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Abstract: There are enormous differences in benzo[a]pyrene (BaP) acute toxicity tests on Daphnia
magna, according to previous publications. The explanations of the reasons for this extreme variation
are necessary. In this context, the acute toxicity tests of different experiment conditions (light/dark,
culture medium, and solvent) were conducted on Daphnia magna with BaP as the toxicant of concern.
Based on the experiments above, molecular dynamics (MD) simulations were employed to investigate
the mechanisms of action. According to our results, the significant influence of light exposure on the
acute toxicity test of BaP (p < 0.05) on D. magna was recorded. On the basis of the MD simulations, it
was possible that BaP may not affect the normal operation of Superoxide Dismutase and Catalase
directly, and it could be quickly transferred from the body through Glutathione S-transferase and
Cytochromes P450. Therefore, when exposed to light, the oxidative stress process intensifies, causing
damage to Daphnia magna. Apparently, the ecotoxicity tests based on inhibition for D. magna cannot
adequately reflect the toxic effects of BaP.

Keywords: benzo[a]pyrene; Daphnia magna; toxicity endpoint; acute toxicity

1. Introduction

Benzo[a]pyrene (BaP) is one of the most important members in the polycyclic aromatic
hydrocarbons (PAHs) group, which is widely found in the aquatic environment. Due to its
teratogenic, mutagenic, and carcinogenic properties on diverse organisms, the toxicity of
BaP has raised concerns for human health and ecological safety [1–3]. It has been detected
in various aquatic environments, including surface water, seawater, groundwater, and
drinking water, as well as in sediment samples, as a result of atmospheric deposition and
industrial wastewater discharge [4]. It was reported that Bap concentrations in Chinese
rivers ranged from 0.01–382.36 ng/L [5].

The mechanism of action (MOA) is the specific means by which chemicals induce
effects in organisms. Environmental scientists have documented that BaP damages aquatic
organisms such as disrupting the immune system, causing abnormal energy metabolism
and osmotic regulation, DNA damage, and apoptosis [6–8]. The metabolism of BaP includes
phase I and II metabolism [9]. One crucial mechanism through which BaP exerts its effects is
its free radical activity, resulting in the induction of oxidative stress within cells [10,11]. The
BaP-induced toxic effect primarily occurs via phase I metabolites. Once BaP enters aquatic
organisms, the initial metabolic process that occurs is an oxidation–reduction reaction
that produces reactive oxygen species (ROS) and toxic intermediate metabolites [12]. BaP
triggers oxidative stress by ROS, disrupting the function of damaging lipids, proteins, and
DNA [13].

For the pollutants’ mode of action, compounds can be categorized as narcotic or reac-
tive [14]. Narcotic compounds are further divided into baseline and less inert compounds,
which particularly cause cellular toxicity through their hydrophobic properties [15]. The
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toxic mode of action of BaP should be as weak as that of inert compounds according to the
modified Verhhar’s scheme in Toxtree software online (http://toxtree.sourceforge.net/),
accessed on 10 October 2023. Previous studies have shown that some compounds may
share different modes of action among different test species [16]. Therefore, it may not be
reasonable to categorize a compound broadly as a single mode of action. To date, research
on the toxicity of BaP in invertebrates seems to mainly focus on modes of action rather
than MOA.

There are limited reports on BaP acute toxicity tests on Daphnia magna. However, the
acute toxicity values in these reports exhibit significant variations. In general, the most
frequently reported endpoints for D. magna primarily revolve around “immobility”, with
little attention given to chronic and sublethal effects such as genotoxicity and reproductive
inhibition [17,18]. Apparently, “immobility” may be the most straightforward and primary
ecotoxicity endpoint and cannot provide complete information on the MOA of BaP in D.
magna. Therefore, “immobility” might not be sensitive enough to mirror the ecological
risk in aquatic ecosystems. What are the possible causes of the extreme variations in the
BaP acute toxicity test on D. magna? This study aims to investigate whether relying on
inhibition as the primary toxicity endpoint for assessing the toxic effects of BaP is reasonable
(Figure 1).
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Figure 1. Schematic diagram of proposed research methodology.

