical Society Council on Climate and Health. 2021. Available online: https://www.nrdc.org/sites/default/files/costs-inaction-burden-health-report.pdf (accessed on 23 December 2024).
- Fu, N.; Cao, L.-M.; Xia, S.-Y.; Zeng, L.-W.; He, L.; He, L.-Y.; Huang, X.-F. Sensitivity of atmospheric peroxyacetyl nitrate (PAN) formation and its impact on ozone pollution in a coastal city. Atmos. Environ. 2024, 330, 120545. [Google Scholar] [CrossRef]
- Movassaghi, K.; Russo, M.V.; Avino, P. The determination and role of peroxyacetil nitrate in photochemical processes in atmosphere. Chem. Cent. J. 2012, 6 (Suppl. S2), S8. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.I.; Ghoshal, A.K. Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 2000, 13, 527–545. [Google Scholar] [CrossRef]
- Sorrels, J.L.; Baynham, A.; Randall, D.; Hancy, C. Incinerators and Oxidizers. In Cost Reports and Guidance for Air Pollution Regulations, Economic and Cost Analysis for Air Pollution Regulations; Research Triangle Institute: Research Triangle Park, NC, USA, 2017; Chapter 2. Available online: https://www.epa.gov/sites/default/files/2017-12/documents/oxidizersincinerators_chapter2_7theditionfinal.pdf (accessed on 5 January 2025).
- Air Pollution Control Technology Fact Sheet. US EPA. Available online: https://www3.epa.gov/ttn/catc/dir1/fthermal.pdf (accessed on 5 January 2025).
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2017, 370, 1128–1153. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Gelles, T.; Krishnamurthy, A.; Adebayo, B.; Rownaghi, A.; Rezaei, F. Abatement of gaseous volatile organic compounds: A material perspective. Catal. Today 2020, 350, 3–18. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Zhao, Y.; Zhang, B.; Wang, D. Progress in Degradation of Volatile Organic Compounds by Catalytic Oxidation: A Review Based on the Kinds of Active Components of Catalysts. Water Air Soil Pollut. 2023, 235, 7. [Google Scholar] [CrossRef]
- Liu, R.; Wu, H.; Shi, J.; Xu, X.; Zhao, D.; Ng, Y.H.; Zhang, M.; Liu, S.; Ding, H. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2022, 12, 6945–6991. [Google Scholar] [CrossRef]
- Spivey, J.J. Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res. 1987, 26, 2165–2180. [Google Scholar] [CrossRef]
- Liotta, L.F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 2010, 100, 403–412. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.X.; Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009, 148, 81–87. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, W.; Song, L.; Wang, H.; Yan, H.; Chen, G.; Han, C.; Zhang, J. Advances of manganese-oxides-based catalysts for indoor formaldehyde removal. Green Energy Environ. 2023, 8, 626–653. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Zhang, Y.; Liu, B.; Liang, P. Catalytic oxidation of volatile organic compounds over manganese-based catalysts: Recent trends and challenges. J. Environ. Chem. Eng. 2022, 10, 108638. [Google Scholar] [CrossRef]
- Zhou, H.; Su, W.; Xing, Y.; Wang, J.; Zhang, W.; Jia, H.; Su, W.; Yue, T. Progress of catalytic oxidation of VOCs by manganese-based catalysts. Fuel 2024, 366, 131305. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Lei, X.X.; Zhou, J.Y.; Yan, D.L.; Deng, B.; Liu, Y.D.; Xu, W.L. Recent Advances in the Regulation of Oxygen Vacancies in MnO2 Nanocatalysts. Catal. Surv. Asia 2023, 27, 319–331. [Google Scholar] [CrossRef]
- Genuino, H.C.; Dharmarathna, S.; Njagi, E.C.; Mei, M.C.; Suib, S.L. Gas-Phase Total Oxidation of Benzene, Toluene, Ethylbenzene, and Xylenes Using Shape-Selective Manganese Oxide and Copper Manganese Oxide Catalysts. J. Phys. Chem. C 2012, 116, 12066–12078. [Google Scholar] [CrossRef]
