Homo-Chromophores in Cu(I)(XXX), (X3 = N3, C3, Cl3, S3, P3, Br3, or I3) Derivatives—Structural Aspects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cu(NNN), Cu(CCC) Derivatives
2.2. Cu(ClClCl), Cu(SSS) Derivatives
2.3. Cu(PPP), Cu(BrBrBr), and Cu(III) Derivatives
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-Mepy | 2-methylpyridine |
(C2H8N)2 | bis (dimethylammonium) |
(C6H14N2)22+(*) | bis (rac-cyclohexane-1,2-diamine) |
C4H6N2S | 1-methylimidazoline-2(3H)-thione |
C4H8O | tetrahydrofuran |
C6H14N22+ | 1,4-diazoniabicyclo [2.2.2] octane |
C6H8N2O2 | 1,3-dimethylimidazolium |
C9H10N3 | [1-methyl-3-(pyridine-2-yl)-1H-imidazol-3-ium] |
C11H12N1+ | 2-ethylisoquinoline-2-ium |
C11H20N2 | (4,5-dimethyl-1,3-bis(propan-2-yl)-imidazol-2-ylidene) |
C14H16N2 | 4,4′-(ethene-1,2diyl)bis(1-methylpyridin-1-ium) |
C16H15N2 | cinnamylidene-p-toluidine |
C18H31B2N2O3 | 2-(2-t-butoxy-4,4,5,5 tetramethyl-1,3,2)5-dioxaborolan-2-yl)-1,3-dimethyl-2,3-dihydro-1H-1,3,2-benzoborate |
C20H20N4 | 1,1′-(biphenyl-4,4′-diyl)bis(3-methyl-1H-imidazol-3-ium) |
C26H22NO4 | (11,12-dimethoxy-14-phenyl-8,9-dihydro[1,3] dioxolo[4,5]isoquinolino [2,1-b] isoqunolin-7-ium) |
Cp | cyclopentadiene |
Et2tu | diethyl thiourea |
etu | ethylene thiourea |
Me4tu | tetramethyl thiourea |
NEt4+ | tetraethylammonium |
PhS | thiophenyl |
PPh2BH2NMe3 | (trimethylammonio(dihydrio)borato)diphenylphosphine |
PPh3 | triphenylphosphine |
PPh3Me+ | methyl triphenylphosphonium |
PPh4+ | tetraphenyl phosphonium |
tu | thiourea |
References
- Malinowski, J.; Zych, D.; Jacewicz, D.; Gawdzik, B.; Drzeżdżon, J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry—A Review. Int. J. Mol. Sci. 2020, 21, 5443. [Google Scholar] [CrossRef] [PubMed]
- Von Zelewsky, A.; Mamula, O. The bright future of stereoselective synthesis of coordination compounds. J. Chem. Soc.-Dalton Trans. 2000, 219–231. [Google Scholar] [CrossRef]
- Holloway, C.E.; Melník, M. Copper(I) compounds: Classification and analysis of crystallographic and structural data. Rev. Inorg. Chem. 1995, 15, 147–386. [Google Scholar] [CrossRef]
- Österberg, R. Model for copper-protein interaction based on isolation and crystal structures studies. Coord. Chem. Rev. 1974, 12, 309–347. [Google Scholar] [CrossRef]
- Colman, P.M.; Freeman, H.C.; Guss, J.M.; Murata, M.; Norris, B.A.; Ramshaw, J.A.M.; Venkatafpa, M.P. X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. Nature 1978, 272, 319–324. [Google Scholar] [CrossRef]
- Cortés, P.A.F.; Marx, M.; Trose, M.; Beller, M. Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis overviewed perspectives. Chem. Catal. 2021, 1, 298–338. [Google Scholar] [CrossRef]
- Beaudelot, J.; Oger, S.; Peruško, S.; Phan, T.A.; Teunens, T.; Moucheron, C.; Evano, G. Photoactive copper complexes properties and applications. Chem. Rev. 2022, 122, 16365–16609. [Google Scholar] [CrossRef]
