Toxicological Evaluation Verifies the Safety of Oral Administration of Steamed Mature Silkworm Powder in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Extracts
2.2. Animals and Housing Conditions
2.3. Experimental Procedure for 13-Week Repeated Oral Dose Toxicity Study
2.3.1. Urinalysis
2.3.2. Hematology and Biochemical Analysis
2.3.3. Gross Findings, Organ Weights, and Histopathological Analysis
2.4. Statistical Analysis
3. Results
3.1. Four-Week Repeated-Dose Toxicity Study
3.2. Thirteen-Week Repeated-Dose Toxicity Study
3.2.1. Mortality, Clinical Signs, Ophthalmic Examination, Body Weight and Food Intake
3.2.2. Urinalysis, Hematological Analysis, Clinical Biochemistry Assessment
3.2.3. Organ Weights, Gross Abnormality, and Histopathological Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, K.W.; Nakamura, Y. Edible insects as future food: Chances and challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Osei-Owusu, J.; Asante, K.; Dofuor, A.K.; Boateng, B.O.; Debrah, S.K.; Ninsin, K.D.; Siddiqui, S.A.; Chia, S.Y. Insects as food and medicine: A sustainable solution for global health and environmental challenges. Front. Nutr. 2023, 10, 1113219. [Google Scholar] [CrossRef] [PubMed]
- Dobermann, D.; Swift, J.; Field, L. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef]
- Mancini, S.; Sogari, G.; Espinosa Diaz, S.; Menozzi, D.; Paci, G.; Moruzzo, R. Exploring the future of edible insects in Europe. Foods 2022, 11, 455. [Google Scholar] [CrossRef]
- Van Thielen, L.; Vermuyten, S.; Storms, B.; Rumpold, B.; Van Campenhout, L. Consumer acceptance of foods containing edible insects in Belgium two years after their introduction to the market. J. Insects Food Feed 2019, 5, 35–44. [Google Scholar] [CrossRef]
- Van Huis, A. Edible insects are the future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.-D.; Kim, N.-S.; Kweon, H.; Choi, B.H.; Yoon, S.M.; Kim, K.-Y.; Koh, Y.H. Nutrient compositions of Bombyx mori mature silkworm larval powders suggest their possible health improvement effects in humans. J. Asia-Pac. Entomol. 2016, 19, 1027–1033. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Koh, Y.H. The past, present and future of silkworm as a natural health food. Food Sci. Ind. 2022, 55, 154–165. [Google Scholar]
- Ji, S.-D.; Kim, N.-S.; Lee, J.-Y.; Kim, M.-J.; Kweon, H.; Sung, G.; Kang, P.-D.; Kim, K.-Y. Development of processing technology for edible mature silkworm. J. Sericultural Entomol. Sci. 2015, 53, 38–43. [Google Scholar]
