Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objectives
2.2. Ethical Approval
2.3. Sampling Procedures Using SPIRITAS
2.4. Experiment Design
2.4.1. Experiment 1: Study Subjects
2.4.2. Experiment 1: Design of the Peppermint Experiment
2.5. Experiment 2: Compounds Released by SPIRITAS
2.6. Data Analysis
2.6.1. Data Analysis: Standardizing an Automated VOC Identification Methodology
- The establishment of a custom VOC target library, which retrieves the spectra from the National Institute of Standards and Technology (NIST) library.
- Deconvolution of the GC-MS signals.
- Correlation-based spectral alignment of samples within a predefined retention time window, the time at which a VOC is identified by the MS and appears in the chromatogram.
- The implementation of a quality control measure for the GC-MS signal, specifically by detecting the presence of acetone in a retention time between 2 and 3 min, serving as an indicator of successful breath collection and correct GC-MS analysis.
- The process of spectral matching is conducted between the aligned data and the custom VOC library. A compound was deemed accurately identified if it had a match factor surpassing 80 (scale 0–100), with the added condition that no other compound within the custom library exhibited a superior match factor at that given retention time. This enhances the reliability of compound identification, limiting potential overlap and ambiguity.
- We implemented a process of exporting the spectra of compounds identified through the Erah Package to the NIST mass spectrometry search program (NIST MS Search). This procedure enabled us to verify the accuracy of the identification process by requiring a match factor greater than 800 (scale 0–1000) for the identified compound in NIST MS Search, thus reinforcing the integrity of the compound identification by Erah. Additionally, we used retention time data from established literature and the retention time index from NIST MS Search to make reliable estimations about the presence of putative identified compounds based on their retention times in our samples.
- The area under the curve of the identified compounds, obtained by the Erah Package, was subsequently used for downstream statistical analyses.
2.6.2. Data Analysis Experiment 1: The Peppermint Experiment
2.6.3. Data Analysis Experiment 2: Compounds Released by SPIRITAS
3. Results
3.1. Experiment 1: The Peppermint Experiment
3.1.1. Demographics
3.1.2. Targeted Peppermint VOCs
3.2. Experiment 2: Contaminating Compounds
4. Discussion
- Capsule Composition: The Peppermint Initiative used beef gelatin-coated peppermint capsules from a specific Boots Pharmaceuticals batch [15]. This specific batch is no longer available, so we employed the current vegan variant of Boots peppermint with a distinct shell. This may have affected the capsule’s disintegration and subsequently delayed the diffusion of peppermint constituents into the bloodstream and lungs and could explain the detection of VOC peaks at later time points.
- Sampling Techniques: Our study incorporated Mylar 800 sampling bags, which potentially interact with some VOCs, possibly affecting detected concentrations. For example, when comparing Wilkinson et al.’s direct sampling method in the Peppermint Experiment [16] to the sampling method of Henderson et al. [18], who used Tedlar bags, reduced washout values for menthofuran were observed. Nonetheless, we believe that the risk of compound degradation with the use of our Mylar 800 collection bags is minimal. Mylar bags consist of a polyester film that meets the relevant industry standards (ISO) and certifications for packaging materials. It exhibits good barrier properties and minimizes contamination risk. Mylar bags have previously been evaluated and chosen as suitable for breath storage in terms of sample stability (up to 9 h for samples stored at room temperature) [29]. Additionally, our system includes an inline biofilter, which, while protective, may introduce biases in observed VOC concentrations, such as eucalyptol. Past studies have suggested biofilters can reduce compound detection [20], emphasizing the need for comparative studies on bacterial filters’ influence [30].
- Dietary Constraints: The Peppermint Experiment’s protocol differs from ours in terms of dietary stipulations. Their participants abstained from peppermint-related products for 24 h and consumed food prior to the baseline measurement [15]. Our design prohibited the consumption of peppermint products 8 h before breath sampling, and participants fasted pre-baseline measurement. We chose to use dietary constraints to control for possible confounders, as changes in metabolism, such as fasting, have been reported to impact breath profiles [12]. However, in our findings, we noted a decrease in peppermint metabolite peaks at T = 285 to T = 360 min, possibly due to standardized meal timings affecting metabolism.
- Inter-individual Variability: Another possible explanation for the delayed peak detection is the different participant populations and various exhaled breath collection methods within the Peppermint Experiment. For example, Lan et al. [17] recorded significant peak concentration variations across participants. For limonene, a targeted peppermint VOC, peak concentrations were observed at disparate times among individuals [17]. Such data underscore the potential variability in detection times of the targeted VOCs, potentially mirroring our findings.
