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Abstract: Predicting accurate normal maps of objects from two-dimensional images in regions of
complex structure and spatial material variations is challenging using photometric stereo methods
due to the influence of surface reflection properties caused by variations in object geometry and
surface materials. To address this issue, we propose a photometric stereo network called a RMAFF-
PSN that uses residual multiscale attentional feature fusion to handle the “difficult” regions of the
object. Unlike previous approaches that only use stacked convolutional layers to extract deep features
from the input image, our method integrates feature information from different resolution stages
and scales of the image. This approach preserves more physical information, such as texture and
geometry of the object in complex regions, through shallow-deep stage feature extraction, double
branching enhancement, and attention optimization. To test the network structure under real-world
conditions, we propose a new real dataset called Simple PS data, which contains multiple objects with
varying structures and materials. Experimental results on a publicly available benchmark dataset
demonstrate that our method outperforms most existing calibrated photometric stereo methods for
the same number of input images, especially in the case of highly non-convex object structures. Our
method also obtains good results under sparse lighting conditions.

Keywords: photometric stereo; multi-scale features; deep neural networks; attention mechanisms

1. Introduction

Since the creation of the first photometric stereo (PS) algorithm by Woodham [1]
under the Lambert hypothesis, acquiring images with varying light directions using linear
response cameras and utilizing the PS algorithm to obtain accurate normal maps of objects
have been a focus of researchers, especially in areas where the object’s structure and texture
have undergone changes [2–4]. Compared to traditional methods, deep neural networks
have the capability to imitate intricate global lighting effects that cannot be represented
by previous mathematical formulas, resulting in significantly enhanced accuracy of the
results. However, unlike other computer vision tasks that often have a fixed input size
or sequence, photometric stereo networks require handling an unknown order problem,
making it difficult for Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to handle due to their limited flexibility.

To address the order-agnostic nature of the photometric stereo task and produce an ac-
curate normal map in a complex region, previous studies have proposed several approaches.
These include using fused feature maps from max-pooling operations or fixed-size observa-
tion maps as inputs to neural networks, increasing the network’s depth to improve feature
representation, and generating virtual training datasets with varying complexity levels
to enhance the network’s fitting ability [5–7]. In summary, existing approaches primarily
focus on providing various solutions to intricate global illumination issues, including but
not limited to shadows and specular highlights. While these approaches have improved
the accuracy of normal map prediction, they still face difficulties in dealing with “difficult”
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regions, such as the structure changing rapidly and the material changes, due to the lack of
integration of different stages’ features of the input image.

Recently, research has shown that low-level vision tasks, including photometric stereo,
occur at multiple scales in natural scenes and require careful consideration of scale informa-
tion [8,9]. On the contrary, many existing methods rely on complex network structures and
ignore the fact that scale information changes the focus of one’s observation of an image.
For example, high-resolution images input at the initial stage of the network can extract
rich texture details that help to focus on complex structural regions, whereas low-resolution
images at deeper levels tend to emphasize contour information, which facilitates the iden-
tification of surfaces with spatially varying materials. Therefore, extracting multi-sale
image features from different stages is crucial to solving the problem of fuzzy details in
normal graphs.

In addition to extracting multi-scale features, since the high-dimensional feature map of
the image contains many characteristics of the object surface, attention mechanisms [10,11]
can also be used to adaptively adjust feature weights while preserving all extracted features,
enabling the network to focus on specific local areas such as material changes or areas
affected by global light for optimized feature extraction. Such attention mechanisms
have been shown to improve the expressive power of the network and enable it to treat
different areas of the image differently, thereby improving the overall performance of the
photometric stereo network. Combined with this theory, spatial attention assigns higher
weight parameters to areas that require greater attention, such as surface structure or
material changes, while the channel attention enhances the weight of channels related
to normal regression and suppresses irrelevant channels, for example, light intensity or
roughness-related channels, allowing the network to retain the most useful information
with respect to predicting the normal vector of the “difficult” region.

This paper proposes a novel photometric stereo network, the residual multi-scale
attention feature fusion photometric stereo network (RMAFF-PSN), which effectively inte-
grates multi-scale feature information from both shallow and deep stages using attention-
weighted fusion. As shown in the boxes in Figure 1, the RMAFF-PSN can effectively deal
with the challenges posed by both retaining salient details of object material variations
and structurally complex regions during network propagation. To achieve this, we con-
structed a residual multi-scale attention feature fusion module inspired by previous work
on residual multi-scale network structure [12–14]. To process the input image, we extract
feature information separately from its high- and low-resolution versions and then stitch
together the shallow and deep features. The residual multi-scale attention feature fusion
module leverages multiple view fields across various scales to enhance multi-scale feature
information, in a similar manner to residual connections. Subsequently, the attention
mechanism optimizes the feature maps along the channel and spatial dimensions, followed
by feature combination with the shallow-deep feature information to complete the steps of
feature extraction, enhancement, and optimization. This approach enables the network to
effectively capture characteristic information that best describes the different areas of an
object’s surface, so as to reconstruct the rich and accurate surface normal map.