- Hăbeanu, M.; Gheorghe, A.; Mihalcea, T. Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects 2023, 14, 254. [Google Scholar] [CrossRef]
- Kim, D.-W.; Hwang, H.-S.; Kim, D.-S.; Sheen, S.-H.; Heo, D.-H.; Hwang, G.-J.; Kang, S.-H.; Kweon, H.-Y.; Jo, Y.-Y.; Kang, S.-W. Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model. BMB Rep. 2011, 44, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-S.; Yun, S.-M.; Cho, J.-M.; Lee, D.-Y.; Ji, S.-D.; Son, J.-G.; Kim, E.-H. Silkworm (Bombyx mori) powder supplementation alleviates alcoholic fatty liver disease in rats. J. Funct. Foods 2018, 43, 29–36. [Google Scholar] [CrossRef]
- Hui-Qi, W.; Huan-Yang, Q.; Guang-Hui, X.; Yi-Qi, H. Silkworm extract ameliorates type 2 diabetes mellitus and protects pancreatic β-cell functions in rats. Digit. Chin. Med. 2020, 3, 275–282. [Google Scholar] [CrossRef]
- Anuduang, A.; Mustapha, W.A.W.; Lim, S.J.; Jomduang, S.; Phongthai, S.; Ounjaijean, S.; Boonyapranai, K. Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats. Foods 2024, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.; Lee, H.; Kim, K.; Kim, M.; Kang, P.; Chun, S.; Lim, S.; Lee, M. Anti-diabetic effects of the silkworm (Bombyx mori.) extracts in the db/db mice. Planta Med. 2012, 78, PI458. [Google Scholar] [CrossRef]
- Ryu, K.-S.; Lee, H.-S.; Kim, K.-Y.; Kim, M.-J.; Sung, G.-B.; Ji, S.-D.; Kang, P.-D. 1-Deoxynojirimycin content and blood glucose-lowering effect of silkworm (Bombyx mori) extract powder. Int. J. Ind. Entomol. 2013, 27, 237–242. [Google Scholar] [CrossRef]
- Fan, M.; Choi, Y.-J.; Wedamulla, N.E.; Zhang, Q.; Kim, S.W.; Bae, S.M.; Seok, Y.-S.; Kim, E.-K. Use of a silkworm (Bombyx mori) larvae by-product for the treatment of atopic dermatitis: Inhibition of NF-κB nuclear translocation and MAPK signaling. Nutrients 2023, 15, 1775. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.Y.; Li, F.Y.; Kim, J.H.; Ahn, C.; Kim, H.J.; Kim, M.R. Protein hydrolysate of silkworm pupa prevents memory impairment induced by oxidative stress in scopolamine-induced mice via modulating the cholinergic nervous system and antioxidant defense system. Prev. Nutr. Food Sci. 2020, 25, 389. [Google Scholar] [CrossRef]
- Bae, S.-M.; Jo, Y.-Y.; Lee, K.-G.; Kim, H.-B.; Kweon, H. Antioxidant activity of silkworm powder treated with protease. Int. J. Ind. Entomol. 2016, 33, 78–84. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Cho, J.-M.; Yun, S.-M.; Hong, K.-S.; Ji, S.-D.; Son, J.-G.; Kim, E.-H. Comparative effect of silkworm powder from 3 Bombyx mori varieties on ethanol-induced gastric injury in rat model. Int. J. Ind. Entomol. 2017, 35, 14–21. [Google Scholar]
