Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami (Ventricina)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sausage Manufacture
2.2. Weight Loss, aw and pH
2.3. Microbial Counts
2.4. DNA Extraction and Sequencing
2.5. Bioinformatic Analysis
2.6. Organic Acid and Glucose Quantification
2.7. Biogenic Amine Content
2.8. NaCl Concentration
2.9. Aroma Profile Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Analyses of the Meat Mixture and Control of Ripening Parameters (pH, Weight Losses and aw)
3.2. Microbiological Analyses and Organic Acid Concentrations of the Ripened Sausages
3.3. Metagenomic Analyses
3.4. Biogenic Amines Determination
3.5. Aroma Profile of Sausages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tremonte, P.; Reale, A.; Coppola, R.; Succi, M. Preliminary investigations on microbiological characteristics of “Ventricina”. Ind. Aliment. 2005, 44, 753–757. [Google Scholar]
- Tremonte, P.; Sorrentino, E.; Pannella, G.; Tipaldi, L.; Sturchio, M.; Masucci, A.; Maiuro, L.; Coppola, R.; Succi, M. Detection of different microenvironments and Lactobacillus sakei biotypes in Ventricina, a traditional fermented sausage from central Italy. Int. J. Food Microbiol. 2017, 242, 132–140. [Google Scholar] [CrossRef]
- Leroy, F.; Scholliers, P.; Amilien, V. Elements of innovation and tradition in meat fermentation: Conflicts and synergies. Int. J. Food Microbiol. 2015, 212, 2–8. [Google Scholar] [CrossRef]
- Cocconcelli, P.S.; Fontana, C. Starter cultures for meat fermentation. In Handbook of Meat Processing; Toldrá, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2010; pp. 199–218. ISBN 978-0-813-82182-5. [Google Scholar]
- Leroy, S.; Lebert, I.; Talon, R. Microorganisms in Traditional Fermented Meats Dry-Fermented Sausages and Ripened Meats: An Overview. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiasarán, I., Sebranek, J.G., Talon, R., Eds.; Wiley Blackwell: West Sussex, UK, 2015; pp. 99–106. ISBN 9781118522653. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Montanari, C.; Gatto, V.; Torriani, S.; Barbieri, F.; Bargossi, E.; Lanciotti, R.; Grazia, L.; Magnani, R.; Tabanelli, G.; Gardini, F. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures. Food Biosci. 2018, 22, 9–18. [Google Scholar] [CrossRef]
- Tabanelli, G.; Pasini, F.; Riciputi, Y.; Vannini, L.; Gozzi, G.; Balestra, F.; Caboni, M.F.; Gardini, F.; Montanari, C. Fermented nut-based vegan food: Characterization of a home-made product and scale-up to an industrial pilot-scale production. J. Food Sci. 2018, 83, 711–722. [Google Scholar] [CrossRef]
- Pasini, F.; Soglia, F.; Petracci, M.; Caboni, M.F.; Marziali, S.; Montanari, C.; Gardini, F.; Grazia, L.; Tabanelli, G. Effect of fermentation with different lactic acid bacteria starter cultures on biogenic amine content and ripening patterns in dry fermented sausages. Nutrients 2018, 10, 1497. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.T.; Manso, A.S.; Gaspar, P.; Pinho, M.G.; Neves, A.R. Effect of oxygen on glucose metabolism: Utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS ONE 2013, 8, e58277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Clementi, F. Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. Int. Food Res. J. 2016, 23, 429–445. [Google Scholar]
- Vidal-Carou, M.C.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Bover-Cid, S. Biogenic amines: Risks and control. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiasarán, I., Sebranek, J.G., Talon, R., Eds.; Wiley Blackwell: West Sussex, UK, 2015; pp. 413–428. ISBN 9781118522653. [Google Scholar] [CrossRef]
