Rapid Measurement of Antioxidant Properties of Dendrobium officinale Using Near-Infrared Spectroscopy and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. NIR Spectral Acquisition
2.3. Reference Assays
2.3.1. Dendrobium Officinale Extraction
2.3.2. ABTS Test
2.3.3. FRAP Test
2.3.4. DPPH Test
2.4. Spectral Pretreatment Methods
2.5. Wavelength Selection Methods
2.5.1. GA
2.5.2. CARS Algorithm
2.6. Model Performance Evaluation
3. Results and Discussion
3.1. NIR Spectral Features
3.2. Outlier Detection and Sample Partition
3.3. PLS Models Based on Different Spectral Pretreatment Methods
3.4. PLS Models Based on Different Wavelength Selection Methods
3.4.1. Results of Full-PLS Models
3.4.2. Results of GA-PLS Models
3.4.3. Results of CARS-PLS Models
3.5. Discussion of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, L.H.; Zhang, Z.M.; Zhao, X.B.; Zhang, S.F.; Lu, H.M. The rapid determination of total polyphenols content and antioxidant activity in Dendrobium officinale using near-infrared spectroscopy. Anal. Methods 2016, 8, 4584–4589. [Google Scholar] [CrossRef]
- Yun, Y.H.; Wei, Y.C.; Zhao, X.B.; Wu, W.J.; Liang, Y.Z.; Lu, H.M. A green method for the quantification of polysaccharides in Dendrobium officinale. RSC Adv. 2015, 5, 105057–105065. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.L.; Li, Z.M.; Wang, Y.Z. Multi-information based on ATR-FTIR and FT-NIR for identification and evaluation for different parts and harvest time of Dendrobium officinale with chemometrics. Microchem. J. 2022, 178, 107430. [Google Scholar] [CrossRef]
- Xu, X.F.; Dai, D.C.; Yan, H.; Zhang, Y. Chemical constituents from the Dendrobium officinale and their chemotaxonomic significance. Biochem. Syst. Ecol. 2022, 102, 104420. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.J.; Sun, X.; Han, R.C.; Yu, N.J.; Liang, J.; Zhou, A. Comparison of the antioxidant activities and polysaccharide characterization of fresh and dry Dendrobium officinale kimura et migo. Molecules 2022, 27, 6654. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.Q.; Gong, X.H.; Wang, F.X.; Wen, C.W.; Wei, Y.; Han, B.X.; Ouyang, Z. Comparative analysis of chemical constituents by HPLC-ESI-MSn and antioxidant activities of Dendrobium huoshanense and Dendrobium officinale. Biomed. Chromatogr. 2022, 36, e5250. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.H.; Wang, C.Q.Y.; Perera, M. Quantitative determination of the radical scavenging activity of antioxidants in black tea combined with common spices using Ultraviolet-visible spectroscopy. Anal. Lett. 2023, 56, 682–691. [Google Scholar] [CrossRef]
- Lee, H.J.; Pan, C.H.; Kim, E.S.; Kim, C.Y. Online high performance liquid chromatography (HPLC)-ABTS(+) based assay and HPLC-electrospray ionization mass spectrometry analysis of antioxidant phenolic compounds in salsola komarovii. J. Korean Soc. Appl. Biol. 2012, 55, 317–321. [Google Scholar] [CrossRef]
- Fiol, M.; Weckmüller, A.; Neugart, S.; Schreiner, M.; Rohn, S.; Krumbein, A.; Kroh, L.W. Thermal-induced changes of kale’s antioxidant activity analyzed by HPLC–UV/Vis-online-TEAC detection. Food Chem. 2013, 138, 857–865. [Google Scholar] [CrossRef]
