Employment of Fe3O4/Fe2TiO5/TiO2 Composite Made Using Ilmenite for Elimination of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Hydrochloric Acid Leaching of Ilmenite
2.2.2. Synthesis of Fe3O4/Fe2TiO5/TiO2 Based Composite
2.3. Adsorption Study
- C0—Initial concentration of adsorbate (mg/L);
- Ct—Concentration of adsorbate at time “t” (mg/L);
- m = mass of adsorbent (mg);
- V = volume of the adsorbate (L).
2.3.1. Finding the Point of Zero Charge
2.3.2. Effect of MB Concentration on Adsorption
2.3.3. Effect of the Weight of the Adsorbent on Adsorption
2.3.4. Effect of Temperature on Adsorption
2.4. Material Characterization
3. Results and Discussion
3.1. XRF Analysis
3.2. XRD and Raman Analysis
3.3. XPS Analysis
3.4. Morphological Analysis
3.5. BET and BJH Analysis
- V = Volume of gas adsorbed at pressure “P” and temperature “T”;
- P0 = Saturated vapor pressure;
- nm = Specific monolayer capacity;
- E1 = Heat of adsorption of gas in the formation of monolayer;
- EL = Heat of liquefaction of gas;
- R = Universal gas constant (8.314 Jmol−1K−1);
- T = Temperature.
3.6. Adsorption Study
3.7. Adsorption Kinetics
- qe—Amount of dye adsorbed at equilibrium per unit mass of adsorbent (mg/g);
- qt—Amount of dye adsorbed at time t per unit mass of adsorbent (mg/g);
- t—Time (min);
- k1—Adsorption rate constant (g/min ∗ mg).
- qt = Adsorption capacity at time “t” (mg/g);
- kid = Intraparticle diffusion rate constant (mg/g min);
- t = Time (min);
- C = Constant related to the thickness of the boundary layer (mg/g);
- qe—Amount of dye adsorbed at equilibrium per unit mass of adsorbent (mg/g);
- F = Fraction of the dye adsorbed at time “t”;
- Bt = Mathematical function of F.
- qt = adsorption capacity at time “t” (mg/g);
- α = initial adsorption rate (mg/g min);
- β = desorption constant (g/mg);
- t = time (min).
MB Concentration (mg/L) | α (mg/g min) | β (g/mg) | R2 |
---|---|---|---|
10 | 487.621 | 0.370 | 0.917 |
15 | 278.440 | 0.265 | 0.930 |
20 | 379.398 | 0.198 | 0.914 |
25 | 1391.411 | 0.179 | 0.910 |
3.8. Adsorption Isotherms
- Ce—Concentration of the adsorbate at equilibrium (mg/L);
- qe—Amount of adsorbed (adsorbate) at equilibrium per unit mass of adsorbent (mg/g);
- KL—Langmuir constant related to adsorption capacity (L/mg);
- qm—Practical limiting adsorption capacity (mg/g).
- KL—Langmuir constant (L/mg);
- C0—Initial concentration of adsorbate (mg/L).
- qe—Amount of adsorbed (adsorbate) at equilibrium per unit mass of adsorbent (mg/g);
- Ce—Concentration of the adsorbate at equilibrium (mg/L);
- KF—Freundlich adsorption capacity (mg/g);
- 1/n—Adsorption intensity.
- qe—Amount of adsorbed (adsorbate) at equilibrium per unit mass of adsorbent (mg/g);
- Ce—Concentration of the adsorbate at equilibrium (mg/L);
- R—Universal gas constant (J mol−1 K−1);
- T—Absolute temperature (K);
- KT—Temkin isotherm constant (L g−1);
- b—Temkin constant related to heat (J mol−1).
- qe—Amount of absorbed (adsorbate) at equilibrium per unit mass of the adsorbent (mg g−1);
- qm—Maximum monolayer adsorption capacity of the adsorbent (mg g−1);
- Ce—Concentration of the adsorbate at equilibrium (mg/L);
- R—Universal gas constant (J mol−1 K−1);
- T—Absolute temperature (K);
- Kd—Dubinin constant (mol2 kJ−2);
- ε—Potential energy (kJ mol−1);
- Em—Mean free energy (KJ mol−1).
3.9. Adsorption Thermodynamics
- R is the universal gas constant (8.314 J mol−1 K−1);
- T is the temperature in K;
- KL is the Langmuir isotherm constant. (L mol−1).
