Nanoformulations of Cosmetic Interest for the Cutaneous Uptake of Nickel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis via ICP-MS
2.2. Rheological Test
2.3. Swelling Studies
2.4. In Vitro Release Studies
3. Materials and Methods
3.1. Materials and Instruments
3.2. Lipophilic Gel Preparation
3.3. Nickel Solution and Gel Sample Preparation for ICP-MS Analysis
3.4. Rheological Test
3.5. Swelling Studies
3.6. In Vitro Release Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safavi, S.; Najarian, R.; Rasouli-Azad, M.; Masoumzadeh, S.; Ghaderi, A.; Eghtesadi, R. A narrative review of heavy metals in cosmetics; health risks. Int. J. Pharm. Res. 2019, 11, 09752366. [Google Scholar]
- Arshad, H.; Mehmood, M.Z.; Shah, M.H.; Abbasi, A.M. Evaluation of heavy metals in cosmetic products and their health risk assessment. Saudi Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef]
- Tramontana, M.; Bianchi, L.; Hansel, K.; Agostinelli, D.; Stingeni, L. Nickel allergy: Epidemiology, pathomechanism, clinical patterns, treatment and prevention programs. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2020, 20, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Shafeeq, A.; Siddiq, U.; Bashir, F.; Ahmad, T.; Athar, M.; Butt, M.T.; Ullah, S.; Mukhtar, A.; Hussien, M.; et al. A mechanistic approach for toxicity and risk assessment of heavy metals, hydroquinone and microorganisms in cosmetic creams. J. Hazard. Mater. 2022, 433, 128806. [Google Scholar] [CrossRef] [PubMed]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef]
- Akhand, S.; Yadav, A.; Jain, D.K. Potential Contamination in Cosmetics: A Review. Syst. Rev. Pharm. 2023, 14, 641. [Google Scholar]
- Adam-Dima, I.; Olteanu, A.A.; Nițulescu, G.; Cristea, S.; Guțu, C.M.; Purdel, C. Nickel And Chromium In Cosmetic Products: From Laboratory To Regulation And Possible Health Risks. Farmacia 2024, 72, 6. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Silverberg, N.B.; Pelletier, J.L.; Jacob, S.E.; Schneider, L.C.; Cohen, B.; Horii, K.A.; Kristal, L.; Maguiness, S.M.; Tollefson, M.M.; Weinstein, M.G.; et al. Nickel allergic contact dermatitis: Identification, treatment, and prevention. Pediatrics 2020, 145, e20200628. [Google Scholar] [CrossRef]
- Drenovska, K.; Shahid, M.; Vassileva, S. Nickel and skin: From allergy to autoimmunity. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2020, 20, 1032–1040. [Google Scholar] [CrossRef]
- Miglione, A.; Di Lorenzo, R.; Grumetto, L.; Spinelli, M.; Amoresano, A.; Laneri, S.; Cinti, S. An integrated electrochemical platform empowered by paper for fast nickel detection in cosmetics. Electrochim. Acta 2022, 434, 141332. [Google Scholar] [CrossRef]
- Akhtar, A.; Kazi, T.G.; Afridi, H.I.; Khan, M. Human exposure to toxic elements through facial cosmetic products: Dermal risk assessment. Reg. Tox. Pharm. 2022, 131, 105145. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Apolinario, A.C.; Hauschke, L.; Ribeiro Nunes, J.; Biagini Lopesa, L. Lipid nanovesicles for biomedical applications: ‘What is in a name’? Progr. Lipid Res. 2021, 82, 101096. [Google Scholar] [CrossRef] [PubMed]
- Venkataramani, D.; Tsulaia, A.; Amin, S. Fundamentals and applications of particle stabilized emulsions in cosmetic formulations. Adv. Colloid Interface Sci. 2020, 283, 102234. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Kim, H.; Kim, J.W. Microfluidic production of monodisperse emulsions for cosmetics. Biomicrofluidics 2021, 15, 051302. [Google Scholar] [CrossRef]
- Huang, X.; Wang, L.; Chen, J.; Jiang, C.; Wu, S.; Wang, H. Effective removal of heavy metals with amino-functionalized silica gel in tea polyphenol extracts. J. Food Meas. Charact. 2020, 14, 2134–2144. [Google Scholar] [CrossRef]