4.1. Strengths
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time Point (Minutes) | Number of Observations (n) | Area, Mean (SD) | ||||
---|---|---|---|---|---|---|
Alpha-Pinene | Beta-Pinene | Menthone | Menthol | Eucalyptol | ||
0 | N = 10 | 3,706,553 (3,982,546) | 272,462 (630,787) | 57,024 (100,657) | 0 (0) | 22,260 (71,657) |
60 | N = 10 | 5,800,400 (5,294,849) | 1485,700 (2,931,820) | 38,950 (116,850) | 86,958 (260,874) | 0 (0) |
90 | N = 10 | 10,677,053 (19,063,863) | 4,716,214 (9,767,750) | 0 (0) | 125,501 (253,297) | 0 (0) |
165 | N = 10 | 25,166,870 (31,859,105) | 12,362,640 (18,877,330) | 234,913 (382,915) | 108,363 (267,888) | 0 (0) |
285 | N = 10 | 6,950,758 (5,865,831) | 2,422,306 (2,756,955) | 24,545 (77,618) | 20,702 (65,464) | 0 (0) |
360 | N = 10 | 9,168,716 (10,192,265) | 4,381,938 (5,273,358) | 154,391 (240,453) | 116,178 (367,387) | 0 (0) |
References
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Miekisch, W.; Schubert, J.; Buszewski, B.; Ligor, T.; Jezierski, T.; Pleil, J.; Risby, T. Analysis of exhaled breath for disease detection. Annu. Rev. Anal. Chem. 2014, 7, 455–482. [Google Scholar] [CrossRef] [PubMed]
- Pham, Y.L.; Beauchamp, J. Breath Biomarkers in Diagnostic Applications. Molecules 2021, 26, 5514. [Google Scholar] [CrossRef] [PubMed]
- Saktiawati, A.M.I.; Putera, D.D.; Setyawan, A.; Mahendradhata, Y.; van der Werf, T.S. Diagnosis of tuberculosis through breath test: A systematic review. eBioMedicine 2019, 46, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Kos, R.; Brinkman, P.; Neerincx, A.H.; Paff, T.; Gerritsen, M.G.; Lammers, A.; Kraneveld, A.D.; Heijerman, H.G.M.; Janssens, H.M.; Davies, J.C.; et al. Targeted exhaled breath analysis for detection of Pseudomonas aeruginosa in cystic fibrosis patients. J. Cyst. Fibros. 2022, 21, e28–e34. [Google Scholar] [CrossRef] [PubMed]
- Neerincx, A.H.; Vijverberg, S.J.H.; Bos, L.D.J.; Brinkman, P.; van der Schee, M.P.; de Vries, R.; Sterk, P.J.; Maitland-van der Zee, A.H. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr. Pulmonol. 2017, 52, 1616–1627. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M.J.; Salman, D.; Monks, P.S.; Thomas, P.; Brightling, C.E.; Siddiqui, S.; Greening, N.J. Breathomics for the clinician: The use of volatile organic compounds in respiratory diseases. Thorax 2021, 76, 514–521. [Google Scholar] [CrossRef] [PubMed]
- De Vincentis, A.; Vespasiani-Gentilucci, U.; Sabatini, A.; Antonelli-Incalzi, R.; Picardi, A. Exhaled breath analysis in hepatology: State-of-the-art and perspectives. World J. Gastroenterol. 2019, 25, 4043–4050. [Google Scholar] [CrossRef] [PubMed]
- Bannaga, A.S.; Farrugia, A.; Arasaradnam, R.P. Diagnosing Inflammatory bowel disease using noninvasive applications of volatile organic compounds: A systematic review. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 1113–1122. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.A.; Kumar, U.; Chen, D.D.Y. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta 2017, 996, 1–9. [Google Scholar] [CrossRef]
- Hanna, G.B.; Boshier, P.R.; Markar, S.R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, e182815. [Google Scholar] [CrossRef]
- Issitt, T.; Wiggins, L.; Veysey, M.; Sweeney, S.T.; Brackenbury, W.J.; Redeker, K. Volatile compounds in human breath: Critical review and meta-analysis. J. Breath Res. 2022, 16, 024001. [Google Scholar] [CrossRef] [PubMed]