The results show that the performance of our network is significantly improved
compared with the previous method. We conducted quantitative experiments on the
DiLiGenT benchmark dataset to demonstrate the effectiveness of our approach in dealing
with “difficult” areas. Additionally, ablation experiments and testing on other real datasets
show that the RMAFF-PSN is scalable for photometric stereo tasks.

To sum up, our main contributions are as follows:

• For the PS task, we propose a novel residual multi-scale attention feature fusion photo-
metric stereo network (RMAFF-PSN). This model is designed to achieve intensive and
precise restoration of 3D shapes, particularly in areas of the object surface that have
undergone significant changes(e.g., changes in material). We believe this contribution
provides an innovative approach to restoring complex structures with high accuracy.
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• From the scale and attention perspectives, we have designed a residual multi-scale
attention feature fusion module. This approach leads to a more effective optimization
method for normal correlation feature extraction in the photometric stereo task.

• The simple PS data were taken from the number of light sources and reality. This
dataset provides a reference for testing the performance of photometric stereo net-
works in difficult material and geometrically scenarios.

Figure 1. Visualization of structurally complex areas using error maps. The number represents the
mean angular error (MAE) of the object. We use green boxes to indicate the material change area,
yellow boxes to indicate additional shadows, red boxes to indicate complex areas, and magenta boxes
to indicate diffuse reflections. Through our proposed method, we have observed that the accuracy of
the restoration process in these areas is significantly improved, as can be seen from the error maps.

2. Related Work

Deep learning has demonstrated remarkable efficacy in the field of optical image
processing. Santo [15] was the first to apply deep learning methods to photometric stereo,
achieving prediction accuracies that significantly surpassed those of traditional algorithms.
Currently, the prevailing view is that deep learning approaches are predominantly used to
tackle photometric stereo tasks using per-pixel and all-pixel methods [16,17].

In the per-pixel approach, the authors propose using observation maps to solve photo-
metric stereo problems. By mapping pixel values of a given point under all illuminations
onto a two-dimensional plane with a fixed size, the unstructured input is converted into
a structured observation map. A convolutional neural network is then trained on this
map to perform regressions. The observation map reflects the distribution of outliers over
the spatial domain and more accurately captures the intensity variations of pixel points
between different photometric images under different illuminations at the same location.

The all-pixel approach uses pooling operations to aggregate images in all lighting
directions, also producing a structured input. This approach is based on the properties of
a fully convolutional network and allows for training and testing on input images of any
size, making it highly flexible. By using feature extraction and feature fusion operations,
this approach effectively explores the variability of internal image regions.

To summarize, these two deep learning-based methods follow a three-step process
that includes: (a) feature extraction, (b) feature aggregation, and (c) normal prediction.
When given a set of randomly ordered images and their corresponding lights, the feature
extraction and aggregation steps can be expressed as follows:

fi = Combin{x1,i, ...xm,i} (1)
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Here, fi represents the feature vector of the ith pixel, xj,i is the feature value of the ith pixel
in the jth light direction. Combin denotes the aggregation of features from the same pixel
captured under different lighting conditions.

The main difference between the per-pixel and all-pixel methods lies in the way feature
extraction and aggregation are performed. Therefore, for a given aggregated feature fi, we
can write the normal prediction step as ni = Ω( fi) or n = Φ( fi, ..., fhw), where Ω is the
per-pixel normal regressor, and Φ is the all-pixel normal regressor.

Both the per-pixel and all-pixel methods have their respective drawbacks. The former
ignores internal image information and is limited by the size setting of the observation map,
while the latter overuses 3 × 3 convolutions and may miss important details. In response
to these issues, Yao [18] proposes using SGC filters to extract feature information from
topologically adjacent points, and combines these two methods in a sequential manner.
Ju [19] adopts a self-supervised approach that learns the attention-weighted loss for each
pixel point and introduces penalties for different surface areas, which can retain more
detailed gradient information.

However, previous advanced methods are concerned with the design of a deep normal
regression network or loss function, ignoring the influence of the relevant normal vector
features obtained in the image feature extraction stage on the neural network. Along with
this idea, we propose an attention fusion framework that considers the hidden information
of image features at different stages and scales. Our framework naturally enhances the
characteristics of high-frequency complex regions to improve the accuracy of photometric
stereoscopic calculations.