- Figueredo, M.J.M.; Cocuzza, C.; Bensaid, S.; Fino, D.; Piumetti, M.; Russo, N. Catalytic Abatement of Volatile Organic Compounds and Soot over Manganese Oxide Catalysts. Materials 2021, 14, 4534. [Google Scholar] [CrossRef]
- Wu, P.; Jin, X.; Qiu, Y.; Ye, D. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286. [Google Scholar] [CrossRef]
- Lu, T.; Su, F.; Zhao, Q.; Li, J.; Zhang, C.; Zhang, R.; Liu, P. Catalytic oxidation of volatile organic compounds over manganese-based oxide catalysts: Performance, deactivation and future opportunities. Sep. Purif. Technol. 2022, 296, 121436. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Shi, H.; Lin, Y.; Wang, Y.; Wang, Q.; Zhu, T. Application Prospect of K Used for Catalytic Removal of NOx, COx and VOCs from Industrial Flue Gas: A Review. Catalysts 2021, 11, 419. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, Z.; Ma, M.; He, C.; Yu, Y.; Liu, X.; Albilali, R. Revealing the unexpected promotion effect of diverse potassium precursors on α-MnO2 for the catalytic destruction of toluene. Catal. Sci. Technol. 2020, 10, 2100–2110. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Zhu, Q.; Ma, M.; Jiang, Z.; Liao, X.; He, C. Unraveling the effects of potassium incorporation routes and positions on toluene oxidation over α-MnO2 nanorods: Based on experimental and density functional theory (DFT) studies. J. Colloid Interface Sci. 2021, 598, 324–338. [Google Scholar] [CrossRef]
- Li, H.; Song, Z.; Zhang, Z.; Zhang, X.; Mao, Y.; Liu, W.; Huang, Z.; Zhang, J.; Dong, D.; Luo, Y. Catalytic combustion of toluene performance over MnO catalysts: Effect of KMnO4 content. Appl. Organomet. Chem. 2024, 38, e7388. [Google Scholar] [CrossRef]
- Lai, X.; Feng, J.; Zhou, X.; Hou, Z.; Lin, T.; Chen, Y. Catalytic Oxidation of Toluene Over Potassium Modified Mn/Ce0.65Zr0.35O2 Catalyst. Acta Phys. Chim. Sin. 2020, 36, 1905047. [Google Scholar] [CrossRef]
- Greluk, M.; Rotko, M.; Słowik, G.; Turczyniak-Surdacka, S.; Grzybek, G.; Tyszczuk-Rotko, K. Effect of Potassium Doping on the Structural and Catalytic Properties of Co/MnOx Catalyst in the Steam Reforming of Ethanol. Materials 2023, 16, 5377. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Orfao, J.J.M.; Figueiredo, J.L. Mixture effects during the oxidation of toluene, ethyl acetate, and ethanol over a cryptomelane catalyst. J. Hazard. Mater. 2011, 185, 1236–1240. [Google Scholar] [CrossRef]
- Santos, V.P.; Soares, O.S.G.P.; Bakker, J.J.W.; Pereira, M.F.R.; Orfao, J.J.M.; Gascon, J.; Kapteijn, F.; Figueiredo, J.L. Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. J. Catal. 2012, 293, 165–174. [Google Scholar] [CrossRef]
- Peluso, M.A.; Pronsato, E.; Sambeth, J.E.; Thomas, H.J.; Busca, G. Catalytic combustion of ethanol on pure and alumina supported K-Mn oxides: An IR and flow reactor study. Appl. Catal. B Environ. 2008, 78, 73–79. [Google Scholar] [CrossRef]
- Peluso, M.A.; Gambaro, L.A.; Pronsato, E.; Giazzoli, D.; Thomas, H.J.; Sambeth, J.E. Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catal. Today 2008, 133, 487–492. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.R.F.; Orfai, J.J.M.; Figueiredo, J.I. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B Environ. 2010, 99, 353–363. [Google Scholar] [CrossRef]
- Santos, V.P.; Bastos, S.S.T.; Pereira, M.F.R.; Orfao, J.J.M.; Figueiredo, J.L. Stability of a cryptomelane catalyst in the oxidation of toluene. Catal. Today 2010, 154, 308–311. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Q.; Huang, A.; Suib, S.L. Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves. Microporous Mesoporous Mater. 2000, 35–36, 209–217. [Google Scholar] [CrossRef]