- Lazorski, M.S.; Castellano, F.N. Advances in the light conversion properties of Cu(I)-based photosensitizers. Polyhedron 2014, 82, 57–70. [Google Scholar] [CrossRef]
- Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Photochemistry and photophysics of coordination compounds. Top. Curr. Chem. 2007, 280, 69–115. [Google Scholar] [CrossRef]
- Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 2019, 364, aav9713. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pal, C.A.; Kotakonda, M.; Joshi, M.; Shit, M.; Ghosh, P.; Choudhury, A.R.; Biswas, B. Solvent induced distortion in a square planar copper(II) complex containing an azo-functionalized Schiff base: Synthesis, crystal structure, in-vitro fungicidal and anti-proliferative, and catecholase activity. J. Mol. Struct. 2021, 1245, 131057. [Google Scholar] [CrossRef]
- Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013, 113, 6234–6458. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. J. Coord. Chem. Rev. 2018, 357, 144–172. [Google Scholar] [CrossRef]
- Capdevielle, P.; Maumy, M. Copper-catalysed oxidative alkoxylation of acyl- and carbomethoxy-hydroquinones. Tetrahedron 2001, 57, 379–384. [Google Scholar] [CrossRef]
- Melník, M.; Mikušová, V.; Mikuš, P. The Structural Aspects of Mutually Trans-X-Cu(I)-X (X = OL, NL, CL, PL, SL, SeL, Cl or Br) Complexes. Inorganics 2024, 12, 245. [Google Scholar] [CrossRef]
- Melník, M.; Mikušová, V.; Mikuš, P. Monodentate Ligands in X-Cu(I)-Y Complexes—Structural Aspects. Inorganics 2024, 12, 279. [Google Scholar] [CrossRef]
- Lewin, A.H.; Michl, R.J.; Ganis, P.; Lepore, U. Synthesis and crystal structure of tris-(2-picoline)copper(I) perchlorate (C6H7N)3CuClO4; a trigonal copper(I) ion. J. Chem. Soc. Chem. Commun. 1972, 661–662. [Google Scholar] [CrossRef]
- Stamp, L.; Dieck, H.T. Copper(I) complexes with unsaturated nitrogen ligands. Part IV. Synthesis and structure of copper(I) monoazadiene complexes. Inorg. Chim. Acta 1988, 147, 199–206. [Google Scholar] [CrossRef]
- Dieck, H.T.; Stamp, L.; Diercks, R.; Muller, C. Monoazadiene and diazadiene complees of group-VIII transition-metals and their relation to catalysis. New. J. Chem. 1985, 9, 289–297. [Google Scholar]
- Kleeberg, C.; Borner, C. Syntheses, Structures, and Reactivity of NHC Copper(I) Boryl Complexes: A Systematic Study. Organometallics 2018, 37, 4136–4146. [Google Scholar] [CrossRef]
- Goreshnik, E. Synthesis, crystal structure and Raman spectra of [dabcoH2]CuICl3, [dabcoH2]3Cl4CuIICl4(DMSO) and Cu3Cl3(dabco)(DMSO) (dabco = 1,4-diazabicyclo [2.2.2] octane). J. Coord. Chem. 2017, 70, 859–870. [Google Scholar] [CrossRef]
- Wu, J.Y.; Chen, C.W. Synthesis, crystal structures, and dye removal properties of a series of discrete and polymeric copper, zinc, cobalt, and cadmium complexes containing bis-pyridyl-bis-amine ligands. Solid. State Chem. 2018, 265, 227–236. [Google Scholar] [CrossRef]