- Lee, D.-Y.; Yun, S.-M.; Song, M.-Y.; Ji, S.-D.; Son, J.-G.; Kim, E.-H. Administration of steamed and freeze-dried mature silkworm larval powder prevents hepatic fibrosis and hepatocellular carcinogenesis by blocking TGF-β/STAT3 signaling cascades in rats. Cells 2020, 9, 568. [Google Scholar] [CrossRef] [PubMed]
- Heo, H.-S.; Choi, J.-H.; Oh, J.-J.; Lee, W.-J.; Kim, S.-S.; Lee, D.-H.; Lee, H.-K.; Song, S.-W.; Kim, K.-H.; Choi, Y.-K. Evaluation of general toxicity and genotoxicity of the silkworm extract powder. Toxicol. Res. 2013, 29, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.-D.; Nguyen, P.; Yoon, S.-M.; Kim, K.-Y.; Son, J.G.; Kweon, H.-y.; Koh, Y.H. Comparison of nutrient compositions and pharmacological effects of steamed and freeze-dried mature silkworm powders generated by four silkworm varieties. J. Asia-Pac. Entomol. 2017, 20, 1410–1418. [Google Scholar] [CrossRef]
- Choi, E.-Y.; Lee, J.-H.; Han, S.-H.; Jung, G.-H.; Han, E.-J.; Jeon, S.-J.; Jung, S.-H.; Park, J.-U.; Park, J.-H.; Bae, Y.-J. Subacute oral toxicity evaluation of expanded-polystyrene-fed Tenebrio molitor larvae (Yellow mealworm) powder in Sprague-Dawley rats. Food Sci. Anim. Resour. 2022, 42, 609. [Google Scholar] [CrossRef] [PubMed]
- Yasuki, M.; Kiyo, S.; Yuuto, N.; Kenta, N.; Akira, M.; Yuuki, M.; Akane, Y.; Nobuo, N.; Atsushi, O. Toxicity of House Cricket (Acheta domesticus) in Mice. bioRxiv 2022, 2022-06. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, N.F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06778. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, N.F.; Allergens, F.; Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06667. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, N.F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06779. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, N.F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of frozen and freeze-dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07325. [Google Scholar] [CrossRef]
- Choi, B.-H.; Ji, S.-D.; Son, J.G.; Nguyen, P.; Kim, K.-Y.; Park, Y.H.; Koh, Y.H. Phytochemicals and silk proteins in mature silkworm powders responsible for extended life expectancy and enhanced resistances to Parkinson’s disease. J. Asia-Pac. Entomol. 2017, 20, 1425–1433. [Google Scholar] [CrossRef]
