Research on Innovative Apple Grading Technology Driven by Intelligent Vision and Machine Learning
Abstract
:1. Introduction
- We introduce, for the first time, a stem indicator in the apple grading task. By leveraging computer vision and state-of-the-art model compression techniques, we propose a high-precision, lightweight stem detection algorithm called FDNet-p. Extensive experiments demonstrate its superior performance. In the apple grading process, FDNet-p is initially applied to filter out apples without stems. Additionally, we propose an auxiliary positioning strategy to prevent premature or delayed triggering of the camera capture.
- During feature extraction, we propose an improved DPC-AWKNN segmentation algorithm and incorporate an adaptive brightness equalization strategy to enhance fruit body segmentation. Image processing techniques are then employed to extract color, diameter, and shape features of apples, aligning these with real-world manual grading standards.
- Based on the multi-feature information of apples, we use various performance metrics to comprehensively evaluate machine learning classification algorithms. Ultimately, the GBDT algorithm is selected for implementing intelligent apple grading.
2. Materials and Methods
2.1. Grading Standards and Dataset Construction
2.1.1. Apple Grading Standards
2.1.2. Apple Stem Dataset Construction
2.1.3. Construction of an Apple Grading Dataset
2.2. Apple Grading Overall Design
2.3. Stem Detection and Fruit Body Subsidiary Positioning
2.3.1. FasterNet Feature Extraction Network
2.3.2. DBB-PANet Feature Fusion Network
2.3.3. Model Lightweighting
2.4. Apple Feature Extraction
2.4.1. Noise Processing
2.4.2. Apple Segmentation
Algorithm 1: DPC-AWKNN |
Input: Image I Output: Cluster labels |
|
2.4.3. Apple Color Feature Extraction
2.4.4. Apple Diameter Feature Extraction
2.4.5. Apple Shape Feature Extraction
2.5. Apple Grading Model
Algorithm 2: GBDT |
Input: Apple feature data D. Output: Powerful learner . |
|
3. Experiment and Result Analysis
3.1. Experimental Environment and Parameter Settings
3.2. Fruit Stem Detection Experiments
3.2.1. Fruit Stem Detection Model Evaluation Metrics
3.2.2. Feature Extraction Network Comparison Experiment
3.2.3. Ablation Study on the Improvement Process
3.2.4. Comparative Experiments on Model Compression
3.2.5. Model Comparative Experiments
3.3. Apple Grading Experiments
3.3.1. Apple Grading Model Evaluation Metrics
3.3.2. Comparative Analysis of Apple Grading Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Zhang, Z.; Li, Y.; Hua, W.; Wei, X.; Igathinathane, C.; Mhamed, M.; Zhang, W.; Jiao, X.; Yang, L.; et al. In-field grading and sorting technology of apples: A state-of-the-art review. Comput. Electron. Agric. 2024, 226, 109383. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.; Xu, B.; Zhang, T. Apple Grading Based on Multi-Dimensional View Processing and Deep Learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef] [PubMed]
- Toylan, H.; Kuscu, H. A Real-Time Apple Grading System Using Multicolor Space. Sci. World J. 2014, 2014, 292681. [Google Scholar] [CrossRef] [PubMed]
- Sofu, M.; Er, O.; Kayacan, M.; Cetişli, B. Design of an automatic apple sorting system using machine vision. Comput. Electron. Agric. 2016, 127, 395–405. [Google Scholar] [CrossRef]
- Zhao, D.; Ai, Y. Research on apple size detection method based on computer vision. J. Agric. Mech. Res 2022, 44, 206–209. [Google Scholar]
- Huang, Z.; Zhu, Q. Detection of Red Region of Fuji Apple Based on RGB Color Model. Laser Optoelectron. Prog. 2016, 53, 041001. [Google Scholar] [CrossRef]
- Tan, Y.; Gu, B.; Ji, C.; Tian, G.; Jin, L.; Li, J. Design of on-line apple grading system based on color and weight. Comput. Eng. Appl. 2016, 52, 219–222. [Google Scholar]
- Qiu, G.; Peng, G.; Tao, D.; Wang, Z. Detection on surface defect of apples by DT-SVM method. Food Mach. 2017, 33, 131–135. [Google Scholar]
- Yu, Y.; Velastin, S.A.; Yin, F. Automatic grading of apples based on multi-features and weighted K-means clustering algorithm. Inf. Process. Agric. 2020, 7, 556–565. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, Q.; Chai, J.; Yang, X.; Li, H. Apple detection and grading based on color and fruit-diameter. Comput. Eng. Sci. 2020, 42, 1599–1607. [Google Scholar]
- Shi, X.; Chai, X.; Yang, C.; Xia, X.; Sun, T. Vision-based apple quality grading with multi-view spatial network. Comput. Electron. Agric. 2022, 195, 106793. [Google Scholar] [CrossRef]
- Fan, S.; Liang, X.; Huang, W.; Zhang, V.J.; Pang, Q.; He, X.; Li, L.; Zhang, C. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Comput. Electron. Agric. 2022, 193, 106715. [Google Scholar] [CrossRef]
- GB/T 10651-2008; Fresh Apple. All China Federation of Supply and Marketing Cooperatives: Beijing, China, 2008.