- Comi, G.; Urso, R.; Iacumin, L.; Rantsiou, K.; Cattaneo, P.; Cantoni, C. Characterisation of naturally fermented sausages produced in the northeast of Italy. Meat Sci. 2005, 69, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Aymerich, T.; Martin, B.; Garriga, M.; Vidal-Carou, M.C.; Bover-Cid, S.; Hugas, M. Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. J. Appl. Microbiol. 2006, 100, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Treviño, E.; Beil, D.; Steinhart, H. Formation of biogenic amines during the maturity process of raw meat products, for example of cervelat sausage. Food Chem. 1997, 60, 521–526. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union L 2005, 338, 1–26. [Google Scholar]
- Montanari, C.; Barbieri, F.; Magnani, M.; Grazia, L.; Gardini, F.; Tabanelli, G. Phenotypic diversity of Lactobacillus sakei strains. Front. Microbiol. 2018, 9, 2003. [Google Scholar] [CrossRef]
- Rimaux, T.; Riviére, A.; Illeghems, K.; Weckx, S.; De Vuyst, L.; Leroy, F. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain-dependent and is affected by environmental pH. Appl. Environ. Microbiol. 2012, 78, 4874–4883. [Google Scholar] [CrossRef] [Green Version]
- Marcobal, A.; de Las Rivas, B.; Landete, J.M.; Tabera, L.; Muñoz, R. Tyramine and phenylethylamine biosynthesis by food bacteria. Crit. Rev. Food Sci. Nutr. 2012, 52, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Alan, Y.; Topalcengiz, Z.; Dığrak, M. Biogenic amine and fermentation metabolite production assessments of Lactobacillus plantarum isolates for naturally fermented pickles. LWT 2018, 98, 322–328. [Google Scholar] [CrossRef]
- Lee, J.H.; Jin, Y.H.; Park, Y.K.; Yun, S.J.; Mah, J.H. Formation of biogenic amines in Pa (Green onion) Kimchi and Gat (Mustard leaf) Kimchi. Foods 2019, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological factors affecting biogenic amine content in foods: A review. Front. Microbiol. 2016, 7, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimaux, T.; Vrancken, G.; Vuylsteke, B.; De Vuyst, L.; Leroy, F. The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494. Appl. Environ. Microbiol. 2011, 77, 6539–6550. [Google Scholar] [CrossRef] [Green Version]
- Tabanelli, G.; Coloretti, F.; Chiavari, C.; Grazia, L.; Lanciotti, R.; Gardini, F. Effects of starter cultures and fermentation climate on the properties of two types of typical Italian dry fermented sausages produced under industrial conditions. Food Control 2012, 26, 416–426. [Google Scholar] [CrossRef]
- Montanari, C.; Bargossi, E.; Gardini, A.; Lanciotti, R.; Magnani, R.; Gardini, F.; Tabanelli, G. Correlation between volatile profiles of Italian fermented sausages and their size and starter culture. Food Chem. 2016, 192, 736–744. [Google Scholar] [CrossRef] [PubMed]
- von Wright, A.; Axelsson, L. Lactic acid bacteria: An introduction. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed.; Lahtinen, S., Ouwehand, A.C., Salminen, S., von Wright, A., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–16. ISBN 9781439836774. [Google Scholar]
- Ordóňez, J.A.; Hierro, E.M.; Bruna, J.M.; de la Hoz, L. Changes in the components of dry fermented sausages during ripening. Crit. Rev. Food Sci. Nutr. 1999, 39, 329–367. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; López-Díez, J.J.; Belloch, C.; Flores, M. Counteracting the effect of reducing nitrate/nitrite levels on dry fermented sausage aroma by Debaryomyces hansenii inoculation. Meat Sci. 2020, 164, 108103. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Gómez, M.; Purriños, L.; Fonseca, S. Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. J. Sci. Food Agric. 2016, 96, 1194–1201. [Google Scholar] [CrossRef]
- Olivares, A.; Dryahina, K.; Navarro, J.L.; Smith, D.; Spanĕl, P.; Flores, M. SPME-GC-MS versus selected ion flow tube mass spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing. J. Agric. Food Chem. 2011, 59, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Speranza, G.; Corti, S.; Fontana, G.; Manitto, P. Conversion of meso-2,3-butanediol into 2-butanol by Lactobacilli. Stereochemical and enzymatic aspects. J. Agric. Food Chem. 1997, 45, 3476–3480. [Google Scholar] [CrossRef]