Preliminaries

Before introducing our proposed method, we provide a brief overview of the basic
setup and principles of photometric stereo. In calibrated photometric stereo, the goal
is to recover the surface normal map of an object from an image captured by a known
fixed camera with known illumination directions. Assuming an orthogonal projection
camera with a linear radiometric counterpart and a directional light source from the upper
hemisphere, the viewing direction(v = [0, 0, 1]T) is parallel to the z-axis and points towards
the origin of the world coordinate system. When global illumination effects, such as
inter-reflection and ambient illumination, are absent, the imaging model can be expressed
as follows:

Ij = sjρ(n, lj, v)max(nTlj, 0) + µj (2)

Here Ij represents the image pixel intensity in the jth illumination direction. ρ is the
bidirectional reflectance distribution function (BRDF, an important formula in the field
of optics and graphics used to describe how light is reflected from a given direction of
incident light and outgoing light at a surface [20]) and max(nTlj, 0) represents an attached
shadow, and µj represents the noise of the camera and the environment. We assume that
the pixel intensities of an image are normalized by the corresponding lighting intensities,
so l can be viewed as a unit vector. The challenge of dealing with non-Lambertian surfaces
limits the applicability of some photometric stereo methods that are suitable only for
Lambertian surfaces, such as the least squares method. To address this issue, deep learning
methods have emerged as a powerful tool for fitting surfaces of objects that cannot be
expressed by mathematical formulas. However, even with the impressive fitting ability
of deep learning methods, reconstruction results can still be fuzzy and have large angle
errors due to the shape or material of some areas. As shown in Figure 2, complex scenes
with intricate structures can be particularly challenging. Fortunately, this paper proposes
a novel approach to address these “difficult” regions using multi-scale attention feature
fusion, which is both simple and effective.
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Figure 2. An example of some images with different light directions. In the red box, we illustrate a
situation where an object surface point with a normal vector n is illuminated by an infinitely distant
point light source in a direction l, and is observed by a camera in a view direction v. When nTlj < 0,
an additional shadows occur, and a cast shadows appear when the light is occluded by the object.

3. Methods

This paper introduces a novel calibrated photometric stereo network that integrates
residual multi-scale attention feature fusion. The proposed model structure is illustrated
in Figure 3. To preserve effective normal-correlated feature information in the feature ex-
traction stage and avoid feature loss due to redundant convolution operations, we employ
the high-resolution image from the shallow stage and the low-resolution image from the
deep stage to retain the texture and contour features of the object surface, respectively. By
combining these features, we achieve more accurate normal map prediction in regions
with complex structures and spatially varying materials. Ablation experiments are con-
ducted to comprehensively evaluate the network performance by utilizing unbalanced
feature information across the shallow and deep layers, to further enhance the multi-scale
information, and focus more attention on regions with rich structural and material feature
information and less attention on ordinary diffuse regions. We specially design a resid-
ual multi-scale feature attention fusion module, abbreviated as the RMAFF module, to
enhance and optimize the multi-scale information from the shallow and deep stages of the
stitched image.

Figure 3. RMAFF-PSN network architecture. The number underneath each layer refers to the number
of the channel that is used in the convolution.

The order and number of the photometric stereo tasks can vary in the feature fusion
stage, causing uncertainty in the image input order. As opposed to conventional CNNs,
images cannot be sequentially operated on in this stage. To address this challenge, pool-
ing operations are utilized to fuse different image features in an order-agnostic manner.



Photonics 2023, 10, 548 6 of 17

Specifically, the max-pooling operation is utilized to acquire the most expressive feature
information in the image along the same channel dimension of the image features un-
der different illumination directions. By aggregating feature maps through max-pooling,
our proposed method can effectively capture the most salient features across different
images, resulting in improved accuracy of photometric stereo reconstruction, especially in
high-frequency regions of the object surface.

In the normal regression part, to prevent overfitting caused by a deep network, we
added a dense-block structure [21]. This structure enhances feature propagation and reuses
features from low-dimensional inputs to improve the accuracy of the network in predicting
the normal image pixels while retaining the features of shallow local regions. In addition,
we used batch normalization between each layer of the convolutional neural network to
adjust the weights of the neurons into a standard normal distribution regularization layer.
Our network architecture consists of six convolutional layers, two downsampling layers,
five upsampling layers, two residual multi-scale attention feature fusion modules, one
max-pooling layer, and one dense-block module. Furthermore, we utilized L2-Norm layers
to normalize the surface normal vectors.

Residual Multi-Scale Attention Feature Fusion Module

While residual blocks have proven to be successful in capturing multi-scale features,
they may not fully capture all multi-scale features with the use of solely 3× 3 convolutional
kernels, which can lead to feature loss. To overcome this limitation, we propose the use of
a Residual Multi-scale Attention Feature Fusion (RMAFF). The RMAFF module incorpo-
rates the attention mechanism and multi-scale feature representation to more effectively
capture regional features in images, enhancing the ability of the network to learn more
comprehensive and representative normal vector-related features.