- Vaculíková, L.; Valovičová, V.; Plevová, E.; Napruszewska, B.D.; Duraczyńska, D.; Karcz, R.; Serwicka, E.M. Synthesis, characterization and catalytic activity of cryptomelane/montmorillonite composites. Appl. Clay Sci. 2021, 202, 105977. [Google Scholar] [CrossRef]
- Gandhe, A.R.; Rebello, J.S.; Figueiredo, J.L.; Fernandes, J.B. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate. Appl. Catal. B Environ. 2007, 72, 129–135. [Google Scholar] [CrossRef]
- Almquist, C.B.; Krekeler, M.; Jiang, L. An investigation on the structure and catalytic activity of cryptomelane-type manganese oxide materials prepared by different synthesis routes. Chem. Eng. J. 2014, 252, 249–262. [Google Scholar] [CrossRef]
- Sun, H.; Chen, S.; Wang, P.; Quan, X. Catalytic oxidation of toluene over manganese oxide octahedral molecular sieves (OMS-2) synthesized by different methods. Chem. Eng. J. 2011, 178, 191–196. [Google Scholar] [CrossRef]
- Tian, H.; He, J.; Zhang, X.; Zhou, L.; Wang, D. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalystic activity for formaldehyde oxidation. Microporous Mesoporous Mater. 2011, 138, 118–122. [Google Scholar] [CrossRef]
- Suib, S.L. Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. J. Mater. Chem. 2008, 18, 1623–1631. [Google Scholar] [CrossRef]
- Hettige, C.; Mahanama, K.R.R.; Dissanayake, D.P. Cyclohexane oxidation and carbon deposition over metal oxide catalysts. Chemosphere 2001, 43, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-C.; Park, Y.-K.; Jung, H.Y.; Kang, U.I.; Nah, J.W.; Kim, S.C. Effects of calcination and support on supported manganese catalysts for the catalytic oxidation of toluene as a model of VOCs. Res. Chem. Intermed. 2016, 42, 185–199. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, M.; Wei, Z.; Xin, Q.; Ying, P.; Li, C. Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal. B Environ. 2001, 29, 61–67. [Google Scholar] [CrossRef]
- Gallardo-Amores, J.M.; Armaroli, T.; Ramis, G.; Finocchio, E.; Busca, G. A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation. Appl. Catal. B Environ. 1999, 22, 249–259. [Google Scholar] [CrossRef]
- Duplančić, M.; Gomzi, V.; Pintar, A.; Kurajica, S.; Tomašić, V. Experimental and theoretical (ReaxFF) study of manganese-based catalysts for low-temperature toluene oxidation. Ceram. Int. 2021, 47, 3108–3121. [Google Scholar] [CrossRef]
- Yadav, V.K.; Das, T. Oxidation of cyclohexane over supported Fe–Mn catalysts: In situ DRIFTS studies. Phys. Chem. Chem. 2021, 23, 13612–13622. [Google Scholar] [CrossRef]
- Soltan, W.B.; Sun, J.; Wang, W.; Song, Z.; Zhao, X.; Mao, Y.; Zhang, Z. Discovering the key role of MnO2 and CeO2 particles in the Fe2O3 catalysts for enhancing the catalytic oxidation of VOC: Synergistic effect of the lattice oxygen species and surface-adsorbed oxygen. Sci. Total Environ. 2022, 819, 152844. [Google Scholar] [CrossRef]
- Gong, P.; Cao, R.; Yu, Y.; Zhang, J. Promotion effect of SO42−/Fe2O3 modified MnOx catalysts for simultaneous control of NO and CVOCs. Surf. Interfaces 2022, 33, 102253. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wang, P.; Hu, W.; Zhang, S.; Shi, Q.; Zhan, S. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chem. Eng. J. 2017, 330, 213–222. [Google Scholar] [CrossRef]
- Stelmachowski, P.; Videla, A.H.A.M.; Specchia, S.; Stelmachowski, P.; Jakubek, T.; Kotarba, A. The Effect of Fe, Co, and Ni Structural Promotion of Cryptomelane (KMn8O16) on the Catalytic Activity in Oxygen Evolution Reaction. Electrocatalysis 2018, 9, 762–769. [Google Scholar] [CrossRef]
- Infrared Spectroscopy Adsorption Table. Available online: https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic%20Reference_Tables/Infrared_Spectroscopy_Absorption_Table (accessed on 5 January 2025).