- Nguyen, P.; Kim, K.-Y.; Kim, A.-Y.; Kim, N.-S.; Kweon, H.; Ji, S.-D.; Koh, Y.H. Increased healthspan and resistance to Parkinson’s disease in Drosophila by boiled and freeze-dried mature silk worm larval powder. J. Asia-Pac. Entomol. 2016, 19, 551–561. [Google Scholar] [CrossRef]
- Nguyen, P.; Kim, K.-Y.; Kim, A.-Y.; Choi, B.-H.; Osabutey, A.F.; Park, Y.H.; Lee, H.-T.; Ji, S.D.; Koh, Y.H. Mature silkworm powders ameliorated scopolamine-induced amnesia by enhancing mitochondrial functions in the brains of mice. J. Funct. Foods 2020, 67, 103886. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, K.-Y.; Ji, S.-D.; Lee, H.-T. Anti-melanogenic activity of steamed and freeze-dried mature silkworm powder. J. Asia-Pac. Entomol. 2017, 20, 1001–1006. [Google Scholar] [CrossRef]
Test | Result | Group (mg/kg/day) | |||
---|---|---|---|---|---|
0 | 625 | 1200 | 2500 | ||
Male | |||||
GLU (mg/dL) | Negative | 5 | 5 | 5 | 5 |
BIL | Negative | 5 | 5 | 5 | 5 |
KET (mg/dL) | Negative | 1 | 3 | 5 * | 0 |
Trace | 2 | 1 | 0 | 4 | |
15 | 2 | 1 | 0 | 1 | |
SG | ≤1.005 | 0 | 0 | 2 | 1 |
1.010 | 5 | 5 | 3 | 4 | |
pH | 7.5 | 0 | 0 | 1 | 0 |
8.0 | 1 | 2 | 3 | 1 | |
8.5 | 4 | 3 | 1 | 4 | |
PRO (mg/dL) | Negative | 2 | 2 | 4 | 1 |
15 | 1 | 1 | 1 | 2 | |
30 | 2 | 1 | 0 | 2 | |
100 | 0 | 1 | 0 | 0 | |
URO (EU/dL) | 0.2 | 5 | 5 | 5 | 5 |
NIT | Negative | 5 | 4 | 4 | 5 |
Positive | 0 | 1 | 1 | 0 | |
BLO | Negative | 4 | 2 | 2 | 1 |
Trace | 1 | 3 | 3 | 4 | |
Volume (mL) | 15.8 ± 4.6 | 14.2 ± 2.3 | 23.0 ± 5.5 | 17.4 ± 2.6 | |
Number (N) | 5 | 5 | 5 | 5 | |
Female | |||||
GLU (mg/dL) | Negative | 5 | 5 | 5 | 5 |
BIL | Negative | 5 | 5 | 5 | 5 |
KET (mg/dL) | Negative | 5 | 4 | 5 | 4 |
Trace | 0 | 1 | 0 | 1 | |
SG | ≤1.005 | 0 | 0 | 1 | 1 |
1.010 | 4 | 1 | 4 | 4 | |
1.015 | 1 | 4 | 0 | 0 | |
1.020 | 0 | 1 | 0 | 0 | |
pH | 7.0 | 0 | 1 | 0 | 0 |
7.5 | 0 | 0 | 0 | 1 | |
8.0 | 0 | 0 | 2 | 0 | |
8.5 | 5 | 4 | 3 | 4 | |
PRO (mg/dL) | Negative | 3 | 2 | 5 | 4 |
15 | 1 | 2 | 0 | 1 | |
30 | 1 | 1 | 0 | 0 | |
URO (EU/dL) | 0.2 | 4 | 4 | 5 | 5 |
1.0 | 1 | 1 | 0 | 0 | |
NIT | Negative | 3 | 3 | 4 | 4 |
Positive | 2 | 2 | 1 | 1 | |
BLO | Negative | 5 | 5 | 5 | 4 |
Small | 0 | 0 | 0 | 1 | |
Volume (mL) | 12.2 ± 2.3 | 10.2 ± 4.8 | 10.2 ± 3.6 | 12.2 ± 2.3 | |
Number (N) | 5 | 5 | 5 | 5 |
Parameters | Groups (mg/kg/day) | |||
---|---|---|---|---|
0 | 625 | 1250 | 2500 | |
Male | ||||
RBC (106/μL) | 8.69 ± 0.40 | 8.50 ± 0.32 | 8.73 ± 0.30 | 8.33 ± 0.41 |
HGB (g/dL) | 14.9 ± 0.6 | 14.7 ± 0.4 | 15.1 ± 0.6 | 14.3 ± 0.4 |
HCT (%) | 46.4 ± 2.0 | 46.3 ± 1.4 | 47.2 ± 1.7 | 45.0 ± 1.5 |