3.10. Reusability Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charitha, T.; Leshan, U.; Shanitha, M.; Ramanee, W.; Buddi, L.; Martin, B. Efficient Photodegradation Activity of α-Fe2O3/Fe2TiO5/TiO2 and Fe2TiO5/TiO2 Nanocomposites Synthesized from Natural Ilmenite. Results Mater. 2021, 12, 100219. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Usgodaarachchi, L.; Thambiliyagodage, C.; Wijesekera, R.; Bakker, M.G. Synthesis of Mesoporous Silica Nanoparticles Derived from Rice Husk and Surface-Controlled Amine Functionalization for Efficient Adsorption of Methylene Blue from Aqueous Solution. Curr. Res. Green Sustain. Chem. 2021, 4, 100116. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Q.; Ding, Z. Synthesis of Superparamagnetic Fe3O4 Nano-Adsorbent Using an Energy-Saving and Pollution-Reducing Strategy for the Removal of Xylenol Orange Dye in Water. Energies 2022, 15, 7378. [Google Scholar] [CrossRef]
- El-bardai, R.; Haounati, R.; Hsini, A.; Chahine, A.; Luque, R.; Shaim, A. Design of a Phosphate-Based Glass System as Adsorbent for Crystal Violet Dye Removal. J. Environ. Chem. Eng. 2024, 12, 114061. [Google Scholar] [CrossRef]
- Liu, Q. Pollution and Treatment of Dye Waste-Water. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 52001. [Google Scholar] [CrossRef]
- Zafar, S.; Bukhari, D.A.; Rehman, A. Azo Dyes Degradation by Microorganisms—An Efficient and Sustainable Approach. Saudi J. Biol. Sci. 2022, 29, 103437. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Xu, F.; Sun, B.; Hong, G.; Bao, L. Adsorption of Methylene Blue on Azo Dye Wastewater by Molybdenum Disulfide Nanomaterials. Sustainability 2022, 14, 7585. [Google Scholar] [CrossRef]
- Bożęcka, A.M.; Orlof-Naturalna, M.M.; Kopeć, M. Methods of Dyes Removal from Aqueous Environment. J. Ecol. Eng. 2021, 22, 111–118. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Usgodaarachchi, L.; Jayanetti, M.; Liyanaarachchi, C.; Kandanapitiye, M.; Vigneswaran, S. Efficient Visible-Light Photocatalysis and Antibacterial Activity of TiO2-Fe3C-Fe-Fe3O4/Graphitic Carbon Composites Fabricated by Catalytic Graphitization of Sucrose Using Natural Ilmenite. ACS Omega 2022, 7, 25403–25421. [Google Scholar] [CrossRef] [PubMed]
- Osagie, C.; Othmani, A.; Ghosh, S.; Malloum, A.; Kashitarash Esfahani, Z.; Ahmadi, S. Dyes Adsorption from Aqueous Media through the Nanotechnology: A Review. J. Mater. Res. Technol. 2021, 14, 2195–2218. [Google Scholar] [CrossRef]
- Homaeigohar, S. The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials 2020, 10, 295. [Google Scholar] [CrossRef] [PubMed]
- Valli Nachiyar, C.; Rakshi, A.D.; Sandhya, S.; Britlin Deva Jebasta, N.; Nellore, J. Developments in Treatment Technologies of Dye-Containing Effluent: A Review. Case Stud. Chem. Environ. Eng. 2023, 7, 100339. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Odunoye, B.O.; Elehinafe, F.B.; Obanla, R.O.; Odunlami, A.O. Production of Activated Carbon from Sawdust and Its Efficiency in the Treatment of Sewage Water. Heliyon 2021, 7, e05960. [Google Scholar] [CrossRef]
- Sesuk, T.; Tammawat, P.; Jivaganont, P.; Somton, K.; Limthongkul, P.; Kobsiriphat, W. Activated Carbon Derived from Coconut Coir Pith as High Performance Supercapacitor Electrode Material. J. Energy Storage 2019, 25, 100910. [Google Scholar] [CrossRef]