2. Materials and Methods
2.1. Chemicals

BaP (99%) was purchased from Macklin Inc. (Shanghai, China) and J&K Scientific
Co. (Beijing, China). Dimethyl sulfoxide (DMSO) and acetone (AC) were procured from
Macklin Inc. (Shanghai, China). Potassium dichromate (K2Cr2O7) used as the reference
compound was obtained from J&K Scientific Co. (Beijing, China). BaP was dissolved in
DMSO or AC to prepare the stock solution. The total volume of stock solution with AC
added was less than 60 µL to ensure that the solvent did not affect the experiment; this
value for DMSO was 200 µL.

http://toxtree.sourceforge.net/
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2.2. Test Organism

D. magna were obtained from the Laboratory Animal Monitoring Institute of Guang-
dong Province, China. D. magna were cultured in a growth medium at a temperature of
20 ± 2 ◦C under a 16 h light/8 h dark cycle with an illumination intensity ranging from
1110–1480 lx [19]. D. magna were provided daily with Chlorella sp. as their food source,
which was cultivated in BG11 medium. The International Organization for Standardization
(ISO) standard water and dechlorinated tap water (TW) were employed as culture media.
The culture medium was renewed three times a week. After three generations of partheno-
genesis, under the same conditions, neonatal D. magna aged 6–24 h were used for the acute
toxicity assessment. In all toxicity tests, the test conditions mirrored the culture conditions.
Before the test, a 24 h acute immobilization test with K2Cr2O7 was conducted to assess
the sensitivity of neonates. The toxicity test was considered valid when the 24-h EC50 of
K2Cr2O7 fell within the range of 0.6 to 2.1 mg/L.

2.3. Acute Toxicity Tests of BaP

The suitable dilution factor was set as 2 for each test. For the experiments with low
concentrations, five concentration levels were selected (0.025 mg/L, 0.05 mg/L, 0.1 mg/L,
0.2 mg/L, and 0.4 mg/L). For the experiments of high concentrations, six concentration
levels were selected (0.25 mg/L, 0.5 mg/L, 1 mg/L, 2 mg/L, 4 mg/L, and 8 mg/L). Every
experiment was run in triplicate, with 10 neonates (6–24 h old) in a 50 mL conical flask
containing 20 mL medium. During the test, no additional food was provided, and the
solution was not renewed. To reduce evaporation, all test containers were covered with
vented sealing film. After 48 h of exposure, neonates that failed to move within 15 s after
gentle agitation of the test vessel were considered to be immobilized. The statistical analysis
in this paper was performed using SPSS 27, and the graphs were created using Origin 2022.

2.4. Exposure Concentrations

To compare the exposure concentrations to the nominal concentrations, measurements
of concentrations of BaP and K2Cr2O7 in the corresponding culture media were conducted.
The samples were three consecutively extracted with 20 mL of dichloromethane in an
ultrasonic bath. The extracts were combined and spiked with a known number of internal
standards and condensed, solvent-exchanged to hexane, and further reduced to 1 mL for
gas chromatograph mass spectrometer (Shimadzu, QP2010Ultra, Kyoto, Japan) analysis. A
30 m × 0.25 mm—i.d. (0.25 µm film thickness) DB-5MS column (J&W Scientific, Folsom,
CA, USA) was used for separating the target analytes. The column temperature was
programmed from 80 ◦C and maintained for 2 min, then the temperature was increased to
180 ◦C at a rate of 20 ◦C/min for 5 min, and finally, the temperature was raised to 290 ◦C at
a rate of 10 ◦C/min held for 15 min. The concentration of K2Cr2O7 was determined using a
spectrophotometer. Recoveries of BaP and K2Cr2O7 were 83.4 ± 9.53% and 99.7 ± 0.83%,
respectively. The exposure concentrations were similar to the nominal concentration.

2.5. Molecular Docking

The structures of the BaP used for molecular docking were obtained from the PubChem
database (http://www.ncbi.nlm.nih.gov/pccompound), accessed on 8 March 2024. The
crystal structures of the proteins used in this study (https://alphafold.ebi.ac.uk), accessed
on 20 March 2024. The lowest docking score of the combined conformations was regarded
as the optimal conformation. Autodock was used for molecular docking calculations, and
all water molecules were removed from the structure. Maestro 12.6 was used to draw
two-dimensional (2D) images of molecular docking.