- Flores, M.; Olivares, A. Flavor. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldrá, F., Hui, Y.H., Astiasarán, I., Sebranek, J.G., Talon, R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 217–225. ISBN 9781118522691. [Google Scholar]
- Sánchez-Mainar, M.; Stavropoulou, D.A.; Leroy, F. Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: A review. Int. J. Food Microbiol. 2017, 247, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Smit, B.A.; Engels, W.J.M.; Wouters, J.T.M.; Smit, G. Diversity of L-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavor component 3-methylbutanal. Appl. Microbiol. Biotechnol. 2004, 64, 396–402. [Google Scholar] [CrossRef]
- Gianelli, M.P.; Olivares, A.; Flores, M. Key aroma components of a dry-cured sausage with high fat content (Sobrassada). Food Sci. Technol. Int. 2011, 17, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, A.; Navarro, J.L.; Flores, M. Establishment of the contribution of volatile compounds to the aroma of fermented sausages at different stages of processing and storage. Food Chem. 2009, 115, 1464–1472l. [Google Scholar] [CrossRef]
- Carballo, J. The role of fermentation reactions in the generation of flavor and aroma of foods. In Fermentation: Effects on Food Properties; Mehta, B.M., Kamal-Eldin, A., Iwanski, R.Z., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 51–87. ISBN 978-1-4398-5334-4. [Google Scholar]
- Larrouture-Thiveyrat, C.; Montel, M.C. Effects of environmental factors on leucine catabolism by Carnobacterium piscicola. Int. J. Food Microbiol. 2003, 81, 177–184. [Google Scholar] [CrossRef]
- Larrouture-Thiveyrat, C.; Ardaillon, V.; Pepin, M.; Montel, M.C. Ability of meat starter culture to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiol. 2000, 17, 563–570. [Google Scholar] [CrossRef]
- Masson, F.; Hinrichsen, L.; Talon, R.; Montel, M.C. Factors influencing leucine catabolism by a strain of Staphylococcus carnosus. Int. J. Food Microbiol. 1999, 49, 173–178. [Google Scholar] [CrossRef]
- Coll, J.; Leal, J.A. Utilization of L-leucine as nitrogen source by fungi. Trans. Brit. Mycol. Soc. 1972, 59, 107–114. [Google Scholar] [CrossRef]
- Stahnke, L.H. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels—Part II. Volatile components. Meat Sci. 1995, 41, 193–209. [Google Scholar] [CrossRef]
- Stavropoulou, D.A.; Borremans, W.; De Vuyst, L.; De Smet, S.; Leroy, F. Amino acid conversions by coagulase-negative staphylococci in a rich medium: Assessment of inter- and intraspecies heterogeneity. Int. J. Food Microbiol. 2015, 212, 34–40. [Google Scholar] [CrossRef] [PubMed]
Inner Section | Outer Section | ||
---|---|---|---|
Microbial groups (log CFU/g) | LAB | 8.36 (±0.26) | 8.51 (±0.18) |
Staphylococci (CNS) * | 6.84 (±0.22) | 7.29 (±0.19) | |
Total mesophilic count | 8.51 (±0.25) | 8.50(±0.36) | |
Enterobacteriaceae | <1 | <1 | |
Enterococci * | 1.78 (±0.51) | <1 | |
Pseudomonas | <1 | <1 | |
Organic acids (g/kg) | Lactic acid * | 11.59 (±1.03) | 6.01 (±0.28) |
Acetic acid * | 2.32 (±0.16) | 1.47 (±0.11) |
Phylum | Class | Order | Family | Identification | Inner Section (%) | Outer Section (%) |
---|---|---|---|---|---|---|
Actinobacteria | Actinobacteria | Propionibacteriales | Propionibacteriaceae | Cutibacterium sp. | 2.90 | 0.09 |
Actinobacteria | Actinobacteria | Actinomycetales | Actinomycetaceae | Actinomyces sp. | 0.01 | 1.50 |
Actinobacteria | Actinobacteria | Corynebacteriales | Corynebacteriaceae | Corynebacterium accolens | 1.35 | 0.04 |
Actinobacteria | Actinobacteria | Corynebacteriales | Corynebacteriaceae | Corynebacterium sp. | 0.10 | 0.62 |