- Hossain, M.N.; Islam, M.D.; Rahaman, A.; Khatun, N.; Matin, M.A. Production of Cost-Effective Activated Carbon from Tea Waste for Tannery Waste Water Treatment. Appl. Water Sci. 2023, 13, 73. [Google Scholar] [CrossRef]
- Bergna, D.; Hu, T.; Prokkola, H.; Romar, H.; Lassi, U. Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process. Waste Biomass Valorization 2020, 11, 2837–2848. [Google Scholar] [CrossRef]
- Salah Elbanna, E.; Farghali, A.A.; Khedr, M.H.; Taha, M. Nano Clinoptilolite Zeolite as a Sustainable Adsorbent for Dyes Removal: Adsorption and Computational Mechanistic Studies. J. Mol. Liq. 2024, 409, 125538. [Google Scholar] [CrossRef]
- Xie, S.; Huang, L.; Su, C.; Yan, J.; Chen, Z.; Li, M.; Du, M.; Zhang, H. Application of Clay Minerals as Adsorbents for Removing Heavy Metals from the Environment. Green Smart Min. Eng. 2024, 1, 249–261. [Google Scholar] [CrossRef]
- Hevira, L.; Ighalo, J.O.; Sondari, D. Chitosan-Based Polysaccharides for Effective Synthetic Dye Adsorption. J. Mol. Liq. 2024, 393, 123604. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, S.; Wang, Y.; Yang, H. Adsorption Properties and Mechanisms of Methylene Blue by Modified Sphagnum Moss Bio-Based Adsorbents. Materials 2024, 17, 4329. [Google Scholar] [CrossRef] [PubMed]
- Thambiliyagodage, C.J.; Cooray, V.Y.; Perera, I.N.; Wijesekera, R.D. Eco-Friendly Porous Carbon Materials for Wastewater Treatment. In Proceedings of the 9th International Conference on Sustainable Built Environment, Kandy, Sri Lanka, 7 August 2020; Volume 44. [Google Scholar]
- Mubarak, A.A.; Ilyas, R.A.; Nordin, A.H.; Ngadi, N.; Alkbir, M.F.M. Recent Developments in Sugarcane Bagasse Fibre-Based Adsorbent and Their Potential Industrial Applications: A Review. Int. J. Biol. Macromol. 2024, 277, 134165. [Google Scholar] [CrossRef]
- Damiri, F.; Andra, S.; Kommineni, N.; Balu, S.K.; Bulusu, R.; Boseila, A.A.; Akamo, D.O.; Ahmad, Z.; Khan, F.S.; Rahman, M.H.; et al. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. Materials 2022, 15, 5392. [Google Scholar] [CrossRef] [PubMed]
- Meghdadi Isfahani, A.H.; Tasdighi, I.; Karimipour, A.; Shirani, E.; Afrand, M. A Joint Lattice Boltzmann and Molecular Dynamics Investigation for Thermohydraulical Simulation of Nano Flows through Porous Media. Eur. J. Mech. B/Fluids 2016, 55, 15–23. [Google Scholar] [CrossRef]
- Sulowska, A.; Fiszka Borzyszkowska, A.; Pisarek, M.; Trzciński, K.; Zielińska-Jurek, A. Polypyrrole-Fe2TiO5 Composites for Adsorption and Photocatalytic Degradation of Micropollutants. Adv. Powder Technol. 2024, 35, 104565. [Google Scholar] [CrossRef]
- Dontsova, T.A.; Nahirniak, S.V.; Astrelin, I.M. Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose. J. Nanomater. 2019, 2019, 5942194. [Google Scholar] [CrossRef]
- Alhalili, Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023, 28, 3086. [Google Scholar] [CrossRef]
- Usgodaarachchi, L.; Jayanetti, M.; Thambiliyagodage, C.; Liyanaarachchi, H.; Vigneswaran, S. Fabrication of R-GO/GO/α-Fe2O3/Fe2TiO5 Nanocomposite Using Natural Ilmenite and Graphite for Efficient Photocatalysis in Visible Light. Materials 2022, 16, 139. [Google Scholar] [CrossRef]