As depicted in Figure 4, the RMAFF module utilizes a residual-like block to incremen-
tally enlarge the network’s receptive field while improving the extracted features through
the use of an asymmetric convolution kernel. This technique enables the capturing of com-
prehensive feature information, while channel attention and spatial attention mechanisms
are employed to guide the network in optimizing high-frequency regions of the image from
both global and local perspectives.

Figure 4. Structure diagram of RMAFF module. It uses residual-like blocks to expand the field view
while adaptively adding attention weights to feature information.

More specifically, the module comprises four branches that are utilized to capture
different features of the input feature map Fi. Each branch begins with a 1 × 1 convolution
operation to exchange channel information, followed by 1 × 3 and 3 × 1 asymmetric
convolution operations to highlight local key features in both the horizontal and vertical
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directions. The output of each branch is added to the input of the next branch to integrate
multi-scale features. This operation can be mathematically formulated as follows:

Branchi
j =

{
AsyConv(Fi), j = 1
AsyConv(Fi ⊕ Branchj−1), j = 2, 3, 4

(3)

where Fi represents the ith feature map, j is the number of branches, and Branchi
j represents

the output of the j branch. ⊕ represents the pixel-by-pixel summation and AsyConv()
represents the asymmetric convolution layer.

After stitching together the multi-scale augmented features, we apply global average
pooling and global maximum pooling operations to obtain two feature vectors. These
vectors are then used to calculate the channel attention weights using a fully connected layer,
which are multiplied with the feature map to optimize the channel features. The resulting
feature map is then subjected to average pooling and maximum pooling operations along
the channel dimension. The outputs of these operations are concatenated, and the resulting
vector is passed through an activation layer to obtain the spatial attention weights. Finally,
the original feature map is multiplied by the spatial attention weights to obtain the final
output. The overall operation can be formulated as follows:

FCA = gc(Fcat)⊗ Fcat (4)

FSA = gs(FCA)⊗ FCA (5)

where Fcat ∈ Rc×h×w denotes a multi-scale feature with four branches stitched together,
gc ∈ Rc×1×1 denotes a 1D channel attention chart, gs ∈ R1×h×w denotes a 2D spatial
attention map,⊗ denotes element-by-element multiplication.

Finally, a 3× 3 convolution operation is performed to adjust the number of channels,
and the resulting features are added to the original features. The RMAFF module can be
summarized as follows, without losing generality:

RMAFFk = Conv1×1(Fi)⊕ Conv3×3(Fr(Cat4
j=1(Branchi

j))) (6)

where Conv1×1 denotes an 1×1 convolution operation on the feature map. Fr denotes the
channel attention operation and the spatial attention operation illustrated in
Equations (4) and (5).

4. Experimental Results

The model was trained on a NVIDIA RTX 3090 24G GPU. The initial learning rate
was set to 0.001, and was decreased by a factor of two every five epochs. The model was
trained using 32 batches for 30 epochs, and the best model was selected as the final result.
To evaluate the similarity between multiple feature channels, we employed the cosine
similarity measure. This approach is a flexible approach and provides a fixed-dimensional
scalar for each neighboring point. The cosine similarity loss function is defined as follows:

loss =
1

hw ∑
i

(
1− ni · n′i

)
(7)

where h and w are image resolutions, i is the image index, ni and n′i are the true and
predicted normals. The more similar they are the closer their product is to one.

4.1. Datasets

The insufficient number of datasets is a limiting factor that affects the accuracy of
photometric stereo predictions. In the experiments conducted in this study, the training
datasets used were the same as those used by most all-pixel methods. The two shape
datasets are the Blobby and Sculpture datasets [22,23], which were rendered using the
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MERL BRDF dataset [24] containing information on 100 different materials. The two
datasets contain 25,920 and 59,292 shapes, respectively, and each captured shape has
64 different lighting conditions, resulting in a total of 5.4 million images. The Sculpture
dataset is more complex and contains more detailed information. During the training
process, we used a ratio of 99:1 for training and validation data.

The DiLiGenT dataset [25] consists of 10 real-world objects with complex shapes and
different materials, each captured in 96 lighting orientations. Ground truth information
is provided for each object in the dataset. To evaluate the effectiveness of our proposed
model, we used this dataset for quantitative assessment.

We evaluated the performance of our proposed the model using the mean angular
error (MAE) as the evaluation metric. To calculate the MAE, we computed the angular
error between the predicted pixel normal value and the ground truth normal value of each
pixel. The calculation formula for the angular error between the predicted normal and the
ground truth normal is as follows:

MAE =
1

hw ∑
i

arccos
(
ni · n′i

)
(8)

where ni and n′i are the true and predicted normals.
In addition to the DiLiGenT dataset, we also evaluated our proposed model on the

Apple and Gourd dataset [26]. This dataset contains three different objects, each with
approximately 100 images of 646× 696 resolution. We used this dataset to further verify
the performance of our proposed method on real-world objects.