- Rizea, G.D.; Popescu, M.; Ionescu, D.; Mihele, D.; Manea, Ş. Comparative determinations of antioxidant free radical scavenging polyphenols in certain natural products by HPLC methods and UV-Vis spectrophotometry. Rev. Chim. Buchar. 2012, 63, 1085–1088. [Google Scholar] [CrossRef]
- Ye, T.Y.; Zheng, Y.H.; Guan, Y.; Sun, Y.; Chen, C. Rapid determination of chemical components and antioxidant activity of the fruit of Crataegus pinnatifida bunge by NIRS and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 289, 122215. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.H.; Zhou, J.M.; Chen, D.D.; Han, T.T.; Zheng, B.S.; Younis, A.; Shao, Q.S. A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 221, 117208. [Google Scholar] [CrossRef]
- Fu, H.Y.; Hu, O.; Xu, L.; Fan, Y.; Shi, Q.; Guo, X.M.; Lan, W.; Yang, T.M.; Xie, S.P.; She, Y.B. Simultaneous recognition of species, quality grades, and multivariate calibration of antioxidant activities for 12 famous green teas using mid- and near-infrared spectroscopy coupled with chemometrics. J. Anal. Methods Chem. 2019, 2019, 4372395. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.H.; Cao, Y.Y.; Yin, X.C.; Dong, F.; Xu, J.H.; Shi, J.R.; Lee, Y.W. Rapid and nondestructive quantification of deoxynivalenol in individual wheat kernels using near-infrared hyperspectral imaging and chemometrics. Food Control 2022, 131, 108420. [Google Scholar] [CrossRef]
- Fan, Y.M.; Ma, S.C.; Wu, T.T. Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies. Infrared Phys. Technol. 2020, 105, 103213. [Google Scholar] [CrossRef]
- Abeshu, Y. Development of NIRS re-calibration model for ethiopian barley (Hordeum vulgare) lines traits to determine their brewing potential. J. Agric. Food Res. 2021, 6, 100238. [Google Scholar] [CrossRef]
- Chen, Q.S.; Guo, Z.M.; Zhao, J.W.; Ouyang, Q. Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy. J. Pharm. Biomed. 2012, 60, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Tirado, J.P.; França, R.L.; Tumbajulca, M.; Barraza-Jáuregui, G.; Barbin, D.F.; Siche, R. Detection of cumin powder adulteration with allergenic nutshells using FT-IR and portable NIRS coupled with chemometrics. J. Food Compos. Anal. 2022, 116, 105044. [Google Scholar] [CrossRef]
- Celestino, M.D.R.; Font, R. Using Vis-NIR spectroscopy for predicting quality compounds in foods. Sensors 2022, 22, 4845. [Google Scholar] [CrossRef]
- Arslan, M.; Zou, X.B.; Tahir, H.E.; Xuetao, H.; Rakha, A.; Basheer, S.; Hao, Z. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.). J. Food Meas. Charact. 2018, 12, 2366–2376. [Google Scholar] [CrossRef]
- Yi, Y.; Hua, H.M.; Sun, X.F.; Guan, Y.; Chen, C. Rapid determination of polysaccharides and antioxidant activity of poria cocos using near-infrared spectroscopy combined with chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118623. [Google Scholar] [CrossRef] [PubMed]
- Pezzei, V.H.; Pallua, J.D.; Pezzei, C.; Schnbichler, S.A.; Huck, C.W. Application of near-infrared spectroscopy (NIRS) as a tool for quality control in Traditional Chinese Medicine (TCM). Planta Med. 2011, 7, 75–84. [Google Scholar] [CrossRef]