- Li, H.; Gu, Z.; He, D.; Wang, X.; Huang, J.; Mo, Y.; Li, P.; Huang, Z.; Wu, F. A lightweight improved YOLOv5s model and its deployment for detecting pitaya fruits in daytime and nighttime light-supplement environments. Comput. Electron. Agric. 2024, 220, 108914. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, don’t walk: Chasing higher FLOPS for faster neural networks. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031. [Google Scholar]
- Han, B.; Lu, Z.; Zhang, J.; Almodfer, R.; Wang, Z.; Sun, W.; Dong, L. Rep-ViG-Apple: A CNN-GCN Hybrid Model for Apple Detection in Complex Orchard Environments. Agronomy 2024, 14, 1733. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse branch block: Building a convolution as an inception-like unit. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10886–10895. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Storath, M.; Weinmann, A. Fast median filtering for phase or orientation data. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Gavaskar, R.G.; Chaudhury, K.N. Fast adaptive bilateral filtering. IEEE Trans. Image Process. 2018, 28, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Dai, S. Adaptive histogram equalization with visual perception consistency. Inf. Sci. 2024, 668, 120525. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, J.; Hassan, M.; Zhang, X.; Zhang, T.; Yang, C.; Zhou, X.; Jia, F. Density peak clustering algorithms: A review on the decade 2014–2023. Expert Syst. Appl. 2024, 238, 121860. [Google Scholar] [CrossRef]
- Putra, A. Fingerprint identification for attendance using euclidean distance and manhattan distance. Sinkron 2023, 8, 2345–2352. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Chan, T.; Har-Peled, S. Smallest k-enclosing rectangle revisited. Discret. Comput. Geom. 2021, 66, 769–791. [Google Scholar] [CrossRef]
- Liu, W.; Fu, X.; Deng, Z.; Xu, L.; Jiao, J. Smallest enclosing circle-based fingerprint clustering and modified-WKNN matching algorithm for indoor positioning. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–6. [Google Scholar]
- Feng, Y.; Han, B.; Wang, X.; Shen, J.; Guan, X.; Ding, H. Self-Supervised Transformers for Unsupervised SAR Complex Interference Detection Using Canny Edge Detector. Remote Sens. 2024, 16, 306. [Google Scholar] [CrossRef]
- Huang, A.; Xu, R.; Chen, Y.; Guo, M. Research on multi-label user classification of social media based on ML-KNN algorithm. Technol. Forecast. Soc. Change 2023, 188, 122271. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Wang, Z. Fast SVM classifier for large-scale classification problems. Inf. Sci. 2023, 642, 119136. [Google Scholar] [CrossRef]