The DiLiGenT102 dataset [27] was created to overcome the limitations of the DiLiGenT
dataset, which lacks diversity in terms of object materials and shapes. This new dataset
includes 10 objects, each made of a different material, and generated using an advanced
3D modeling machine that captures more detailed information about their shapes and
materials. By controlling the shape and material information, the dataset allows researchers
to evaluate the network’s ability to handle various material and shape variations.

To showcase the practical usefulness of our proposed model, we acquired a new
dataset consisting of six objects illuminated by six fixed light angles, where the zenith angle
was fixed at 45° and the directional angles were spaced at 60°. We named this dataset
Simple PS data. The images were captured using an IDS industrial camera, which provides
high-quality and high-resolution images suitable for testing our model’s performance in
real-world scenarios.

In this work, we employed the photometric stereo setup, as shown in Figure 5. The
shooting scene was under darkroom conditions, and the object size was 0.25 m, and the
camera was positioned at a fixed height of 0.55 m. The original images were captured at a
resolution of 3120 × 3120 pixels and a bit depth of 24. During the test, the illumination
intensity is uniformly set to 1, and since the angle of the light source is fixed, the light
source direction matrix can be obtained by using the method of calibration sphere light
source calibration. However, due to the substantial effort required to scan the object with a
3D scanner, as well as align and calibrate the captured images, we only used image data to
validate the effectiveness of our proposed network model under sparse lighting conditions
that occur in real-world scenarios. Our aim is to evaluate the performance of the network
model in such practical scenarios.

In light of the fact that the three datasets mentioned above had no corresponding
ground truth, we reconstructed normal maps of the objects in these datasets for qualitative
visual analysis.

4.2. Network Analysis

We illustrate the impact of different network structures on complex object structures,
such as the intricate pattern of “Pot2”, and the folds in the clothing of “Reading”. In the
following sections, we evaluate the effectiveness of the residual multi-scale attention fusion
module, the impact of the normal regression networks with different structures, and the
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influence of the number and resolution of test images on the accuracy of the resulting object
normal maps.

Figure 5. Imaging setup for building the Simple PS data. We built a fabricated shelf and covered
it with black cloth to simulate darkroom conditions. The camera is fixed at the top of the shelf. Six
light sources were installed around the iron ring, and the target object was placed directly below the
camera. The blue line shows the detailed device and location information, and the green line shows
the height of the device from the ground.

4.2.1. Effectiveness of a Residual Multi-Scale Attention Feature Fusion Module

To investigate the effect of the RMAFF module on feature extraction performance, we
conducted ablation experiments on the network structure using the same training dataset.
Four variants were implemented, namely, “w/o RMAFF”, “w/o Attention”, “Single RMAFF”,
and “RMAFF + AFF”.

“w/o RMAFF” removes the RMAFF module from the network and only concatenates
shallow-deep features. “Single RMAFF” employs a single branch RMFE module to extract
different levels of features from the deep image. “w/o Attention” removes the attention
allocation mechanism from the module and directly connects the feature information
extracted by the residual multi-scale module. “RMAFF + AFF” replaces the concat operation
with the AFF structure [28] for feature stitching. Our approach uses two RMFE modules to
extract different features from the shallow and deep layers and then stitches them together
using the concat operation.

Table 1 shows all the network structure variants results, and the corresponding best
model results from 30 epochs of training. From the experimental results, the experimental
results of ID(1) are better than those of ID(0) without the feature enhancement and opti-
mization steps. This is due to the fine-grained global-local multi-scale feature grouping that
the features undergo before the pooling and fusion operation. Additionally, the attention
mechanism assigns different attention weights to weaken unimportant features, leading to
better results as the network can focus on the important regions of the image.

The MAE for ID(4) is 7.13. The experimental results indicate that shallow features
contain more texture information. The concurrent extraction of both shallow and deep
features preserves significant regional characteristics after applying the RMAFF module,
which in turn results in better estimations of projected shadow regions and spatially varying
material regions.

The results of ID(2) and ID(3) reveal that the number of attention operations can have
an impact on model performance. In particular, ID(3), which redistributes attention weights
using the AFF structure to merge the optimized shallow and deep features, performed worse
than ID(2). Our hypothesis is that reusing the attention mechanism enhances the most
salient information and suppresses the least salient information. However, after fusion and
pooling, different channels represent the decomposition of images under varying lighting
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conditions, and feature maps with significant differences in channel features may have limited
representation power in certain shadow-obscured regions. This may explain why the concat
operation produced excellent results. The distribution of features under one branch reinforces
the salient features and weakens the features in the shaded areas, while the opposite may be
true for another branch. By max-pooling the features from all branches, the information from
each channel can best represent the surface normal distribution of the object.