- Henriques, C.B.; Poppi, R.J. Determination of diesel quality parameters using support vector regression and near infrared spectroscopy for an in-line blending optimizer system. Fuel 2012, 97, 710–717. [Google Scholar] [CrossRef]
- Wang, Y.B.; Hu, Y.Z.; Li, W.L.; Zhang, W.S.; Luo, Z. Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay. Spectrosc. Spectr. Anal. 2014, 34, 2612–2616. [Google Scholar] [CrossRef]
- Lee, Y.; Chung, H.; Kim, N. Spectral range optimization for the near-infrared quantitative analysis of petrochemical and petroleum products: Naphtha and gasoline. Appl. Spectrosc. 2006, 60, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; She, X.T.; Cao, X.Q.; Yang, L.C.; Huang, J.M.; Zhang, X.; Su, L.J.; Wu, M.J.; Tong, H.B.; Ji, X.L. Comprehensive evaluation of Dendrobium officinale from different geographical origins using near-infrared spectroscopy and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 277, 121249. [Google Scholar] [CrossRef] [PubMed]
- Zareef, M.; Arslan, M.; Hassan, M.M.; Ali, S.; Ouyang, Q.; Li, H.H.; Wu, X.Y.; Hashim, M.M.; Javaria, S.; Chen, Q.S. Application of benchtop NIR spectroscopy coupled with multivariate analysis for rapid prediction of antioxidant properties of walnut (Juglans regia). Food Chem. 2021, 359, 129928. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Tong, Y.F.; Guan, L.; Wu, S.F.; Li, D.B. Optimization of COD determination by UV-vis spectroscopy using PLS chemometrics algorithms. Optik 2018, 174, 591–599. [Google Scholar] [CrossRef]
- Muhammad, Z.; Chen, Q.; Ouyang, Q.; Felix, K.; Mehedi, H.M.; Viswadevarayalu, A.; Wang, A. Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms. Anal. Methods 2018, 10, 3023–3031. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Zhang, J.Y.; Li, M.Y.; Ren, H.R.; Zhu, C.Z.; Yan, L.G.; Zhao, G.M.; Zhang, Q.H. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 232, 117997. [Google Scholar] [CrossRef]
- Jouan-Rimbaud, D.; Massart, D.L.; Leardi, R.; De Noord, O.E. Genetic Algorithms as a tool for wavelength selection in multivariate calibration. Anal. Chem. 1995, 67, 4295–4301. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Zou, X.B.; Hu, X.T.; Tahir, H.; Elrasheid, S. Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.). J. Near Infrared Spec. 2018, 26, 275–286. [Google Scholar] [CrossRef]
- Guan, Y.; Ye, T.Y.; Yi, Y.; Hua, H.M.; Chen, C. Rapid quality evaluation of plantaginis semen by near infrared spectroscopy combined with chemometrics. J. Pharm. Biomed. 2022, 207, 114435. [Google Scholar] [CrossRef]
- Guo, Z.M.; Barimah, A.O.; Shujat, A.; Zhang, Z.Z.; Ouyang, Q.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B.; Chen, Q.S. Simultaneous quantification of active constituents and antioxidant capability of green tea using NIR spectroscopy coupled with swarm intelligence algorithm. LWT-Food Sci. Technol. 2020, 129, 109510. [Google Scholar] [CrossRef]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L. Breaking with trends in pre-processing. Trac. Trend. Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Rinnan, A. Pre-processing in vibrational spectroscopy—When, why and how. Anal. Methods 2014, 6, 7124–7129. [Google Scholar] [CrossRef]