- Sabancı, K. Different apple varieties classification using kNN and MLP algorithms. Int. J. Intell. Syst. Appl. Eng. 2016, 4, 166–169. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sandag, G.A. A prediction model of company health using bagging classifier. J. Ilmu Pengetah. Dan Teknol. Komput. 2020, 6, 41–46. [Google Scholar]
- Zhang, Z.; Jung, C. GBDT-MO: Gradient-boosted decision trees for multiple outputs. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3156–3167. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Y.-Y.; Yang, D.; Yuan, Y.; He, W.-Y.; Wang, Y.-J. MobileNetV3-BLS: A broad learning approach for automatic concrete surface crack detection. Constr. Build. Mater. 2023, 392, 131941. [Google Scholar] [CrossRef]
- Du, Z.; Xu, X.; Bai, Z.; Liu, X.; Hu, Y.; Li, W.; Wang, C.; Li, D. Feature fusion strategy and improved GhostNet for accurate recognition of fish feeding behavior. Comput. Electron. Agric. 2023, 214, 108310. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744. [Google Scholar]
- Kumar, A.; Shaikh, A.M.; Li, Y.; Bilal, H.; Yin, B. Pruning filters with L1-norm and capped L1-norm for CNN compression. Appl. Intell. 2021, 51, 1152–1160. [Google Scholar] [CrossRef]
- Farhadi, A.; Redmon, J. Yolov3: An incremental improvement. In Proceedings of the Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1804, pp. 1–6. [Google Scholar]
- Wang, Z.; Jin, L.; Wang, S.; Xu, H. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biol. Technol. 2022, 185, 111808. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- He, Y.; Sahma, A.; He, X.; Wu, R.; Zhang, R. FireNet: A Lightweight and Efficient Multi-Scenario Fire Object Detector. Remote Sens. 2024, 16, 4112. [Google Scholar] [CrossRef]
- Wang, C.; Yeh, I.; Liao, H.Y. Yolov9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Jocher, G.; Qiu, J. Ultralytics YOLO11: Version 11.0.0[EB/OL]. 2024. Available online: https://github.com/ultralytics/ultralytics (accessed on 15 October 2024).
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Li, X.; Lv, C.; Wang, W.; Li, G.; Yang, L.; Yang, J. Generalized focal loss: Towards efficient representation learning for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3139–3153. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. Rtmdet: An empirical study of designing real-time object detectors. arXiv 2022, arXiv:2212.07784. [Google Scholar]
- Song, C.-Y.; Zhang, F.; Li, J.-S.; Xie, J.-Y.; Yang, C.; Zhou, H.; Zhang, J.-X. Detection of maize tassels for UAV remote sensing image with an improved YOLOX model. J. Integr. Agric. 2023, 22, 1671–1683. [Google Scholar] [CrossRef]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. Tood: Task-aligned one-stage object detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE Computer Society, Montreal, BC, Canada, 11–17 October 2021; pp. 3490–3499. [Google Scholar]