- Usgodaarachchi, L.; Thambiliyagodage, C.; Wijesekera, R.; Vigneswaran, S.; Kandanapitiye, M. Fabrication of TiO2 Spheres and a Visible Light Active α-Fe2O3/TiO2-Rutile/TiO2-Anatase Heterogeneous Photocatalyst from Natural Ilmenite. ACS Omega 2022, 7, 27617–27637. [Google Scholar] [CrossRef] [PubMed]
- Thambiliyagodage, C.; Usgodaarachchi, L. Photocatalytic Activity of N, Fe and Cu Co-Doped TiO2 Nanoparticles under Sunlight. Curr. Res. Green Sustain. Chem. 2021, 4, 100186. [Google Scholar] [CrossRef]
- Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification Strategies of TiO2 for Potential Applications in Photocatalysis: A Critical Review. Green Chem. Lett. Rev. 2018, 11, 86–102. [Google Scholar] [CrossRef]
- Serhan, M.; Jackemeyer, D.; Long, M.; Sprowls, M.; Perez, I.D.; Maret, W.; Chen, F.; Tao, N.; Forzani, E. Total Iron Measurement in Human Serum With a Novel Smartphone-Based Assay. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Mikšík, F.; Miyazaki, T.; Thu, K. Adsorption Isotherm Modelling of Water on Nano-Tailored Mesoporous Silica Based on Distribution Function. Energies 2020, 13, 4247. [Google Scholar] [CrossRef]
- Al-Maliky, E.A.; Gzar, H.A.; Al-Azawy, M.G. Determination of Point of Zero Charge (PZC) of Concrete Particles Adsorbents. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1184, 12004. [Google Scholar] [CrossRef]
- Chang, J.; Ma, J.; Ma, Q.; Zhang, D.; Qiao, N.; Hu, M.; Ma, H. Adsorption of Methylene Blue onto Fe3O4/Activated Montmorillonite Nanocomposite. Appl. Clay Sci. 2016, 119, 132–140. [Google Scholar] [CrossRef]
- Giraldo, S.; Robles, I.; Godínez, L.A.; Acelas, N.; Flórez, E. Experimental and Theoretical Insights on Methylene Blue Removal from Wastewater Using an Adsorbent Obtained from the Residues of the Orange Industry. Molecules 2021, 26, 4555. [Google Scholar] [CrossRef] [PubMed]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Al-Harby, N.F.; Albahly, E.F.; Mohamed, N.A. Kinetics, Isotherm and Thermodynamic Studies for Efficient Adsorption of Congo Red Dye from Aqueous Solution onto Novel Cyanoguanidine-Modified Chitosan Adsorbent. Polymers 2021, 13, 4446. [Google Scholar] [CrossRef]
- Ebelegi, A.N.; Ayawei, N.; Wankasi, D. Interpretation of Adsorption Thermodynamics and Kinetics. Open J. Phys. Chem. 2020, 10, 166–182. [Google Scholar] [CrossRef]
- Ojediran, J.O.; Dada, A.O.; Aniyi, S.O.; David, R.O.; Adewumi, A.D. Mechanism and Isotherm Modeling of Effective Adsorption of Malachite Green as Endocrine Disruptive Dye Using Acid Functionalized Maize Cob (AFMC). Sci. Rep. 2021, 11, 21498. [Google Scholar] [CrossRef] [PubMed]
- Vinod, A.; Pulikkalparambil, H.; Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Recent Advancements in Lignocellulose Biomass-Based Carbon Fiber: Synthesis, Properties, and Applications. Heliyon 2023, 9, e13614. [Google Scholar] [CrossRef]
- Inyinbor, I.I.; Adekola, F.A.; Olatunji, G.A. EDTA Modified Irvingia Gabonesis: An Efficient Bioresource Material for the Removal of Rhodamine B. Pak. J. Anal. Environ. Chem. 2015, 16, 38–47. [Google Scholar]
- Mohamed Nasser, S.; Abbas, M.; Trari, M. Understanding the Rate-Limiting Step Adsorption Kinetics onto Biomaterials for Mechanism Adsorption Control. Prog. React. Kinet. Mech. 2024, 49, 14686783241226858. [Google Scholar] [CrossRef]