MCV (fL) | 53.4 ± 1.1 | 54.4 ± 1.2 | 54.1 ± 1.9 | 54.2 ± 1.7 |
MCH (pg) | 17.1 ± 0.4 | 17.3 ± 0.6 | 17.3 ± 0.7 | 17.2 ± 0.5 |
MCHC (g/dL) | 32.0 ± 0.4 | 31.8 ± 0.6 | 32.0 ± 0.4 | 31.8 ± 0.4 |
PLT (103/μL) | 918.0 ± 85.0 | 869.1 ± 100.0 | 866.2 ± 57.2 | 961.4 ± 114.5 |
WBC (103/μL) | 9.52 ± 2.58 | 9.08 ± 3.00 | 9.70 ± 1.94 | 10.14 ± 1.76 |
NEU (%) | 22.2 ± 8.3 | 21.0 ± 9.6 | 24.2 ± 8.2 | 18.9 ± 7.2 |
LYM (%) | 72.8 ± 8.6 | 74.3 ± 10.1 | 71.2 ± 8.2 | 75.9 ± 7.0 |
MONO (%) | 3.29 ± 0.89 | 2.86 ± 1.30 | 2.71 ± 0.51 | 3.26 ± 0.77 |
EOS (%) | 0.99 ± 0.25 | 1.11 ± 0.37 | 1.18 ± 0.36 | 1.06 ± 0.42 |
BASO (%) | 0.20 ± 0.09 | 0.23 ± 0.05 | 0.18 ± 0.09 | 0.21 ± 0.06 |
LUC (%) | 0.52 ± 0.21 | 0.49 ± 0.28 | 0.55 ± 0.24 | 0.63 ± 0.19 |
Female | ||||
RBC (106/μL) | 7.78 ± 0.25 | 7.72 ± 0.25 | 7.71 ± 0.35 | 7.73 ± 0.42 |
HGB (g/dL) | 14.3 ± 0.5 | 14.2 ± 0.5 | 14.2 ± 0.5 | 14.1 ± 0.3 |
HCT (%) | 43.6 ± 1.5 | 43.2 ± 1.8 | 43.3 ± 1.3 | 42.8 ± 1.7 |
MCV (fL) | 56.0 ± 1.3 | 56.0 ± 1.4 | 56.2 ± 1.7 | 55.4 ± 2.1 |
MCH (pg) | 18.3 ± 0.4 | 18.4 ± 0.5 | 18.4 ± 0.6 | 18.3 ± 0.9 |
MCHC (g/dL) | 32.7 ± 0.5 | 32.9 ± 0.6 | 32.8 ± 0.4 | 32.9 ± 0.8 |
PLT (103/μL) | 945.0 ± 92.1 | 919.0 ± 126.0 | 938.4 ± 108.5 | 916.4 ± 95.0 |
WBC (103/μL) | 5.35 ± 1.57 | 4.91 ± 1.25 | 6.03 ± 1.87 | 6.09 ± 1.09 |
NEU (%) | 16.0 ± 4.5 | 16.2 ± 6.3 | 17.7 ± 5.9 | 15.8 ± 4.6 |
LYM (%) | 78.0 ± 4.4 | 78.4 ± 6.8 | 77.0 ± 6.5 | 79.4 ± 4.7 |
MONO (%) | 3.47 ± 0.87 | 2.85 ± 0.88 | 2.94 ± 0.83 | 2.76 ± 0.94 |
EOS (%) | 1.76 ± 0.51 | 1.55 ± 0.46 | 1.49 ± 0.54 | 1.37 ± 0.49 |
BASO (%) | 0.18 ± 0.06 | 0.11 ± 0.07 | 0.14 ± 0.08 | 0.13 ± 0.09 |
LUC (%) | 0.55 ± 0.15 | 0.77 ± 0.34 | 0.65 ± 0.26 | 0.51 ± 0.19 |
Parameters | Groups (mg/kg/day) | |||
---|---|---|---|---|
0 | 625 | 1250 | 2500 | |
Male | ||||
AST (U/L) | 103.6 ± 63.1 | 80.2 ± 13.0 | 80.9 ± 16.6 | 98.2 ± 21.2 |
ALT (U/L) | 45.8 ± 36.7 | 34.0 ± 6.4 | 33.8 ± 8.6 | 36.2 ± 6.4 |
ALP (U/L) | 92.1 ± 19.0 | 85.9 ± 19.3 | 92.7 ± 25.1 | 80.6 ± 12.0 |
CPK (U/L) | 113.6 ± 37.6 | 104.6 ± 28.2 | 111.0 ± 37.4 | 213.4 ± 133.6 |
TBIL (mg/dL) | 0.153 ± 0.042 | 0.150 ± 0.031 | 0.142 ± 0.022 | 0.153 ± 0.019 |
GLU (mg/dL) | 143.0 ± 16.5 | 133.3 ± 10.8 | 139.6 ± 11.3 | 139.9 ± 17.1 |
TCHO (mg/dL) | 69.8 ± 12.3 | 84.5 ± 22.9 | 70.1 ± 22.1 | 66.9 ± 17.1 |
TG (mg/dL) | 49.9 ± 22.0 | 61.5 ± 35.6 | 69.5 ± 24.9 | 55.5 ± 26.1 |
TP (g/dL) | 6.12 ± 0.21 | 6.13 ± 0.33 | 6.16 ± 0.25 | 6.09 ± 0.30 |
ALB (g/dL) | 2.95 ± 0.08 | 2.97 ± 0.12 | 2.99 ± 0.12 | 2.95 ± 0.14 |