Firmicutes | Bacilli | Bacillales | Staphylococcaceae | Staphylococcus spp. | 31.34 | 84.71 |
Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Tetragenococcus koreensis | 0.07 | 1.71 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactiplantibacillus spp. | 15.15 | 5.27 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Latilactobacillus spp. | 26.15 | 1.31 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lentilactobacillus spp. | 9.70 | 2.57 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Loigolactobacillus spp. | 2.47 | 0.47 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Companilactobacillus sp. | 1.99 | 0.52 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lacticaseibacillus spp. | 0.86 | 0.06 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Pediococcus pentosaceus | 1.15 | 0.08 |
Firmicutes | Bacilli | Lactobacillales | Leuconostocaceae | Weissella sp. | 0.19 | 0.91 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus sp. | 1.57 | 0.01 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Lactococcus lactis | 0.69 | 0.05 |
Proteobacteria | Gammaproteobacteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas sp. | 3.34 | 0.07 |
Sample | Biogenic Amines (mg/kg) | |||||
---|---|---|---|---|---|---|
Histamine * | Tyramine * | Putrescine * | Cadaverine * | 2-phenyl-Ethylamine * | BA Total Amount * | |
Inner section | 223.6 (±17.2) | 226.3 (±15.2) | 351.5 (±24.3) | 597.0 (±33.2) | 15.2 (±4.6) | 1413.6 (±21.4) |
Outer section | 151.2 (±13.7) | 181.5 (±6.33) | 211.1 (±12.4) | 270.8 (±18.4) | 10.7 (±5.2) | 825.3 (±16.3) |
Molecule | Inner Section (%) | Outer Section (%) |
---|---|---|
Nonanal | 0.50 (±0.17) | 0.31 (±0.15) |
Decanal | 0.03 (±0.04) | 0.05 (±0.05) |
Benzaldehyde | 0.75 (±0.12) | 0.97 (±0.23) |
Benzeneacetaldehyde | 7.27 (±0.83) | 9.28 (±1.27) |
Total aldehydes | 8.55 | 10.61 |
Ethyl alcohol * | 8.33 (±1.10) | 9.79 (±0.78) |
2-Butanol * | 4.97 (±0.23) | 6.28 (±0.41) |
1-Propanol * | 9.91 (±0.71) | 11.51 (±0.23) |
Benzyl alcohol | 0.62 (±0.42) | 0.87 (±0.31) |
Phenylethyl alcohol | 2.08 (±0.24) | 2.24 (±0.33) |
Total alcohols | 25.91 | 30.69 |
2-Butanone * | 2.57 (±0.15) | 4.63 (±0.66) |
3-Penten-2-one, 4-methyl | 0.39 (±0.12) | 0.66 (±0.31) |
2-Nonanone | 0.05 (±0.07) | 0.18 (±0.15) |
Total ketones | 3.01 | 5.47 |
Ethyl Acetate | 0.61 (±0.11) | 0.58 (±0.16) |
Propanoic acid, ethyl ester | 0.40 (±0.08) | 0.38 (±0.13) |
n-Propyl acetate | 0.98 (±0.21) | 0.87 (±0.09) |
Propanoic acid, propyl ester | 0.93 (±0.23) | 1.07 (±0.09) |
Octanoic acid, ethyl ester | 0.48 (±0.15) | 0.53 (±0.22) |
Octanoic acid, propyl ester | 0.48 (±0.08) | 0.52 (±0.12) |
Total esters | 3.88 | 3.95 |
Acetic acid * | 28.35 (±1.66) | 23.75 (±1.15) |
Propanoic acid * | 6.94 (±0.72) | 5.61 (±0.48) |
Butanoic acid | 1.23 (±0.22) | 1.08 (±0.31) |
Butanoic acid, 3-methyl | 2.96 (±0.18) | 2.85 (±0.33) |
Hexanoic acid * | 1.16 (±0.26) | 0.34 (±0.19) |
Octanoic acid | 2.14 (±0.36) | 1.75 (±0.24) |
n-Decanoic acid | 1.57 (±0.15) | 1.39 (±0.35) |
n-Hexadecanoid acid * | 14.30 (±0.97) | 12.51 (±0.90) |
Total acids | 58.65 | 49.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanari, C.; Barbieri, F.; Gardini, F.; Tabanelli, G. Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami (Ventricina). Foods 2021, 10, 2138. https://doi.org/10.3390/foods10092138
Montanari C, Barbieri F, Gardini F, Tabanelli G. Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami (Ventricina). Foods. 2021; 10(9):2138. https://doi.org/10.3390/foods10092138
Chicago/Turabian StyleMontanari, Chiara, Federica Barbieri, Fausto Gardini, and Giulia Tabanelli. 2021. "Competition between Starter Cultures and Wild Microbial Population in Sausage Fermentation: A Case Study Regarding a Typical Italian Salami (Ventricina)" Foods 10, no. 9: 2138. https://doi.org/10.3390/foods10092138