- Khan, R.H.; Rotich, N.C.; Morris, A.; Ahammad, T.; Baral, B.; Sahu, I.D.; Lorigan, G.A. Probing the Structural Topology and Dynamic Properties of gp28 Using Continuous 49 Wave Electron Paramagnetic Resonance Spectroscopy. J. Phys. Chem. B 2023, 127, 9236–9247. [Google Scholar] [CrossRef] [PubMed]
- Quantachrome Instruments. Powder Tech Note 54, Automated Software Assistant for the Proper Calculation of BET Area of Microporous Materials. Available online: https://r.search.yahoo.com/_ylt=AwrEqhz0abtnqvcEYHFXNyoA;_ylu=Y29sbwNiZjEEcG9zAzEEdnRpZAMEc2VjA3Ny/RV=2/RE=1741545205/RO=10/RU=https%3a%2f%2fwww.researchgate.net%2fprofile%2fMartin-Thomas-3%2fpost%2fHow_can_you_calculate_micropore_surface_area_using_N2_adsorption_isotherms%2fattachment%2f59d61f5679197b807797dc7f%2fAS%253A284180681379842%25401444765362986%2fdownload%2fTechNote-54_BET%2bArea%2bof%2bMicroporous%2bSolids_121911.pdf/RK=2/RS=vWl2Tc27ClvCHh78xplqMkKUReY- (accessed on 23 February 2025).
- Kruk, M.; Jaroniec, M. Determination of the specific surface area and the pore size of microporous carbons from adsorption potential distributions. Langmuir 1999, 15, 1442–1448. [Google Scholar] [CrossRef]
- Sing, K. The use of nitrogen adsorption for the characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2001, 187–188, 3–9. [Google Scholar] [CrossRef]
- Available online: https://ethz.ch/content/dam/ethz/special-interest/chab/icb/van-bokhoven-group-dam/coursework/Characterization-Techniques/2016/physisorption-pore-size-analysis-2016.pdf (accessed on 23 February 2025).
- Galarneau, A.; Mehlhorn, D.; Guenneau, F.; Coasne, B.; Villemot, F.; Minoux, D.; Aquino, C.; Dath, J.-P. Specific Surface Area Determination for Microporous/Mesoporous Materials: The Case of Mesoporous FAU-Y Zeolites. Langmuir Am. Chem. Soc. 2018, 34, 14134–14142. [Google Scholar] [CrossRef]
- Najfach, A.J.; Almquist, C.B.; Edelmann, R.E. Effect of Manganese and zeolite composition on zeolite-supported Ni-catalysts for dry reforming of methane. Catal. Today 2021, 369, 31–47. [Google Scholar] [CrossRef]
- Birkner, N.; Navrotsky, A. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane. Proc. Natl. Acad. Sci. USA 2017, 114, E1046–E1053. [Google Scholar] [CrossRef]
- Mohamed, A.K. TP3—Ceramics: Sintering and Microstructure. Available online: https://www.epfl.ch/labs/lmc/wp-content/uploads/2018/08/TP3-English-2016.pdf (accessed on 15 February 2025).