- Di Gilio, A.; Palmisani, J.; Ventrella, G.; Facchini, L.; Catino, A.; Varesano, N.; Pizzutilo, P.; Galetta, D.; Borelli, M.; Barbieri, P.; et al. Breath Analysis: Comparison among Methodological Approaches for Breath Sampling. Molecules 2020, 25, 5823. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.; Ahmed, W.M.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Exhaled breath analysis: A review of ‘breath-taking’ methods for off-line analysis. Metabolomics 2017, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Ruszkiewicz, D.M.; Wilkinson, M.; Beauchamp, J.D.; Cristescu, S.M.; Fowler, S.J.; Salman, D.; Francesco, F.D.; Koppen, G.; Langejürgen, J.; et al. A benchmarking protocol for breath analysis: The peppermint experiment. J. Breath Res. 2020, 14, 046008. [Google Scholar] [CrossRef]
- Wilkinson, M.; White, I.R.; Hamshere, K.; Holz, O.; Schuchardt, S.; Bellagambi, F.G.; Lomonaco, T.; Biagini, D.; Di Francesco, F.; Fowler, S.J. The peppermint breath test: A benchmarking protocol for breath sampling and analysis using GC-MS. J. Breath Res. 2020, 15, 026006. [Google Scholar] [CrossRef]
- Lan, J.; Gisler, A.; Bruderer, T.; Sinues, P.; Zenobi, R. Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry. J. Breath Res. 2021, 15, 026003. [Google Scholar] [CrossRef]
- Henderson, B.; Slingers, G.; Pedrotti, M.; Pugliese, G.; Malásková, M.; Bryant, L.; Lomonaco, T.; Ghimenti, S.; Moreno, S.; Cordell, R.; et al. The peppermint breath test benchmark for PTR-MS and SIFT-MS. J. Breath Res. 2021, 15, 046005. [Google Scholar] [CrossRef]
- Gisler, A.; Lan, J.; Singh, K.D.; Usemann, J.; Frey, U.; Zenobi, R.; Sinues, P. Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: Technical aspects. J. Breath Res. 2020, 14, 046001. [Google Scholar] [CrossRef]
- Ruszkiewicz, D.M.; Myers, R.; Henderson, B.; Yusof, H.; Meister, A.; Moreno, S.; Eddleston, M.; Darnley, K.; Nailon, W.H.; McLaren, D.; et al. Peppermint protocol: First results for gas chromatography-ion mobility spectrometry. J. Breath Res. 2022, 16, 036004. [Google Scholar] [CrossRef]
- Ahmed, W.M.; Brinkman, P.; Weda, H.; Knobel, H.H.; Xu, Y.; Nijsen, T.M.; Goodacre, R.; Rattray, N.; Vink, T.J.; Santonico, M.; et al. Methodological considerations for large-scale breath analysis studies: Lessons from the U-BIOPRED severe asthma project. J. Breath Res. 2018, 13, 016001. [Google Scholar] [CrossRef] [PubMed]
- AIRAPY®-productinformatieblad. Available online: https://www.linde-gas.nl/wcsstore/NL_RES_Industrial_Gas_Store/Attachment/PDS/NL-PIB-0051.pdf (accessed on 2 May 2024).
- Domingo-Almenara, X.; Brezmes, J.; Vinaixa, M.; Samino, S.; Ramirez, N.; Ramon-Krauel, M.; Lerin, C.; Díaz, M.; Ibáñez, L.; Correig, X.; et al. eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC/MS-Based Metabolomics. Anal. Chem. 2016, 88, 9821–9829. [Google Scholar] [CrossRef] [PubMed]
- Sola Martínez, R.A.; Pastor Hernández, J.M.; Lozano Terol, G.; Gallego-Jara, J.; García-Marcos, L.; Cánovas Díaz, M.; de Diego Puente, T. Data preprocessing workflow for exhaled breath analysis by GC/MS using open sources. Sci. Rep. 2020, 10, 22008. [Google Scholar] [CrossRef] [PubMed]
- Beck, O.; Olin, A.C.; Mirgorodskaya, E. Potential of Mass Spectrometry in Developing Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath. Clin. Chem. 2016, 62, 84–91. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 6569, MEKRO. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-Ethyl-Ketone (accessed on 2 May 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8028, TRO. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tetrahydrofuran (accessed on 2 May 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8254, DERO. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dimethyl-Ether (accessed on 2 May 2024).