Table 1. RMAFF-PSN ablation experiments with the average angle error value on the real dataset
DiLiGenT regarding the accuracy of the RMAFF module feature extraction.

ID Method Ball Cat Pot1 Bear 1 Pot2 Buddha Goblet Reading Cow Harvest Avg.

(0) w/o RMAFF 2.66 5.82 7.71 6.69 8.06 7.75 8.96 13.33 8.26 15.31 8.45
(1) Single RMAFF 2.48 4.68 5.99 7.04 6.91 7.55 8.72 9.72 8.68 12.47 7.42
(2) w/o Attention 2.72 4.96 6.45 7.09 7.33 7.81 8.09 8.98 6.84 12.07 7.23
(3) RMAFF+AFF 3.92 4.80 6.35 7.62 7.67 7.95 9.98 10.47 6.56 12.68 7.80
(4) Our methods 2.18 4.64 5.52 7.53 6.33 7.71 8.26 9.46 7.50 12.23 7.13

1 For comparison purposes, all 96 images were used uniformly in our ablation experiments for the “Bear” object.

The comparison between ID(2) and ID(4) demonstrates the effectiveness of the channel
and spatial attention in enhancing the normal vector features in the image. We display a
selection of feature map channels after maximum pooling in Figure 6. Our results indicate
that the addition of the attention mechanism in the RMAFF module leads to a significant
reduction in the average angle error value. This finding supports the notion that our
proposed method can effectively integrate multi-scale features and improve the accuracy
of calibrated photometric stereo.

Figure 6. The grayscale map is utilized to visualize certain feature map channels following maximum
pooling. We focus on the “supporting foot” region of the “Goblet” object in the DiLiGenT dataset.

4.2.2. The Validity of Normal Regression Network Structures

We validated the effectiveness of our normal regression network, as depicted in Figure 7.
Experiments were conducted using all 96 input images of the DiLiGenT dataset. By compar-
ing the results obtained from regression network structures I, II, and III, we found that
excessive usage of 3× 3 convolutional kernels caused feature smoothing, leading to inferior
performance. However, the addition of dense-blocks resulted in superior performance as
each hidden layer learned more discriminative features through feature fusion. In the com-
parison results for I and IV we observed that although the multi-branch design structure
utilized spatial information more effectively, using redundant residual connections in the
regression part resulted in a significant amount of unnecessary and redundant information,
which degraded the accuracy of the pixel normal prediction.
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Figure 7. The validity of normal regression network structures. To prevent the network from generat-
ing redundant information, our normal regression network adds the dense-block module for feature
reuse, once again integrating features at different levels.

4.2.3. Effect of Different Resolutions and Number of Input Images

Images of different resolutions may contain varying levels of information, with larger
images often containing richer features such as geometry and texture [29]. Our proposed
RMAFF module is designed to fully perceive light and dark variations within an image
and extract the most appropriate image features based on those variations. However, due
to GPU memory limitations, training models with larger numbers and higher resolutions
of input images can significantly increase the training time.

We conducted experiments using the DiLiGenT dataset to examine the effect of input
image numbers and resolutions on our model’s training and testing performance. Figure 8
illustrates the results obtained from training images with various numbers and resolutions.
Our findings indicate that using 32 images at a resolution of 32 × 32 achieves a good
balance between training time and prediction accuracy, as these images contain ample
information for the model to learn from. Larger input images tend to offer richer features,
but training models with larger input sizes may incur longer training times and lead to
more complex model structures. Therefore, it is important to find a balance between input
image sizes and model performance in practical applications.

Figure 8. (a) The results of the RMAFF-PSN trained and tested with different numbers of input
images. (b) The quantitative comparison on the DiLiGenT dataset. The errors for 10 objects are
averaged. (c) The results of the RMAFF-PSN tested with different resolutions of input images. (d) The
comparison of the convergence of our RMAFF-PSN and PS-FCN (Norm.) on the same train dataset
and the DiLiGenT benchmark dataset.
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4.2.4. Effect of Different Training Datasets

In this study, the influence of dataset complexity on the accuracy of the proposed
network model is analyzed. It is well known that the accuracy of the network model can
be affected by the complexity of the dataset, as even better networks may not necessarily
improve model accuracy, a phenomenon known as “Kolmogorov complexity” in machine
learning [30,31]. To investigate the effect of dataset complexity on network performance,
we conducted separate experiments on three different training datasets and reconstructed
the normal map of the “Buddha” object. It should be noted that everything was kept the
same for the network except for the training dataset. The experimental results are shown in
Figure 9. Our analysis indicates that the network’s performance in reconstructing surface
normals is better when the surface complexity of the training dataset is higher (Train_Blobby
vs. Train_Sculpture) and the dataset has a larger number of samples (Train_Blobby vs.
Train_Blobby + Sculpture). Therefore, we conclude that the complexity of the object shape
and material is essential in the photometric stereo task, enabling the network to capture
more features of the object surface and achieve a more accurate normal estimation during
the test phase.