- Hasani, N.; Selimi, T.; Mele, A.; Thaçi, V.; Halili, J.; Berisha, A.; Sadiku, M. Theoretical, Equilibrium, Kinetics and Thermodynamic Investigations of Methylene Blue Adsorption onto Lignite Coal. Molecules 2022, 27, 1856. [Google Scholar] [CrossRef] [PubMed]
- Smaranda, C.; Bulgariu, D.; Gavrilescu, M. An Investigation of the Sorption of Acid Orange 7 from Aqueous Solution onto Soil. Environ. Eng. Manag. J. 2009, 8, 1391–1402. [Google Scholar] [CrossRef]
- Singh, P.K.; Banerjee, S.; Srivastava, A.L.; Sharma, Y.C. Kinetic and Equilibrium Modeling for Removal of Nitrate from Aqueous Solutions and Drinking Water by a Potential Adsorbent, Hydrous Bismuth Oxide. RSC Adv. 2015, 5, 35365–35376. [Google Scholar] [CrossRef]
- Abodif, A.M.; Meng, L.; Ma, S.; Ahmed, A.S.A.; Belvett, N.; Wei, Z.Z.; Ning, D. Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3, 4-Dimethylaniline. ACS Omega 2020, 5, 13630–13640. [Google Scholar] [CrossRef]
- Popoola, L.T. Characterization and Adsorptive Behaviour of Snail Shell-Rice Husk (SS-RH) Calcined Particles (CPs) towards Cationic Dye. Heliyon 2019, 5, e01153. [Google Scholar] [CrossRef]
- Raghav, S.; Kumar, D. Adsorption Equilibrium, Kinetics, and Thermodynamic Studies of Fluoride Adsorbed by Tetrametallic Oxide Adsorbent. J. Chem. Eng. Data 2018, 63, 1682–1697. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef] [PubMed]
- Liyanaarachchi, H.; Thambiliyagodage, C.; Lokuge, H.; Vigneswaran, S. Kinetics and Thermodynamics Study of Methylene Blue Adsorption to Sucrose- and Urea-Derived Nitrogen-Enriched, Hierarchically Porous Carbon Activated by KOH and H3PO4. ACS Omega 2023, 8, 16158–16173. [Google Scholar] [CrossRef]
- Adane, B.; Siraj, K.; Meka, N. Kinetic, Equilibrium and Thermodynamic Study of 2-Chlorophenol Adsorption onto Ricinus Communis Pericarp Activated Carbon from Aqueous Solutions. Green Chem. Lett. Rev. 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Meroufel, B.; Benali, O.; Benyahia, M.; Benmoussa, Y. Adsorptive Removal of Anionic Dye from Aqueous Solutions by Algerian Kaolin: Characteristics, Isotherm, Kinetic and Thermodynamic Studies. J. Mater. Environ. Sci. 2013, 4, 482–491. [Google Scholar]
- Ajenifuja, E.; Ajao, J.A.; Ajayi, E.O.B. Equilibrium Adsorption Isotherm Studies of Cu (II) and Co (II) in High Concentration Aqueous Solutions on Ag-TiO2-Modified Kaolinite Ceramic Adsorbents. Appl. Water Sci. 2017, 7, 2279–2286. [Google Scholar] [CrossRef]
- George, L.-Y.; Ma, L.; Zhang, W.; Yao, G. Parametric Modelling and Analysis to Optimize Adsorption of Atrazine by MgO/Fe3O4-Synthesized Porous Carbons in Water Environment. Environ. Sci. Eur. 2023, 35, 21. [Google Scholar] [CrossRef]
- Piccin, J.S.; Dotto, G.L.; Pinto, L.A.A. Adsorption Isotherms and Thermochemical Data of FD&C Red n 40 Binding by Chitosan. Braz. J. Chem. Eng. 2011, 28, 295–304. [Google Scholar]
- Inglezakis, V.J. Solubility-Normalized Dubinin–Astakhov Adsorption Isotherm for Ion-Exchange Systems. Microporous Mesoporous Mater. 2007, 103, 72–81. [Google Scholar] [CrossRef]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Intraparticle Diffusion of Cr(VI) through Biomass and Magnetite Coated Biomass: A Comparative Kinetic and Diffusion Study. S. Afr. J. Chem. Eng. 2020, 32, 39–55. [Google Scholar] [CrossRef]