- Li, T.; Su, C. Authenticity identification and classification of rhodiola species in traditional tibetan medicine based on fourier transform near-infrared spectroscopy and chemometrics analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Zareef, M.; Chen, Q.S.; Ouyang, Q.; Arslan, M.; Hassan, M.M.; Ahmad, W.; Viswadevarayalu, A.; Wang, P.Y.; Wang, A.C. Rapid screening of phenolic compounds in congou black tea (Camellia sinensis) during in vitro fermentation process using portable spectral analytical system coupled chemometrics. J. Food Process. Pres. 2019, 43, e13996. [Google Scholar] [CrossRef]
- Geladi, P.D.; Macdougall, D.B.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. Rev. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Leardi, R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemometr. 2010, 14, 643–655. [Google Scholar] [CrossRef]
- Rudolf, K.; Ferreira, M.M.C. Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application. J. Braz. Chem. Soc. 2009, 20, 770–787. [Google Scholar] [CrossRef]
- Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “r2m” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data. J. Comput. Chem. 2013, 34, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Mitra, I.; Saha, A.; Roy, K. Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol. Simul. 2010, 36, 1067–1079. [Google Scholar] [CrossRef]
- Lorenzo, N.D.; da Rocha, R.A.; Papaioannou, E.H.; Mutz, Y.S.; Tessaro, L.L.G.; Nunes, C.A. Feasibility of using a cheap colour sensor to detect blends of vegetable oils in avocado oil. Foods 2024, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Mark, H.; Workman, J. Chemometrics in Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Xie, L.J.; Ye, X.Q.; Liu, D.H.; Ying, Y.B. Quantification of glucose, fructose and sucrose in bayberry juice by NIR and PLS. Food Chem. 2009, 114, 1135–1140. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhao, J.W.; Chen, Q.S. Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 151, 280–285. [Google Scholar] [CrossRef]
Component | Mean | Standard Deviation | Range |
---|---|---|---|
Total sample sets | |||
ABTS (N = 111) (%) | 9.7 | 0.9 | 7.4–11.7 |
FRAP (N = 111) (μmol/L) | 26.5 | 6.2 | 14.0–47.7 |
DPPH (N = 111) (%) | 20.0 | 4.1 | 11.4–30.2 |
Calibration sets | |||
ABTS (N = 75) (%) | 9.8 | 0.9 | 7.4–11.7 |
FRAP (N = 75) (μmol/L) | 26.6 | 6.7 | 14.0–47.7 |
DPPH (N = 75) (%) | 20.0 | 4.5 | 11.4–30.2 |
Prediction sets | |||
ABTS (N = 36) (%) | 9.5 | 0.8 | 7.8–11.7 |
FRAP (N = 36) (μmol/L) | 26.4 | 5.1 | 17.4–45.6 |
DPPH (N = 36) (%) | 20.0 | 3.0 | 12.3–28.6 |
Component | Models | Calibration Sets | y-Randomization | Prediction Sets | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2C | RMSEC | RMSECV | Slope | R2rand | cR2P | R2P | RMSEP | Slope | r2m | ||
ABTS (%) | Raw | 0.806 | 0.40 | 0.62 | 0.81 | 0.024 | 0.79 | 0.602 | 0.61 | 0.64 | 0.592 |
1D+SG | 0.749 | 0.46 | 0.61 | 0.75 | 0.049 | 0.72 | 0.487 | 0.65 | 0.49 | 0.478 | |