Figure 9. We present the average angle error of our network on the DiLiGenT dataset using different
training datasets, along with the reconstructed results of the “Buddha” object. The challenging area
of the object is denoted by the red box.

4.3. Benchmark Comparison of the DiLiGenT Dataset

We conducted a comprehensive comparison of the RMAFF-PSN with several com-
monly used methods, which included linear least squares-based methods (L2 [1]), four
per-pixel methods (CNN-PS [6], LMPS [32], SPLINE-Net [33], PX-Net [7]), and four all-pixel
methods (IRPS [34], PS-FCN [5], CHR-PSN [8], MF-PSN [9]). To evaluate the performance
of each method, we used the DiLiGenT dataset, which included 96 input images for all
methods, except for the “Bear” object, which used 76 images due to corruption in the
first 20 images. The results of our experiments are presented in Table 2. Our proposed
RMAFF-PSN method outperformed most of the networks, exhibiting higher accuracy than
the existing deep learning methods under varying light distributions and image sizes
(Figure 8b,d). Furthermore, we provide a visual comparison of the predicted normal maps
for each object in the DiLiGenT dataset in Figure 10.

The experimental results presented in Table 2 unequivocally validate the efficacy
of our proposed method, as evidenced by its impressive average MAE of 6.89 on the
DiLiGenT dataset, either ranking first or second among previous methods. Notably, our
method delivers particularly exceptional results for objects with intricate structures such
as “Pot2” and “Reading”, further underscoring its superiority over existing alternatives
in handling complex geometries. This improved performance is mainly attributed to the
RMAFF module incorporated into our network structure, which effectively enhances the
representation of complex regions and significantly improves the network’s ability to
recover finer details. For instance, in the “Harvest” object, our method delivers significantly
finer normals in the pocket region, thereby provding further evidence of the efficacy of the
RMAFF module in handling complex geometries.
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Table 2. Quantitative comparison of the proposed method with both traditional methods and deep
learning methods is conducted on the DiLiGenT benchmark.

Method Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Avg.

L2 [1] 4.10 8.41 8.89 8.39 14.65 14.92 18.50 19.80 25.60 30.62 15.39
WG10 [35] 2.06 6.73 7.18 6.50 13.12 10.91 15.70 15.39 25.89 30.01 13.35
AZ08 [26] 2.71 6.53 7.23 5.96 11.03 12.54 13.93 14.17 21.48 30.50 12.61
GC10 [36] 3.21 8.22 8.53 6.62 7.90 14.85 14.22 19.07 9.55 27.84 12.00
IA14 [37] 3.34 6.74 6.64 7.11 8.77 10.47 9.71 14.19 13.05 25.95 10.60
ST14 [38] 1.74 6.12 6.51 6.12 8.78 10.60 10.09 13.63 13.93 25.44 10.30
SPLINE-Net [33] 4.51 6.49 8.29 5.28 10.89 10.36 9.62 15.50 7.44 17.93 9.63
EW20 [39] 1.58 6.30 6.67 6.38 7.26 13.69 11.42 15.49 7.80 18.74 9.53
DPSN [23] 2.02 6.54 7.05 6.31 7.86 12.68 11.28 15.51 8.01 16.86 9.41
CK18 [40] 1.50 5.74 6.24 4.97 8.64 8.86 10.00 11.44 11.33 21.90 9.06
IRPS [34] 1.47 5.44 6.09 5.79 7.76 10.36 11.47 11.03 6.32 22.59 8.83
LMPS [32] 2.40 6.11 6.54 5.23 7.48 9.89 8.61 13.68 7.98 16.18 8.41
PS-FCN [5] 2.82 6.16 7.13 7.55 7.25 7.91 8.60 13.33 7.33 15.85 8.39
Attention-PSN [27] 2.93 6.14 6.92 4.86 6.97 7.75 8.42 12.90 6.86 15.44 7.92
DR-PSN [41] 2.27 5.42 7.08 5.46 7.21 7.84 8.49 12.74 7.01 15.40 7.90
GPS-Net [26] 2.92 5.42 6.04 5.07 7.01 7.77 9.00 13.58 6.14 15.14 7.81
CHR-PSN [8] 2.26 5.97 7.04 6.35 6.76 7.15 8.32 12.52 6.05 15.32 7.77
CNN-PS [6] 2.12 4.38 5.37 4.20 6.38 8.07 7.42 12.12 7.92 13.83 7.18
PS-FCN(Norm.) [42] 2.67 4.76 6.17 7.72 7.15 7.53 7.84 10.92 6.72 12.39 7.39
PX-Net [7] 2.03 4.39 5.08 4.13 5.10 7.61 6.90 10.26 4.69 13.10 6.33
NormAttention-PSN [43] 2.93 4.65 5.96 5.48 6.42 7.12 7.49 9.93 5.99 12.28 6.83
RMAFF-PSN(Ours) 2.18 4.68 5.52 5.00 6.33 7.71 8.26 9.46 7.50 12.23 6.89