BUN (mg/dL) | 12.2 ± 1.4 | 12.6 ± 1.9 | 12.1 ± 1.2 | 12.8 ± 1.7 |
CRE (mg/dL) | 0.36 ± 0.02 | 0.41 ± 0.05 | 0.38 ± 0.03 | 0.41 ± 0.03 |
IP (mg/dL) | 6.00 ± 0.28 | 5.93 ± 0.49 | 5.52 ± 0.19 | 5.97 ± 0.42 |
Ca2+ (mg/dL) | 9.69 ± 0.18 | 9.73 ± 0.30 | 9.66 ± 0.25 | 9.53 ± 0.23 |
Na+ (mmol/L) | 133.0 ± 0.8 | 134.2 ± 0.9 | 134.4 ± 1.9 | 133.8 ± 0.9 |
K+ (mmol/L) | 4.12 ± 0.21 | 4.00 ± 0.29 | 3.94 ± 0.21 | 4.16 ± 0.31 |
Cl− (mmol/L) | 98.2 ± 0.9 | 98.9 ± 1.6 | 98.5 ± 1.6 | 97.5 ± 1.4 |
Female | ||||
AST (U/L) | 80.9 ± 27.9 | 79.9 ± 13.0 | 90.0 ± 19.0 | 89.0 ± 25.9 |
ALT (U/L) | 27.3 ± 8.5 | 29.4 ± 6.4 | 31.9 ± 10.9 | 30.4 ± 13.0 |
ALP (U/L) | 45.2 ± 10.8 | 37.5 ± 9.9 | 39.9 ± 13.4 | 41.9 ± 9.3 |
CPK (U/L) | 143.3 ± 92.3 | 139.7 ± 94.8 | 97.5 ± 33.9 | 141.9 ± 64.0 |
TBIL (mg/dL) | 0.181 ± 0.02 | 0.189 ± 0.03 | 0.224 ± 0.022 | 0.223 ± 0.097 |
GLU (mg/dL) | 129.6 ± 9.9 | 124.3 ± 10.8 | 133.2 ± 15.8 | 129.1 ± 9.8 |
TCHO (mg/dL) | 84.6 ± 9.5 | 83.7 ± 20.6 | 86.8 ± 18.8 | 84.7 ± 19.8 |
TG (mg/dL) | 42.6 ± 14.0 | 47.5 ± 17.8 | 39.0 ± 7.1 | 35.6 ± 7.4 |
TP (g/dL) | 6.75 ± 0.37 | 6.72 ± 0.46 | 6.75 ± 0.38 | 6.62 ± 0.43 |
ALB (g/dL) | 3.58 ± 0.25 | 3.53 ± 0.31 | 3.59 ± 0.23 | 3.53 ± 0.25 |
BUN (mg/dL) | 14.1 ± 1.3 | 15.5 ± 2.6 | 15.7 ± 2.8 | 15.2 ± 4.4 |
CRE (mg/dL) | 0.45 ± 0.02 | 0.47 ± 0.06 | 0.49 ± 0.05 | 0.47 ± 0.06 |
IP (mg/dL) | 4.67 ± 0.40 | 4.89 ± 0.74 | 4.82 ± 0.56 | 4.95 ± 0.42 |
Ca2+ (mg/dL) | 10.04 ± 0.29 | 9.99 ± 0.26 | 10.02 ± 0.25 | 9.77 ± 0.31 |
Na+ (mmol/L) | 141.0 ± 0.9 | 140.2 ± 1.0 | 140.3 ± 1.0 | 140.0 ± 1.5 |
K+ (mmol/L) | 4.06 ± 0.25 | 4.06 ± 0.26 | 3.90 ± 0.18 | 3.92 ± 0.32 |
Cl− (mmol/L) | 105.8 ± 1.2 | 104.7 ± 1.2 | 105.5 ± 1.4 | 104.4 ± 1.8 |
Organs | Groups (mg/kg/day) | |||
---|---|---|---|---|
0 | 625 | 1250 | 2500 | |
Male | ||||
Body weight | 551.25 ± 57.11 | 580.07 ± 61.42 | 564.98 ± 56.34 | 552.79 ± 36.52 |
Adrenal gland L | 0.032 ± 0.004 | 0.031 ± 0.003 | 0.032 ± 0.005 | 0.033 ± 0.005 |
Adrenal gland R | 0.023 ± 0.003 | 0.030 ± 0.004 | 0.029 ± 0.004 | 0.031 ± 0.006 |
Thymus | 0.314 ± 0.089 | 0.306 ± 0.058 | 0.322 ± 0.087 | 0.292 ± 0.041 |
Prostate gland | 0.691 ± 0.122 | 0.589 ± 0.134 | 0.741 ± 0.193 | 0.639 ± 0.106 |
Testis L | 1.805 ± 0.156 | 1.939 ± 0.175 | 1.946 ± 0.201 | 1.840 ± 0.241 |
Testis R | 1.679 ± 0.374 | 1.919 ± 0.187 | 1.938 ± 0.172 | 1.836 ± 0.225 |
Epididymis L | 0.681 ± 0.103 | 0.754 ± 0.062 | 0.765 ± 0.073 | 0.705 ± 0.075 |
Epididymis R | 0.674 ± 0.166 | 0.778 ± 0.069 | 0.807 ± 0.071 | 0.707 ± 0.069 |
Spleen | 1.000 ± 0.312 | 0.904 ± 0.121 | 0.894 ± 0.161 | 0.827 ± 0.121 |