- Stelmachowski, P.; Legutko, P.; Jakubek, T.; Kotarba, A. Phase evolution and electronic properties of cryptomelane nanorods. J. Alloys Compd. 2018, 767, 592–599. [Google Scholar] [CrossRef]
- Muralidhara, R.S.; Kesavulu, C.R.; Rao, J.L.; Anavekar, R.V.; Chakradhar, R.P.S. EPR and optical absorption studies of Fe3+ ions in sodium borophosphate glasses. J. Phys. Chem. Solids 2010, 71, 1651–1655. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, S.; Wang, S.; Li, S.; Xu, L.; Qiu, J. Insights into the oxygen vacancies in transition metal oxides for aqueous Zinc-Ion batteries. Chem. Eng. J. 2023, 461, 142033. [Google Scholar] [CrossRef]
- Zhang, K.; Ding, H.; Pan, W.; Mu, X.; Qiu, K.; Ma, J.; Zhao, Y.; Song, J.; Zhang, Z. Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. Environ. Sci. Technol. 2022, 56, 9220–9236. [Google Scholar] [CrossRef]
- Chen, J.; Chen Xi Xu, W.; Xu, Z.; Chen, J.; Jia, H.; Chen, J. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene. Chem. Eng. J. 2017, 330, 281–293. [Google Scholar] [CrossRef]
- Liu, Q.; Wen, M.; Guo, Y.; Song, S.; Li, G.; An, T. Efficient Catalytic Combustion of Cyclohexane over PdAg/Fe2O3 Catalysts under Low-Temperature Conditions: Establishing the Degradation Mechanism Using PTR-TOF-MS and in Situ DRIFTS. ACS Appl. Mater. Interfaces 2022, 14, 55503–55516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, M.; Gui, Q.; Gu, J.; Xu, W.; Xiao, Q.; Huang, W. Highly enhanced direct catalytic oxidation of cyclohexane to adipic acid with molecular oxygen: Dynamic collaboration between zeolite channel micro-environment and Au clusters. Chem. Eng. J. 2023, 467, 143501. [Google Scholar] [CrossRef]
- Einaga, H.; Futamura, S. Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone. Appl. Catal. B Environ. 2005, 60, 49–55. [Google Scholar] [CrossRef]
Identification | Support (as Purchased) | K/MnOx Loading (mmole/g Support) | Nominal Composition 1 (Molar Ratios) | ||
---|---|---|---|---|---|
K/Fe | Mn/Fe | K/Mn | |||
FeOx supported catalysts | |||||
FO-C | Fe3O4 | 0 | 0 | 0 | N/A |
KM-FO-1 | Fe3O4 | 0.63 | 0.049 | 0.049 | 1 |
KM-FO-2 | Fe3O4 | 1.58 | 0.122 | 0.122 | 1 |
KM-FO-3 | Fe3O4 | 2.53 | 0.195 | 0.195 | 1 |
MAc-FO-1 | Fe3O4 | 0.63 (Mn only) | 0 | 0.049 | 0 |
MAc-FO-2 | Fe3O4 | 1.58 (Mn only) | 0 | 0.122 | 0 |
MnOx-supported catalysts | |||||
MO-C | Activated MnO2 | 0 | N/A | N/A | 0 |
KM-MO-1 | Activated MnO2 | 0.63 | N/A | N/A | 0.052 |
KM-MO-2 | Activated MnO2 | 1.58 | N/A | N/A | 0.121 |