- Becker, S.; Durr, M.; Miska, A.; Becker, J.; Gawlig, C.; Behrens, U.; Ivanovic-Burmazovic, I.; Schindler, S. Copper Chloride Catalysis: Do μ4-Oxido Copper Clusters Play a Significant Role? Inorg. Chem. 2016, 55, 3759–3766. [Google Scholar] [CrossRef] [PubMed]
- Weininger, M.S.; Hunt, G.W.; Amma, E.L. Crystal and molecular structure of tris(ethylenethiourea)copper(I) sulphate and tris(tetramethylthiourea)copper(I) tetrafluoroborate [examples of trigonal planar copper(I) stereochemistry]. J. Chem. Soc. Chem. Commun. 1972, 1140–1141. [Google Scholar] [CrossRef]
- Kamara, R.; Declercq, J.P.; Germain, G.; Van Meerssche, M. Structure de Complexes du Cuivre (I) Avec la Thiourée: I-Sulfate de Tris (N, N′-Diéthyl-Thiourée)-Cuivre (I) Cu |SC (NHC2H5)2| 3.1/2 SO4. Bull. Soc. Chem. Belg. 1982, 91, 339–340. [Google Scholar] [CrossRef]
- Cingi, M.B.; Lanfredi, A.M.M.; Tiripicchio, A.; Camellini, M.T. The crystal and molecular structure of tris(thiourea)copper(I) hydrogen-o-phthalate. A monomeric trigonal planar copper(I) complex. Acta Crystallogr. Sect. B 1977, 33, 3772–3777. [Google Scholar] [CrossRef]
- Eller, P.G.; Corfield, P.W.R. The crystal structure of a trigonal planar copper(I) complex. J. Chem. Soc. D 1971, 105–106. [Google Scholar] [CrossRef]
- Garner, C.D.; Nicholson, J.R.; Clegg, W. Preparation, crystal structure, and spectroscopic characterization of [NEt4]2[Cu(SPh)3]. Inorg. Chem. 1984, 23, 2148–2150. [Google Scholar] [CrossRef]
- Atkinson, E.R.; Gardiner, D.J.; Jackson, A.R.W.; Raper, E.S. Tris-(1-methylimidazoline-2(3H)-thione)copper(I) nitrate: Preparation, thermal analysis and crystal structure. Inorg. Chim. Acta 1985, 98, 35–41. [Google Scholar] [CrossRef]
- Kokkou, S.C.; Fortier, S.; Rentzeperis, P.J.; Karagiannidis, P. Structure of tris[2(1H)-pyridinethione-S]copper(I) nitrate (TPTCN), [Cu(C5H5NS)3]NO3. Acta Crystallogr. Sect. C 1983, 39, 178–180. [Google Scholar] [CrossRef]
- Coucouvanis, D.; Murphy, C.N.; Kanodia, S.K. Metal-mercaptide chemistry. The synthesis and structural characterization of the [Cu(SC6H5)3]2-anion. A rational synthesis and the structure of the [Cu4(SC6H5)6]2-cluster. Inorg. Chem. 1980, 19, 2993–2998. [Google Scholar] [CrossRef]
- Doyle, G.; Eriksen, K.A.; Van Engen, D. Bimetallic complexes containing copper. The crystal structures of (tmed)CuMo(CO)3(.eta.5-C5H5) and [(C6H5)3P]3CuV(CO)6. Organometallics 1985, 4, 2201–2206. [Google Scholar] [CrossRef]
- Elsayed-Mousa, M.; Braese, J.; Marquardt, C.; Seidl, M.; Scheer, M. The Coordination Chemistry of the Phosphanylborane (C6H5)2PBH2·N(CH3)3 towards Copper(I) Salts. Eur. J. Inorg. Chem. 2020, 2020, 2501–2505. [Google Scholar] [CrossRef]
- Schollmeyer, D. (Johannes Gutenberg University, Mainz, Germany); Myskiv, M. (Ivan Franko National University, Lviv, Ukraine). Personal Communication, 2019.