The value represents the MAE of the estimated surface normals, where the bold numbers indicate the best results,
while the underlined values represent the second-best performance.

Figure 10. Qualitative results on the DiLiGenT benchmark main dataset. From left to right columns
in each scene, we show (a ) observed images and ground-truth, (b) estimated surface normals and
angular error maps by our method, and (c) estimated surface normal and angular error maps by
some state-of-the-art methods. The numbers under the error maps indicate their mean angular error
in degrees.
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4.4. Qualitative Comparison of Other Real-World Datasets

To validate the efficacy and generalizability of our proposed approach, we conducted
qualitative experiments on three real datasets,namely, Appleand Gourd, DiLiGenT102,
and Simple PS data. Thanks to the richer features extracted by the RMAFF-PSN and the
avoidance of over-smoothing in structurally complex regions, our method can recover
clearer surface normals.

The DiLiGenT102 dataset provides a comprehensive evaluation of our network’s pre-
diction results for objects with diverse shapes and material groups. As shown in Figure 11,
our network’s performance is limited when dealing with objects made of transparent
acrylic. This is primarily due to the lack of such objects in the training dataset, resulting in
a significant bias towards predicting pixel normals for this challenging material.

To assess the generalization ability of our network model under sparse illumination,
we acquired a new dataset using an industrial camera. This dataset, includes objects with
surfaces obscured by shadows (e.g.,“Conch”, “Flagstone”) as well as challenging wool-like
materials (e.g.,“Pillow1”, “Blanket”). Figure 12 displays the normal prediction results for
all six input images. Despite the sparse lighting conditions, our network accurately predicts
the surface normals of the objects.

Figure 11. We present qualitative results for the DiLiGenT102 dataset. From left to right, we demon-
strate the robustness of our network for materials with varying isotropy and anisotropy groups,
including challenge groups such as acrylic. We also show the effect of the network on objects with
different surface structures and global illumination conditions, from top to bottom.

4.5. Discussion

The network model proposed in this paper can promote the application of photometric
stereoscopic technology in some 3D modeling fields requiring fine detail, such as industrial
defect detection, film, computer-generated images, etc. In addition, the results of this paper



Photonics 2023, 10, 548 15 of 17

show that enhancing and optimizing the retained normal-related channel information in the
feature map and reducing the non-normal-related information (such as light intensity) are
effective for the prediction of the normal of the complex structure region in the photometric
stereoscopic task. Although we tested the resilience of our method under dense and
sparse lighting conditions, we obtained fuzzy reconstruction results for some rare object
surface materials, such as “acrylic”. We infer that the reason for this result is that the object
materials in our training dataset are single and lack some “challenging” materials. We will
continue to investigate this phenomenon in our future work.

Figure 12. We present qualitative results of our RMAFF-PSN on the objects “Apple”, “Gourd1” and
“Gourd2” from the Apple and Gourd dataset, where 24, 64, and 96 represent the numbers of input
images. We also shot the dataset under sparse light directions. As shown in the third and fourth
rows, our method is able to reconstruct clear and normal directions of the objects with only six input
images.

5. Conclusions

In this paper, we introduce a novel multi-scale feature fusion network that addresses
the problem of a blurred normal reconstruction of “difficult” regions in the calibrated
photometric stereo problem with improved efficacy. Our approach leverages shallow-
deep branching features, multi-level feature enhancement, and mixed attention-weighted
optimization to achieve high-performance results. Using the DiLiGenT benchmark and
additional real-world datasets, we demonstrate that our network generates accurate surface
reconstructions, especially in regions with intricate structures.

To validate the scalability and versatility of our proposed multi-scale feature fusion
network, we conducted ablation experiments to showcase its efficacy in addressing the
challenging problem of sparse photometric stereo. We believe that the robustness and
scalability of our approach make it suitable for a wide range of real-world applications. In
future work, we plan to upgrade existing shooting equipment and enhance the adaptability
of our model by training it on more diverse and complex datasets, thereby expanding its
capabilities and enabling it to handle a wider range of real-world textures and shapes.
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