KM-MO-3 | Activated MnO2 | 2.53 | N/A | N/A | 0.182 |
Catalyst ID | BET Surface Area (m2/g) | Micropore Area 3 (m2/g) | Pore Width 4 (nm) | Pore Volume 4 (cm3/g) | Mn-Species Crystallite Size 5 (nm) |
---|---|---|---|---|---|
FeOx-supported catalysts | |||||
FO-AP 1 | 40 | 9.9 | 35.1 | 0.39 | N/A |
FO-C 2 | 14.2 | 2.6 | 12.3 | 0.04 | N/A |
KM-FO-1 | 19.6 | 2.2 | 34.5 | 0.17 | 66 |
KM-FO-2 | 24.1 | 3.5 | 34.8 | 0.20 | 62 |
KM-FO-3 | 22.8 | 3.8 | 34.5 | 0.18 | 61 |
MAc-FO-1 | 12.4 | 1.1 | 13.7 | 0.04 | N/A |
MAc-FO-2 | 11.6 | 0.7 | 14.1 | 0.04 | N/A |
MnOx-supported catalysts | |||||
MO-AP 1 | 80.6 | 0 | 7.1 | 0.17 | N/A |
MO-C 2 | 8.7 | 0.9 | 17.9 | 0.03 | N/A |
KM-MO-1 | 9.2 | 0.8 | 26.9 | 0.06 | 54 |
KM-MO-2 | 8.1 | 2.6 | 40 | 0.07 | 36 |
KM-MO-3 | 7.3 | 2.7 | 38.3 | 0.07 | 29 |
Catalyst | T50 1 (°C) | Activation Energy (kJ/mole) |
---|---|---|
FeOx-supported catalysts | ||
FO-C | 376 | 53.7 |
KM-FO-1 | 293 | 52.8 |
KM-FO-2 | 350 | 53.4 |
KM-FO-3 | 337 | 51.8 |
MAc-FO-1 | 306 | 52.4 |
MAc-FO-2 | 391 | 60.7 |
MnOx-supported catalysts | ||
MO-C | 326 | 52.1 |
KM-MO-1 | 281 | 49.2 |
KM-MO-2 | 313 | 50.3 |
KM-MO-3 | 314 | 50.4 |
Catalyst | Temperature (°C) | Cyclohexane (ppm) | CO2 (ppm) | 1Cout/Cin | ||
---|---|---|---|---|---|---|
In | Out | Conversion | Out | |||
KM-FO-1 | 350 | 208 | 124 | 40% | 251 | 80% |
375 | 201 | 27 | 87% | 957 | 93% | |
400 | 213 | 0 | 100% | 863 | 67% | |
KM-MO-1 | 350 | 231 | 61 | 74% | 904 | 92% |
375 | 220 | 28 | 87% | 1083 | 95% | |
400 | 239 | 1 | 99.6% | 991 | 69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, M.S.; Almquist, C.B.; Tierney, D.L. An Investigation of MnOx and K/MnOx-Based Catalysts on MnO2 and Fe3O4 Supports for the Deep Oxidation of Cyclohexane. Processes 2025, 13, 634. https://doi.org/10.3390/pr13030634
Kamal MS, Almquist CB, Tierney DL. An Investigation of MnOx and K/MnOx-Based Catalysts on MnO2 and Fe3O4 Supports for the Deep Oxidation of Cyclohexane. Processes. 2025; 13(3):634. https://doi.org/10.3390/pr13030634
Chicago/Turabian StyleKamal, Md Sarwar, Catherine B. Almquist, and David L. Tierney. 2025. "An Investigation of MnOx and K/MnOx-Based Catalysts on MnO2 and Fe3O4 Supports for the Deep Oxidation of Cyclohexane" Processes 13, no. 3: 634. https://doi.org/10.3390/pr13030634
APA StyleKamal, M. S., Almquist, C. B., & Tierney, D. L. (2025). An Investigation of MnOx and K/MnOx-Based Catalysts on MnO2 and Fe3O4 Supports for the Deep Oxidation of Cyclohexane. Processes, 13(3), 634. https://doi.org/10.3390/pr13030634