Attribute | Apple Grade | |||
---|---|---|---|---|
Premium Fruit | Grade A Fruit | Grade B Fruit | Substandard Fruit | |
Stem Feature ↓ | Intact | Intact | Intact (minor damage allowed) | Does not meet the requirements for the corresponding grade |
Color Feature ↓ | ≥90% | ≥75% | ≥60% | |
Diameter Feature ↓ | ≥80 mm | ≥70 mm | ≥65 mm | |
Shape Feature ↓ | ≥0.8 | ≥0.7 | ≥0.6 |
Backbone | P/% | R/% | [email protected]/% | [email protected]:0.95/% | GFLOPs | Size/MB |
---|---|---|---|---|---|---|
MobileNetv3 | 93.0 | 90.5 | 95.3 | 67.0 | 6.5 | 8.7 |
GhostNet | 89.1 | 93.7 | 95.2 | 65.7 | 5.9 | 6.7 |
FasterNet-t0 | 95.1 | 91.5 | 95.8 | 69.5 | 11.2 | 11.0 |
FasterNet-t1 | 95.2 | 91.0 | 96.1 | 70.4 | 20.0 | 18.1 |
FasterNet-t2 | 93.7 | 92.1 | 96.9 | 69.7 | 37.9 | 32.5 |
FasterNet-t0 | DBB-PANet | P/% | R/% | [email protected]/% | [email protected]:0.95/% | GFLOPs | Size/MB |
---|---|---|---|---|---|---|---|
93.0 | 91.9 | 96.1 | 70.1 | 15.8 | 13.8 | ||
√ | 95.1 | 91.5 | 95.8 | 69.5 | 11.2 | 11.0 | |
√ | 93.3 | 94.2 | 96.2 | 70.2 | 18.1 | 16.6 | |
√ | √ | 95.7 | 91.0 | 96.9 | 69.8 | 13.6 | 14.2 |
Method | Compression Ratio | P/% | R/% | mAP@ 0.5/% | mAP@ 0.5:0.95/% | GFLOPs | Size/MB | Latency/ms | FPS (Batch = 32) |
---|---|---|---|---|---|---|---|---|---|
FDNet | 0.0 | 95.7 | 91.0 | 96.9 | 69.8 | 13.6 | 14.2 | 0.448 ± 0.169 | 228.1 |
+lim | 2.0 | 95.9 | 91.5 | 96.6 | 68.2 | 6.8 | 6.4 | 0.277 ± 0.072 | 360.4 |
+1 | 2.0 | 95.4 | 93.1 | 96.1 | 68.2 | 6.8 | 5.5 | 0.275 ± 0.161 | 363.0 |
+AMP | 2.0 | 95.9 | 89.9 | 96.1 | 68.7 | 6.8 | 5.3 | 0.268 ± 0.032 | 372.8 |
+AMP | 3.0 | 93.1 | 93.1 | 96.2 | 67.2 | 4.5 | 3.3 | 0.240 ± 0.144 | 416.1 |
+AMP | 4.0 | 96.3 | 89.4 | 96.6 | 67.9 | 3.4 | 2.5 | 0.200 ± 0.113 | 499.5 |
Model Name | P/% | R/% | [email protected]/% | [email protected]:0.95/% | GFLOPs | Size/MB |
---|---|---|---|---|---|---|
YOLO Series | ||||||
YOLOv3-t | 94.9 | 89.2 | 95.6 | 70.0 | 18.9 | 24.4 |
YOLOv5-n | 95.9 | 89.9 | 95.2 | 68.6 | 4.1 | 3.7 |
YOLOv5-s | 93.0 | 91.9 | 96.1 | 70.1 | 15.8 | 13.8 |
YOLOv6-n | 95.0 | 91.0 | 94.7 | 69.8 | 11.8 | 8.3 |
YOLOv6-s | 96.1 | 92.2 | 96.0 | 70.4 | 44 | 32.8 |
YOLOv8-n | 92.1 | 87.3 | 95.8 | 68.9 | 8.1 | 6.2 |
YOLOv9-t | 95.1 | 89.9 | 95.9 | 68.3 | 6.4 | 4.0 |
YOLOv10-n | 92.2 | 86.2 | 94.1 | 65.1 | 8.2 | 5.5 |
YOLOv11-n | 95.9 | 91.0 | 94.8 | 67.4 | 6.3 | 5.2 |
Non-YOLO Series | ||||||
FasterRCNN | 96.0 | 90.2 | 96.0 | 69.9 | 134 | 315.1 |
GFL | 95.6 | 89.2 | 96.6 | 68.2 | 128 | 245.8 |
RTMDet | 95.4 | 88.8 | 95.3 | 68.3 | 8.1 | 79.5 |
YOLOx | 95.9 | 88.2 | 95.5 | 67.4 | 7.6 | 61.5 |
TOOD | 94.8 | 91.4 | 96.2 | 67.6 | 123 | 243.9 |
Ours (FDNet) | 95.6 | 91.0 | 96.9 | 69.8 | 13.6 | 14.2 |
Ours (FDNet-p) | 96.3 | 89.4 | 96.6 | 67.9 | 3.4 | 2.5 |
Items | Categories | Equation |