- Bowmaker, G.A.; Camus, A.; Skelton, B.W.; White, A.H. Group 11 metal(I) complexes with low co-ordination numbers: The crystal structures of [PPh3Me]2[CuBr3], [PPh3Me]2[CuBr2]Br, and [PPh3Me]2[AgI3]. J. Chem. Soc. Dalton Trans. 1990, 727–731. [Google Scholar] [CrossRef]
- Shapovalov, S.S.; Kolos, A.V.; Makhin, A.P.; Skabitskii, I.V.; Simonenko, N.P.; Minin, V.V. Complexes of Cobalt and Copper Halides Based on 1,3-Dimethylimidazolium-4-Carboxylate. J. Struct. Chem. 2019, 60, 1648–1654. [Google Scholar] [CrossRef]
- Hartl, H.; Bruedgam, I. Synthese und Strukturuntersuchungen von Iodocupraten(I) X. [Co(cp)2]2[CuI3] und [Co(cp)2][Cu2I3] = 1/9{[Co(C(cp)2]9[Cu6I11]∞2[(Cu6I8)2]} [1]/Syntheses and Structure Analyses of Iodocuprates(I) X. [Co(cp)2]2[CuI3] and [Co(cp)2][Cu2I3] = 1/9{[Co(cp)2]9[Cu6I11]∞2[(Cu6I8)2]} [1]. Z. Naturforsch. (B) 1989, 44, 936–941. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Clark, G.R.; Rogers, D.A.; Camus, A.; Marsich, N. Structural and spectroscopic characterization of complexes containing the mononuclear trihalogenometalates [CuI3]2–, [CuBr3]2–, and [AgI3]2–. Crystal structure of [PMePh3]2[CuI3]. J. Chem. Soc. Dalton Trans. 1984, 37–45. [Google Scholar] [CrossRef]
- Liu, G.N.; Zhao, R.Y.; Xu, H.; Wang, Z.H.; Liu, Q.S.; Shahid, M.Z.; Miao, J.L.; Chen, G.; Li, C. The structures, water stabilities and photoluminescence properties of two types of iodocuprate(i)-based hybrids. Dalton Trans. 2018, 47, 2306–2317. [Google Scholar] [CrossRef]
- Wang, R.Y.; Zhang, X.; Yu, J.H.; Xu, J.Q. New iodometallates(I) with in situ generated organic base derivatives as countercations (M+ = Ag+, Cu+). J. Solid. State Chem. 2019, 269, 239–245. [Google Scholar] [CrossRef]
- Jayakumar, J.; Cheng, C.H. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C−H Bond Activation as the Key Step. Chem. Eur. J. 2016, 22, 1800–1804. [Google Scholar] [CrossRef]
- Skelton, B.W. (University of Western Australia, Perth, Australia); Massi, M. (Curtin University, Perth, Australia). Personal Communication, 2018.
X | CuX2 | CuX3 | ||
---|---|---|---|---|
(cov. Radius) (Å) | Cu-X (Å) | (Cu-X)2 (°) | Cu-X (Å) | (X-Cu-X)3 (°) |
O (0.73) | 1.844 | 176.5 | - | - |
N (0.75) | 1.886 | 174.5 | 1.990 | 120.0 (±2.3) |
C (0.77) | 1.900 | 174.0 | 1.987 (±3) | 120.0 (±7.1) |
Cl (0.99) | 2.104 | 175.9 | 2.165 (±12) | 120.0 (±1.5) |
S (1.02) | 2.137 | 176.6 | 2.253 (±21) | 120.0 (±7.1) |
P (1.06) | 2.236 | 172.3 | 2.296 (±21) | 120.0 (±2.6) |
Br (1.14) | 2.240 | 169.7 | 2.355 (±12) | 120.0 (±2.8) |
Se (1.16) | 2.268 | 180 | - | - |
I (1.33) | - | - | 2.550 (±15) | 120.0 (±3.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melník, M.; Mikušová, V.; Mikuš, P. Homo-Chromophores in Cu(I)(XXX), (X3 = N3, C3, Cl3, S3, P3, Br3, or I3) Derivatives—Structural Aspects. Inorganics 2025, 13, 36. https://doi.org/10.3390/inorganics13020036
Melník M, Mikušová V, Mikuš P. Homo-Chromophores in Cu(I)(XXX), (X3 = N3, C3, Cl3, S3, P3, Br3, or I3) Derivatives—Structural Aspects. Inorganics. 2025; 13(2):36. https://doi.org/10.3390/inorganics13020036
Chicago/Turabian StyleMelník, Milan, Veronika Mikušová, and Peter Mikuš. 2025. "Homo-Chromophores in Cu(I)(XXX), (X3 = N3, C3, Cl3, S3, P3, Br3, or I3) Derivatives—Structural Aspects" Inorganics 13, no. 2: 36. https://doi.org/10.3390/inorganics13020036
APA StyleMelník, M., Mikušová, V., & Mikuš, P. (2025). Homo-Chromophores in Cu(I)(XXX), (X3 = N3, C3, Cl3, S3, P3, Br3, or I3) Derivatives—Structural Aspects. Inorganics, 13(2), 36. https://doi.org/10.3390/inorganics13020036