- Sterenzon, E.; Vadivel, V.K.; Gerchman, Y.; Luxbacher, T.; Narayanan, R.; Mamane, H. Effective Removal of Acid Dye in Synthetic and Silk Dyeing Effluent: Isotherm and Kinetic Studies. ACS Omega 2022, 7, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Zulfikar, M.A.; Setiyanto, H. Study of the Adsorption Kinetics and Thermodynamic for the Removal of Congo Red from Aqueous Solution Using Powdered Eggshell. Int. J. ChemTech Res. 2013, 5, 1671–1678. [Google Scholar]
- Dharmapriya, T.N.; Li, D.; Chung, Y.-C.; Huang, P.-J. Green Synthesis of Reusable Adsorbents for the Removal of Heavy Metal Ions. ACS Omega 2021, 6, 30478–30487. [Google Scholar] [CrossRef] [PubMed]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and Mechanisms of Congo-Red Dye Removal from Aqueous Solution Using Activated Moringa Oleifera Seed Coat as Adsorbent. Appl. Water Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
- Razali, S.Z.; Aziz, M.Y.; Edinur, H.A.; Razali Ishak, A. Adsorption of Methylene Blue onto Iron Oxide Magnetic Nanoparticles Coated with Sugarcane Bagasse. IOP Conf. Ser. Earth Environ. Sci. 2020, 596, 12052. [Google Scholar] [CrossRef]
- Bavi, A.; Jafari, M.S.; Heydari, M.; Ebrahimi, F.; Sadeghizadeh, A. Batch and Continuous Mode Adsorption of Methylene Blue Cationic Dye onto Synthesized Titanium Dioxide/Polyurethane Nanocomposite Modified by Sodium Dodecyl Sulfate. Colloids Surf. C Environ. Asp. 2023, 1, 100012. [Google Scholar] [CrossRef]
- Cao, V.; Cao, P.A.; Han, D.L.; Ngo, M.T.; Vuong, T.X.; Manh, H.N. The Suitability of Fe3O4/Graphene Oxide Nanocomposite for Adsorptive Removal of Methylene Blue and Congo Red. Nat. Environ. Pollut. Technol. 2024, 23, 255–263. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Chen, Z. Removal of Methylene Blue from Aqueous Solution by a Solvothermal-Synthesized Graphene/Magnetite Composite. J. Hazard. Mater. 2011, 192, 1515–1524. [Google Scholar] [CrossRef]
- Tran, H.V.; Bui, L.T.; Dinh, T.T.; Le, D.H.; Huynh, C.D.; Trinh, A.X. Graphene Oxide/Fe3O4/Chitosan Nanocomposite: A Recoverable and Recyclable Adsorbent for Organic Dyes Removal. Application to Methylene Blue. Mater. Res. Express 2017, 4, 35701. [Google Scholar] [CrossRef]
Material | Al2O3 (%) | SiO2 (%) | CaO (%) | TiO2 (%) | Cr2O3 (%) | MnO2 (%) | FeO (%) | ZnO (%) |
---|---|---|---|---|---|---|---|---|
Fe3O4/Fe2TiO5/TiO2 composite | 0.92 | 2.81 | 0.30 | 26.05 | 0.11 | 1.45 | 68.30 | 0.19 |
Component | Peak Position | Crystalline Plane | Full Width at Half Maximum (FWHM) | Integrated Peak Area | Crystalline Size (nm) | Interplanar Distance (nm) |
---|---|---|---|---|---|---|
Octahedral Fe3O4 | 30.39 | 220 | 0.674 | 30.524 | 12.2 | 0.293 |
35.79 | 311 | 1.412 | 206.007 | 5.91 | 0.250 | |
57.55 | 511 | 5.062 | 156.543 | 1.78 | 0.160 | |
63.17 | 440 | 2.777 | 205.933 | 3.35 | 0.147 |
Surface Area SBET (m2 g−1) | Average Pore Size (nm) | Pore Volume, Vpore (cm3g−1) | C Value |
---|---|---|---|
292.182 | 153 | 0.202 | 94.309 |
Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||||
---|---|---|---|---|---|---|---|
MB Concentration (mg/L) | qe,exp (mg g−1) | qe,exp (mg g−1) | k1 (min−1) | qe,exp (mg g−1) | k2 (g mg−1 min−1) | ||
10 | 24.573 | 10.361 | 0.109 | 0.919 | 24.863 | 0.037 | 0.999 |
15 | 31.012 | 16.300 | 0.127 | 0.977 | 31.476 | 0.024 | 0.999 |