MSC | 0.837 | 0.37 | 0.62 | 0.84 | 0.050 | 0.81 | 0.587 | 0.62 | 0.68 | 0.532 | |
SNV | 0.836 | 0.37 | 0.61 | 0.84 | 0.042 | 0.81 | 0.649 | 0.57 | 0.68 | 0.641 | |
Smoothing | 0.801 | 0.41 | 0.63 | 0.80 | 0.017 | 0.79 | 0.600 | 0.61 | 0.64 | 0.587 | |
FRAP (μmol/L) | Raw | 0.855 | 2.55 | 3.73 | 0.86 | 0.101 | 0.80 | 0.765 | 2.58 | 0.81 | 0.746 |
1D+SG | 0.974 | 1.07 | 3.42 | 0.98 | 0.126 | 0.91 | 0.751 | 2.62 | 0.82 | 0.712 | |
MSC | 0.888 | 2.24 | 3.58 | 0.89 | 0.004 | 0.89 | 0.819 | 2.23 | 0.77 | 0.762 | |
SNV | 0.888 | 2.24 | 3.58 | 0.89 | 0.127 | 0.82 | 0.819 | 2.23 | 0.77 | 0.762 | |
Smoothing | 0.851 | 2.59 | 3.77 | 0.85 | 0.075 | 0.81 | 0.760 | 2.61 | 0.81 | 0.742 | |
DPPH (%) | Raw | 0.813 | 1.93 | 3.35 | 0.82 | 0.075 | 0.77 | 0.578 | 2.00 | 0.69 | 0.486 |
1D+SG | 0.833 | 1.83 | 3.29 | 0.83 | 0.125 | 0.77 | 0.656 | 1.82 | 0.79 | 0.544 | |
MSC | 0.814 | 1.93 | 3.20 | 0.81 | 0.060 | 0.78 | 0.616 | 1.89 | 0.73 | 0.527 | |
SNV | 0.831 | 1.83 | 3.11 | 0.83 | 0.017 | 0.82 | 0.596 | 1.91 | 0.66 | 0.543 | |
Smoothing | 0.806 | 1.97 | 3.38 | 0.81 | 0.100 | 0.75 | 0.58 | 1.99 | 0.69 | 0.493 |
Component | Models | LVs | Variables | Calibration Sets | y-Randomization | Prediction Sets | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2C | RMSEC | RMSECV | Slope | R2rand | cR2P | R2P | RMSEP | Slope | r2m | ||||
ABTS (%) | Full-PLS | 15 | 1557 | 0.836 | 0.37 | 0.61 | 0.84 | 0.042 | 0.81 | 0.649 | 0.57 | 0.68 | 0.641 |
GA-PLS | 15 | 64 | 0.852 | 0.35 | 0.53 | 0.85 | 0.214 | 0.74 | 0.711 | 0.49 | 0.70 | 0.688 | |
CARS-PLS | 14 | 14 | 0.865 | 0.34 | 0.44 | 0.86 | 0.164 | 0.78 | 0.675 | 0.51 | 0.73 | 0.647 | |
FRAP (μmol/L) | Full-PLS | 16 | 1557 | 0.888 | 2.24 | 3.58 | 0.89 | 0.127 | 0.82 | 0.819 | 2.23 | 0.77 | 0.762 |
GA-PLS | 14 | 80 | 0.872 | 2.39 | 3.36 | 0.87 | 0.058 | 0.84 | 0.824 | 2.31 | 0.81 | 0.800 | |
CARS-PLS | 16 | 21 | 0.917 | 1.93 | 2.64 | 0.92 | 0.082 | 0.88 | 0.858 | 2.05 | 0.80 | 0.784 | |
DPPH (%) | Full-PLS | 15 | 1557 | 0.831 | 1.83 | 3.11 | 0.83 | 0.017 | 0.82 | 0.596 | 1.91 | 0.66 | 0.543 |
GA-PLS | 18 | 75 | 0.866 | 1.51 | 2.58 | 0.87 | 0.019 | 0.86 | 0.571 | 2.11 | 0.78 | 0.418 | |
CARS-PLS | 14 | 47 | 0.866 | 1.63 | 2.06 | 0.87 | 0.038 | 0.85 | 0.659 | 1.76 | 0.73 | 0.603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Huang, J.; Chen, J.; Niu, Y.; Wei, S.; Tong, H.; Wu, M.; Yang, Y. Rapid Measurement of Antioxidant Properties of Dendrobium officinale Using Near-Infrared Spectroscopy and Chemometrics. Foods 2024, 13, 1769. https://doi.org/10.3390/foods13111769
Cao X, Huang J, Chen J, Niu Y, Wei S, Tong H, Wu M, Yang Y. Rapid Measurement of Antioxidant Properties of Dendrobium officinale Using Near-Infrared Spectroscopy and Chemometrics. Foods. 2024; 13(11):1769. https://doi.org/10.3390/foods13111769
Chicago/Turabian StyleCao, Xiaoqing, Jing Huang, Jinjing Chen, Ying Niu, Sisi Wei, Haibin Tong, Mingjiang Wu, and Yue Yang. 2024. "Rapid Measurement of Antioxidant Properties of Dendrobium officinale Using Near-Infrared Spectroscopy and Chemometrics" Foods 13, no. 11: 1769. https://doi.org/10.3390/foods13111769