Kidney L | 1.619 ± 0.153 | 1.695 ± 0.158 | 1.613 ± 0.138 | 1.628 ± 0.141 |
Kidney R | 1.536 ± 0.269 | 1.673 ± 0.154 | 1.621 ± 0.120 | 1.633 ± 0.126 |
Heart | 1.570 ± 0.146 | 1.714 ± 0.180 | 1.624 ± 0.130 | 1.579 ± 0.171 |
Lung | 1.700 ± 0.191 | 1.843 ± 0.169 | 1.776 ± 0.096 | 1.712 ± 0.091 |
Brain | 2.193 ± 0.100 | 2.157 ± 0.072 | 2.128 ± 0.091 | 2.206 ± 0.050 |
Liver | 12.78 ± 1.682 | 13.67 ± 2.214 | 13.91 ± 1.829 | 13.38 ± 1.277 |
Female | ||||
Body weight | 298.29 ± 21.23 | 295.24 ± 26.30 | 288.76 ± 21.52 | 304.44 ± 24.09 |
Adrenal gland L | 0.035 ± 0.004 | 0.037 ± 0.006 | 0.035 ± 0.005 | 0.039 ± 0.005 |
Adrenal gland R | 0.034 ± 0.004 | 0.037 ± 0.006 | 0.033 ± 0.006 | 0.038 ± 0.005 |
Thymus | 0.239 ± 0.026 | 0.289 ± 0.108 | 0.238 ± 0.060 | 0.322 ± 0.099 |
Ovary L | 0.047 ± 0.006 | 0.042 ± 0.011 | 0.040 ± 0.009 | 0.045 ± 0.009 |
Ovary R | 0.042 ± 0.006 | 0.038 ± 0.007 | 0.040 ± 0.011 | 0.044 ± 0.010 |
Uterus (with cervix) | 0.778 ± 0.243 | 0.656 ± 0.207 | 0.727 ± 0.259 | 0.622 ± 0.170 |
Spleen | 0.568 ± 0.063 | 0.526 ± 0.093 | 0.542 ± 0.097 | 0.627 ± 0.162 |
Kidney L | 0.959 ± 0.059 | 0.928 ± 0.068 | 0.930 ± 0.120 | 0.995 ± 0.107 |
Kidney R | 0.953 ± 0.061 | 0.936 ± 0.082 | 0.945 ± 0.103 | 1.021 ± 0.119 |
Heart | 1.045 ± 0.071 | 1.050 ± 0.105 | 1.005 ± 0.051 | 1.041 ± 0.074 |
Lung | 1.332 ± 0.095 | 1.310 ± 0.138 | 1.299 ± 0.104 | 1.318 ± 0.102 |
Brain | 2.051 ± 0.105 | 2.006 ± 0.122 | 1.988 ± 0.139 | 2.066 ± 0.089 |
Liver | 7.465 ± 0.461 | 7.452 ± 0.713 | 7.276 ± 0.573 | 7.605 ± 0.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.-M.; Lee, D.-Y.; Song, M.-Y.; Kim, E.-H. Toxicological Evaluation Verifies the Safety of Oral Administration of Steamed Mature Silkworm Powder in Rats. Foods 2024, 13, 2209. https://doi.org/10.3390/foods13142209
Han Y-M, Lee D-Y, Song M-Y, Kim E-H. Toxicological Evaluation Verifies the Safety of Oral Administration of Steamed Mature Silkworm Powder in Rats. Foods. 2024; 13(14):2209. https://doi.org/10.3390/foods13142209
Chicago/Turabian StyleHan, Young-Min, Da-Young Lee, Moon-Young Song, and Eun-Hee Kim. 2024. "Toxicological Evaluation Verifies the Safety of Oral Administration of Steamed Mature Silkworm Powder in Rats" Foods 13, no. 14: 2209. https://doi.org/10.3390/foods13142209
APA StyleHan, Y.-M., Lee, D.-Y., Song, M.-Y., & Kim, E.-H. (2024). Toxicological Evaluation Verifies the Safety of Oral Administration of Steamed Mature Silkworm Powder in Rats. Foods, 13(14), 2209. https://doi.org/10.3390/foods13142209