20 | 41.443 | 19.700 | 0.115 | 0.933 | 42.016 | 0.019 | 0.999 |
25 | 52.259 | 27.400 | 0.183 | 0.986 | 52.826 | 0.020 | 0.999 |
MB Concentration (mg/L) | Intraparticle Diffusion Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
ki,1 (mg g−1 min−1/2) | C1 (mg g−1) | ki,2 (mg g−1 min−1/2) | C2 (mg g−1) | ki,3 (mg g−1 min−1/2) | C3 (mg g−1) | ||||
10 | 6.269 | 6.391 | 0.991 | 1.498 | 17.102 | 0.991 | 0.119 | 23.435 | 0.691 |
15 | 6.925 | 7.959 | 0.985 | 2.717 | 18.140 | 0.994 | 0.124 | 29.843 | 0.622 |
20 | 11.026 | 8.346 | 0.987 | 3.385 | 25.427 | 0.975 | 0.213 | 39.424 | 0.691 |
25 | 11.838 | 16.375 | 0.981 | 4.412 | 32.626 | 0.986 | 0.056 | 51.722 | 0.679 |
Curve | 298 K | 308 K | 318 K | 323 K |
---|---|---|---|---|
Langmuir | ||||
qm (mg/g) | 63.694 | 73.046 | 78.802 | 81.900 |
KL (L/mg) | 0.211 | 0.218 | 0.226 | 0.228 |
R2 | 0.990 | 0.990 | 0.985 | 0.985 |
Freundlich | ||||
KF (mg/g) | 3.658 | 3.533 | 3.366 | 3.648 |
1/n | 0.291 | 0.228 | 0.187 | 0.186 |
n | 3.433 | 4.378 | 5.341 | 5.358 |
R2 | 0.938 | 0.971 | 0.987 | 0.985 |
Temkin | ||||
KT (L/g) | 0.055 | 0.036 | 0.028 | 0.027 |
B (J/mol) | 857.626 | 944.870 | 978.052 | 994.678 |
R2 | 0.880 | 0.943 | 0.976 | 0.971 |
Dubinin−Radushkevich | ||||
qm (mg/g) | 56.355 | 60.972 | 64.630 | 66.741 |
K (mol2/KJ−2) | 0.003 | 0.001 | 0.001 | 0.001 |
Em (KJ/mol) | 17.175 | 28.748 | 41.130 | 45.128 |
R2 | 0.939 | 0.744 | 0.728 | 0.708 |
Van’t Hoff Plot | |
---|---|
∆G (KJ/mol) | −27.552 (298 K) |
−28.562 (308 K) | |
−29.573 (318 K) | |
−30.079 (323 K) | |
∆H (KJ/mol) | 2.571 |
∆S (J/mol/K) | 101.086 |
Activation energy (KJ mol−1) | 40.306 |
Pre-exponential factor (A) | 401,989 |
Temperature (K) | Pseudo-Second-Order Rate Constant, K2 (g mg−1 min−1) | Qe (mg g−1) |
---|---|---|
298 | 0.037 | 24.573 |
308 | 0.055 | 38.677 |
318 | 0.079 | 43.178 |
323 | 0.145 | 44.373 |
Adsorbent | Adsorption Dosage (mg) | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|
Iron oxide magnetic nanoparticles coated with sugarcane bagasse | 600 | 37.45 | [66] |
Titanium dioxide/polyurethane nanocomposite modified by sodium dodecyl sulfate | 200 | 20.12 | [67] |
Fe3O4/graphene oxide nanocomposite | 50 | 135.10 | [68] |
Graphene nanosheet/Fe3O4 | 10 | 44 | [69] |
Graphene oxide/Fe3O4/chitosan nanocomposite | 10 | 30 | [70] |
Fe3O4/Fe2TiO5/TiO2 nanocomposite | 10 | 23.573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunathilaka, H.; Thambiliyagodage, C. Employment of Fe3O4/Fe2TiO5/TiO2 Composite Made Using Ilmenite for Elimination of Methylene Blue. ChemEngineering 2024, 8, 130. https://doi.org/10.3390/chemengineering8060130
Gunathilaka H, Thambiliyagodage C. Employment of Fe3O4/Fe2TiO5/TiO2 Composite Made Using Ilmenite for Elimination of Methylene Blue. ChemEngineering. 2024; 8(6):130. https://doi.org/10.3390/chemengineering8060130
Chicago/Turabian StyleGunathilaka, Himasha, and Charitha Thambiliyagodage. 2024. "Employment of Fe3O4/Fe2TiO5/TiO2 Composite Made Using Ilmenite for Elimination of Methylene Blue" ChemEngineering 8, no. 6: 130. https://doi.org/10.3390/chemengineering8060130
APA StyleGunathilaka, H., & Thambiliyagodage, C. (2024). Employment of Fe3O4/Fe2TiO5/TiO2 Composite Made Using Ilmenite for Elimination of Methylene Blue. ChemEngineering, 8(6), 130. https://doi.org/10.3390/chemengineering8060130