2.6. MD Simulation

The optimal conformations of the complexes obtained from the molecular docking
were utilized in the molecular dynamics (MD) simulation using AMBER22. The force field
parameters of ligands, proteins, and water molecules for MD simulations separately stem

http://www.ncbi.nlm.nih.gov/pccompound
https://alphafold.ebi.ac.uk
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from the general Amber force field (GAFF2) [20], the Amber ff14SB force field [21] and the
TIP3P model [22]. Sodium ions and chloride ions were introduced into the box to maintain
the system’s electrical neutrality. In the optimization process, the steepest descent method
was applied for 1000 steps, followed by 4000 steps using conjugate gradient minimization.
Each system experienced a controlled temperature rise from absolute zero (0 K) to room
temperature (298.15 K) over 5 ns. Following equilibration, a 50 ns MD simulation was
carried out for every system at 298.15 K and a pressure of 1 atm. After equilibration, a
50 ns MD simulation was conducted for each system at 298.15 K and a pressure of 1 atm.
During these simulations, the step length was set to 2 fs, and every frame was recorded as
5000 steps.

3. Results and Discussion
3.1. Effect of Experiment Conditions

The acute toxicity of BaP for D. magna obtained in those previous works ranged
from 0.982 µg/L to 250 µg/L, and a three-magnitude difference was observed [23–27].
This enormous difference in toxicity for the same substance on the same model organism
deserves further examination. In this context, the actual EC50 for BaP in aquatic systems
needs reinvestigation under various experimental conditions.

According to the guidelines of the OECD, light avoidance experiments should be
carried out when the test compounds exhibit instability under natural light [19]. Because
of the photodegradation of BaP [28,29], our initial experiments were conducted under
dark conditions. The acute toxicity tests of BaP with different culture media and solvents
are displayed in Figure 2. Within the concentration range of 25 µg/L to 400 µg/L, the
inhibition of D. magna by BaP is consistently below 30%. No significant differences between
the three treatments (DMOS + TW, DMOS + ISO, and AC + TW, all under dark conditions)
were observed based on the t-test (p > 0.05). This result indicates that AC and DMSO
as solvents and ISO standard water and dechlorinated tap water as culture media do
not have a significant impact on acute toxicity. As higher concentration experiments
were conducted next, the presence of AC when adding more BaP could affect D. magna,
potentially interfering with the experimental assessment. Therefore, considering the severe
toxicity of AC to D. magna, only DMSO was used as the solvent in subsequent experiments.
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3.2. Effect of Light

As mentioned above, the EC50 cannot be obtained under dark conditions. Again, those
previous works did not declare whether light was avoided during testing. Therefore, in
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this study, experiments with light exposure with higher BaP levels were conducted with
the same light duration as the original culture conditions. During the light experiments,
only low toxic effects were observed, with BaP levels growing from 25 µg/L to 8000 µg/L
(Figure 3). Moreover, under light, regardless of changes in concentrations, the inhibition
of D. magna always stabilized at ~50%. For both light and dark experiments, there was no
obvious trend in the inhibition of BaP on D. magna with respect to concentration variations,
making it unfeasible to calculate the EC50. A t-test showed that there was a significant
difference between the light and dark experiments (p < 0.05), suggesting that light could
improve the inhibition of BaP on D. magna.
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To further explore the possible mechanisms of action, we selected enzymes that signif-
icantly influence the oxidative stress process in D. magna, i.e., Catalase (CAT), Superoxide
Dismutase (SOD), Glutathione S-transferase (GST), and Cytochromes P450 (CYP450), to
conduct molecular docking and molecular dynamics (MD) simulations with BaP. A 50 ns
MD simulation of the dynamics of four complexes was conducted. The root-mean-square
deviation (RMSD) of GST + BaP and CYP450 + BaP did not fluctuate greatly (<0.3 nm),
which indicated that there was a stable system and stronger binding between the com-
pound and the protein (Figure 4c,d). As is shown in Figure 4e,f, Pi–Pi stacking interactions
(including van der Waals interactions and electrostatic interactions) were formed between
proteins and residues, which increased the binding stability. The bindings of BaP with
SOD and CAT were poor, suggesting that BaP does not occupy these enzymes (Figure 4a,b).
CAT and SOD are primarily responsible for helping the body eliminate ROS, preventing
oxidative damage to the body. GST and CYP450 are transferases and metabolic enzymes
that seek to excrete pollutants or toxins from the body. Therefore, BaP binds with GST
and CYP450 stably but not well with CAT and SOD. This not only ensures that the normal
removal of ROS in the body is unaffected but also allows BaP to be quickly excreted by
metabolic enzymes and transferases. As a result, it does not cause significant harm to
D. magna.