- Sethi, S.; Medha Singh, G.; Sharma, R.; Kaith, B.S.; Sharma, N.; Khullar, S. Fluorescent hydrogel of chitosan and gelatin linked with maleic acid for optical detection of heavy metals. J. Appl. Polym. Sci. 2022, 139, 51941. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, Q.; Jiang, J.; Shahnawaz Khan, M. Tannin complexation with metal ions and its implication on human health, environment and industry. Int. J. Biol. Macromol. 2023, 253, 127485. [Google Scholar] [CrossRef]
- Malacaria, L.; Bruno, R.; Corrente, G.A.; Armentano, D.; Furia, E.; Beneduci, A. Experimental insights on the coordination modes of coumarin-3-carboxilic acid towards Cr (III)-, Co (II)-, Ni (II)-, Cu (II)-and Zn (II): A detailed potentiometric and spectroscopic investigation in aqueous media. J. Mol. Liq. 2022, 346, 118302. [Google Scholar] [CrossRef]
- Zwolak, I. Epigallocatechin Gallate for Management of Heavy Metal-Induced Oxidative Stress: Mechanisms of Action, Efficacy, and Concerns. Int. J. Mol. Sci. 2021, 22, 4027. [Google Scholar] [CrossRef] [PubMed]
- Malacaria, L.; Bijlsma, J.; Hilgers, R.; de Bruijn, W.J.; Vincken, J.P.; Furia, E. Insights into the complexation and oxidation of quercetin and luteolin in aqueous solutions in presence of selected metal cations. J. Mol. Liq. 2023, 369, 120840. [Google Scholar] [CrossRef]
- Uivarosi, V.; Munteanu, A.C.; Sharma, A.; Singh Tuli, H. Metal Complexation and Patent Studies of Flavonoid. In Current Aspects of Flavonoids: Their Role in Cancer Treatment; Springer: Singapore, 2019; pp. 39–89. [Google Scholar]
- Cassano, R.; Curcio, F.; Mandracchia, D.; Trapani, A.; Trombino, S. Gelatin and glycerine-based bioadhesive vaginal hydrogel. Curr. Drug Deliv. 2020, 17, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Cassano, R.; Curcio, F.; Sole, R.; Trombino, S. Transdermal Delivery of Phloretin by Gallic Acid Microparticles. Gels 2023, 9, 226. [Google Scholar] [CrossRef]
Time (h) | EGCG 20 mg | EGCG 30 mg | EGCG 60 mg | EGCG 90 mg |
---|---|---|---|---|
0 | 880 ± 1 µg/L Ni | 880 ± 1 µg/L Ni | 880 ± 1 µg/L Ni | 880 ± 1 µg/L Ni |
6 | 742 ± 1 µg/L Ni | 740 ± 2 µg/L Ni | 738 ± 2 µg/L Ni | 734 ± 3 µg/L Ni |
Material | LVE Region | |
---|---|---|
from | to | |
EGCG 0.03 | 0.21 [Pa] | 9.91 [Pa] |
EGCG 0.06 | 0.21 [Pa] | 9.93 [Pa] |
EGCG 0.09 | 0.09 [Pa] | 9.95 [Pa] |
Catechin 0.02 | 0.21 [Pa] | 9.94 [Pa] |
Typologies | Resveratrol (g) | Catechin (g) | Resveratrol + Catechin (g) |
---|---|---|---|
Resveratrol-based lipogel | 0.025 | - | - |
Catechin (EGCG)-based lipogel with three different concentrations | - | 0.020 | - |
0.030 | |||
0.060 | |||
0.090 | |||
Resveratrol + Catechin (EGCG)-based lipogel | 0.025 | - | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassano, R.; Furia, E.; Trombino, S.; Elliani, R.; Borgia, C.; Gagliardi, F.; Curcio, F. Nanoformulations of Cosmetic Interest for the Cutaneous Uptake of Nickel. Inorganics 2025, 13, 78. https://doi.org/10.3390/inorganics13030078
Cassano R, Furia E, Trombino S, Elliani R, Borgia C, Gagliardi F, Curcio F. Nanoformulations of Cosmetic Interest for the Cutaneous Uptake of Nickel. Inorganics. 2025; 13(3):78. https://doi.org/10.3390/inorganics13030078
Chicago/Turabian StyleCassano, Roberta, Emilia Furia, Sonia Trombino, Rosangela Elliani, Carmine Borgia, Francesco Gagliardi, and Federica Curcio. 2025. "Nanoformulations of Cosmetic Interest for the Cutaneous Uptake of Nickel" Inorganics 13, no. 3: 78. https://doi.org/10.3390/inorganics13030078
APA StyleCassano, R., Furia, E., Trombino, S., Elliani, R., Borgia, C., Gagliardi, F., & Curcio, F. (2025). Nanoformulations of Cosmetic Interest for the Cutaneous Uptake of Nickel. Inorganics, 13(3), 78. https://doi.org/10.3390/inorganics13030078