- Yoda, Y.; Otani, N.; Hasunuma, H.; Kanegae, H.; Shima, M. Storage conditions for stability of offline measurement of fractional exhaled nitric oxide after collection for epidemiologic research. BMC Pulm. Med. 2012, 12, 68. [Google Scholar] [CrossRef]
- Weber, R.; Kaeslin, J.; Moeller, S.; Perkins, N.; Micic, S.; Moeller, A. Effects of a Volatile Organic Compound Filter on Breath Profiles Measured by Secondary Electrospray High-Resolution Mass Spectrometry. Molecules 2022, 28, 45. [Google Scholar] [CrossRef]
- Shahbazi Khamas, S.; Van Dijk, Y.; Abdel-Aziz, M.I.; Neerincx, A.H.; Blankestijn, J.; Vijverberg, S.J.H.; Hashimoto, S.; Bush, A.; Kraneveld, A.D.; Hedman, A.M.; et al. Exhaled Volatile Organic Compounds for Asthma Control Classification in Children with Moderate to Severe Asthma: Results from the SysPharmPediA Study. Am. J. Respir. Crit. Care Med. 2024; just accepted. [Google Scholar] [CrossRef]
Participants (n = 10) | |
---|---|
Age in years, mean ± SD | 29.8 ± 2.90 |
Sex, male, n (%) | 3 (30%) |
BMI (kg/m2), mean ± SD | 23.7 ± 2.56 |
Retention Time | Median Peak Area (IQR) | Identified Compound | CAS Number | Manner of Identification |
---|---|---|---|---|
1.0946 | 187,405.5 (153,158.5–209,448.8) | Argon | 7440-37-1 | MS search and Erah |
1.636 | 39,228,744.0 (20,336,972.5–51,679,538.5) | Nitrous oxide | 10024-97-2 | MS search and Erah |
2.239 | 2,006,958.0 (1,233,778.2–3,361,679.5) | Dimethyl ether | 115-10-6 | MS search and Erah |
2.7472 | 5,800,036.0 (3,192,821.0–11,445,944.0) | Propane, 1,2-dimethoxy- | 1589-47-5 | MS search and Erah |
2.9722 | 925,209.5 (725,513.8–1,298,198.8) | Methanesulfonyl chloride | 124-63-0 | MS search and Erah |
3.9055 | 4,069,342.0 (1,495,523.8–15,811,321.8) | 2-Butanone | 78-93-3 | MS search and Erah |
4.7825 | 9,866,838.0 (5,964,152.5–13,776,195.8) | Tetrahydrofuran | 109-99-9 | MS search and Erah |
7.882 | 1,011,165.0 (711,127.8–1,752,683.8) | Pentane, 2,2,4,4-tetramethyl- | 540-84-1 | MS search and Erah |
10.7386 | 80,176,476.5 (43,412,157.0–109,135,300.5) | Unidentified * | - | |
11.9275 | 26,570,656.5 (23,442,216.5–36,829,857.5) | Octane, 4-methyl- | 2216-34-4 | MS search and Erah |
15.4632 | 11,777,794.5 (9,243,672.5–16,183,499.0) | Nonane, 2,5-dimethyl- | 17302-27-1 | MS search and Erah |
16.7464 | 5,487,114.0 (3,954,574.2–11,315,397.2) | 1-Decene, 2,4-dimethyl- | 55170-80-4 | MS search |
20.355 | 13,208,525.0 (7,495,790.5–21,372,889.8) | α-Ethyl-α-methylbenzyl alcohol | 1565-75-9 | MS search and Erah |
19.6867 | 1,257,906.0 (594,063.2–2,001,559.2) | Decane, 3,7-dimethyl- | 17312-54-8 | MS search 3rd match, Erah 2nd match |
20.9337 | 2,019,447.0 (1,501,533.2–3,076,414.8) | 1-Octanol, 2-butyl- | 3913-02-8 | MS search |
23.6311 | 311,089.0 (110,584.5–395,312.0) | Hexadecane | 544-76-3 | MS search and Erah |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mager, D.J.; van Dijk, Y.E.; Varan, Ö.; Vijverberg, S.J.H.; Terheggen-Lagro, S.W.J.; Maitland-van der Zee, A.-H.; Janssens, H.M.; Brinkman, P. Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis. Separations 2024, 11, 150. https://doi.org/10.3390/separations11050150
Mager DJ, van Dijk YE, Varan Ö, Vijverberg SJH, Terheggen-Lagro SWJ, Maitland-van der Zee A-H, Janssens HM, Brinkman P. Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis. Separations. 2024; 11(5):150. https://doi.org/10.3390/separations11050150
Chicago/Turabian StyleMager, David J., Yoni E. van Dijk, Özgü Varan, Susanne J. H. Vijverberg, Suzanne W. J. Terheggen-Lagro, Anke-Hilse Maitland-van der Zee, Hettie M. Janssens, and Paul Brinkman. 2024. "Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis" Separations 11, no. 5: 150. https://doi.org/10.3390/separations11050150