According to a previous study, no toxic effects on newt larvae for BaP alone were found,
but toxic effects in animals exposed to BaP + daylight were observed [30]. Apparently, light
is one of the key factors that initiates oxidative stress [31]. Thus, in the absence of light, the
oxidative stress process is slow, and the enzymes in D. magna can eliminate and transfer
most of the free radicals and harmful substances. However, when exposed to light, the
oxidative stress process intensifies, causing damage to D. magna.
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There is a correlation between carcinogenicity and toxicity [32], while BaP is highly car-
cinogenic; therefore, BaP is considered a highly toxic pollutant. BaP did not exhibit signifi-
cant toxic effects under conditions of light avoidance, according to our results. Indeed, weak
light surroundings are sometimes present in real aquatic environments (such as shaded
areas and deep-water zones). Hence, the aquatic toxicity of BaP may be overestimated.

Furthermore, BaP has different degradation rates under different wavelengths of light,
which also affects its toxicity to D. magna [33]. However, the previous studies did not
precisely specify the lighting conditions during the toxicity experiment, which could be a
possible explanation for the enormous disparities in the literature data. Therefore, more
detailed consideration of light and dark conditions should be pointed out in future studies
on BaP. If experiments are conducted under light conditions, they should follow the OECD
lighting requirements and be specifically noted in the research. This approach will reduce
the discrepancies in the acute toxicity of BaP.

3.3. EC50 Value of BaP

Under conditions of light avoidance, oxidative stress is delayed, so under conditions
of light exposure, oxidative stress should proceed normally. However, for both light and
dark experiments, no appropriate data trends and patterns could be used to calculate the
EC50 of BaP on D. magna.

As mentioned above, the carcinogenicity of BaP has always been a concern, while
research on the acute toxicity of BaP is comparatively limited. Out of all the investigated
biomarkers for oxidative stress, DNA damage is regarded as a potent differentiating factor
for assessing the toxic effects of different contaminants. On the one hand, the effects on DNA
often require identification through chronic experiments or more detailed observational
experiments. For example, Silva et al. used swimming performance, biotransformation,
oxidative damage, energy production, and levels of BaP-type compounds in tissues (eye,
digestive land, and muscle) during a 96 h acute bioassay with BaP exposure to evaluate
BaP toxicity. The EC50 obtained from 48 h acute immobilization tests may be insufficient to
fully reflect the impact of BaP on D. magna. The inhibition of D. magna may not necessarily
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reflect the impact of oxidative stress. Hence, the experiment did not exhibit a significant
concentration-response. Therefore, previous studies on the acute toxicity of D. magna may
have some blemishes. On the other hand, previous studies revealed that adults exhibited
higher transcript levels of DNA repair genes and showed significant induction of these
genes upon exposure, while neonates did not [17]. Many transcripts encoding genes related
to DNA damage and the oxidative stress response exhibited higher basal transcription
levels in adults than in neonates. Compared to neonates, adults are more likely to respond
to DNA damage and oxidative stress. Therefore, in toxicity tests of chemicals such as BaP
that primarily induce DNA damage through oxidative stress, neonates may not be the
most suitable test invertebrate species. These are possible factors that may explain the
lack of a trend in BaP acute toxicity, but the specific reasons require further experiments
and investigation.

4. Conclusions

The acute toxicity of BaP is significantly affected by light exposure. Immobility is not
a suitable endpoint for assessing the toxic response of D. magna to BaP. Those previous
studies were mainly based on direct EC50 or LC50 values for risk assessment, without
considering the influence of specific endpoints and natural conditions on the results,
which could be a reason for the significant disparities in the literature data. Our study
demonstrates that BaP did not exhibit significant toxic effects under conditions of light
avoidance. While the current approach to acute toxicity testing with D. magna is essential
for emergency risk management, it may not fully reflect the actual environmental situation,
potentially leading to an overestimation of BaP’s ecological risk.D. magna Apart from that,
we found no appropriate data trends and patterns for both light and dark toxicity data.
We found possible reasons from published papers: (1) The impact of oxidative stress on
aquatic organisms may not be fully reflected by inhibition but can instead be shown by the
induction of organ and cell carcinogenesis. This DNA damage may not have an immediate
effect on mortality; (2) transcripts related to DNA damage and oxidative stress showed
higher basal levels in adults compared to neonates, indicating that adults of D. magna are
more responsive to these stresses.
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