---|---|---|
Jaccard Score | Micro | |
Macro | ||
Weighted | ||
P | Micro | |
Macro | ||
Weighted | ||
R | Micro | |
Macro | ||
Weighted | ||
F1 Score | Micro | |
Macro | ||
Weighted |
F1 Score | Jaccard Score | P | R | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Micro | Macro | Weighted | Micro | Macro | Weighted | Micro | Macro | Weighted | Micro | Macro | Weighted |
KNN | 0.8340 ± 0.1143 | 0.8129 ± 0.1321 | 0.8263 ± 0.1186 | 0.7319 ± 0.1711 | 0.7292 ± 0.1766 | 0.7465 ± 0.1598 | 0.8340 ± 0.1143 | 0.8479 ± 0.1155 | 0.8733 ± 0.0946 | 0.8340 ± 0.1143 | 0.8333 ± 0.1204 | 0.8340 ± 0.1143 |
SVM | 0.8494 ± 0.0740 | 0.8199 ± 0.0861 | 0.8370 ± 0.0808 | 0.7450 ± 0.1070 | 0.7271 ± 0.1124 | 0.7520 ± 0.1071 | 0.8494 ± 0.0740 | 0.8792 ± 0.0619 | 0.8930 ± 0.0599 | 0.8494 ± 0.0740 | 0.8375 ± 0.0756 | 0.8494 ± 0.0740 |
MLP | 0.8968 ± 0.0606 | 0.8529 ± 0.0968 | 0.8742 ± 0.0809 | 0.8068 ± 0.1144 | 0.7979 ± 0.1153 | 0.8317 ± 0.0950 | 0.8968 ± 0.0606 | 0.9233 ± 0.0495 | 0.9395 ± 0.0417 | 0.8962 ± 0.0802 | 0.8854 ± 0.0723 | 0.8801 ± 0.0743 |
RF | 0.9128 ± 0.0839 | 0.9101 ± 0.0844 | 0.9265 ± 0.0785 | 0.8651 ± 0.1497 | 0.8542 ± 0.1269 | 0.8732 ± 0.1062 | 0.9199 ± 0.0732 | 0.9479 ± 0.0490 | 0.9579 ± 0.0373 | 0.9288 ± 0.0742 | 0.9417 ± 0.0573 | 0.9365 ± 0.0599 |
BC | 0.9353 ± 0.0800 | 0.9231 ± 0.0806 | 0.9410 ± 0.0802 | 0.8619 ± 0.1354 | 0.8938 ± 0.1193 | 0.8966 ± 0.1111 | 0.9353 ± 0.0723 | 0.9542 ± 0.0512 | 0.9671 ± 0.0352 | 0.9436 ± 0.0820 | 0.9417 ± 0.0573 | 0.9519 ± 0.0642 |
GBDT | 0.9513 ± 0.0546 | 0.9476 ± 0.0569 | 0.9506 ± 0.0549 | 0.9121 ± 0.0962 | 0.9146 ± 0.0901 | 0.9196 ± 0.0864 | 0.9513 ± 0.0546 | 0.9604 ± 0.0432 | 0.9683 ± 0.0325 | 0.9513 ± 0.0546 | 0.9542 ± 0.0473 | 0.9513 ± 0.0546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Zhang, J.; Almodfer, R.; Wang, Y.; Sun, W.; Bai, T.; Dong, L.; Hou, W. Research on Innovative Apple Grading Technology Driven by Intelligent Vision and Machine Learning. Foods 2025, 14, 258. https://doi.org/10.3390/foods14020258
Han B, Zhang J, Almodfer R, Wang Y, Sun W, Bai T, Dong L, Hou W. Research on Innovative Apple Grading Technology Driven by Intelligent Vision and Machine Learning. Foods. 2025; 14(2):258. https://doi.org/10.3390/foods14020258
Chicago/Turabian StyleHan, Bo, Jingjing Zhang, Rolla Almodfer, Yingchao Wang, Wei Sun, Tao Bai, Luan Dong, and Wenjing Hou. 2025. "Research on Innovative Apple Grading Technology Driven by Intelligent Vision and Machine Learning" Foods 14, no. 2: 258. https://doi.org/10.3390/foods14020258
APA StyleHan, B., Zhang, J., Almodfer, R., Wang, Y., Sun, W., Bai, T., Dong, L., & Hou, W. (2025). Research on Innovative Apple Grading Technology Driven by Intelligent Vision and Machine Learning. Foods, 14(2), 258. https://doi.org/10.3390/foods14020258