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Abstract: This paper presents a method for estimating reservoir storage capacity using the Gould–
Dincer normal formula (G-DN), enhanced by the possibility theory. The G-DN equation is valuable
for regional studies of reservoir reliability, particularly under climate change scenarios, using regional
statistics. However, because the G-DN formula deals with measured data, it introduces a degree
of uncertainty and fuzziness that traditional probability theory struggles to address. Possibility
theory, an extension of fuzzy set theory, offers a suitable framework for managing this uncertainty
and fuzziness. In this study, the G-DN formula is adapted to incorporate fuzzy logic, and the
possibilistic nature of reservoir capacity is translated into a probabilistic framework using α-cuts from
the possibility theory. These α-cuts approximate probability confidence intervals with high confidence.
Applying the proposed methodology, in the present crisp case with the storage capacity D = 0.75,
the value of the capacity C was found to be 1271 × 106 m3, and that for D = 0.5 was 634.5 × 106 m3.
On the other hand, in the fuzzy case using the possibility theory, the value of the capacity for D =
0.75 is the internal [315, 5679]× 106 m3 and for D = 0.5 the value is interval [158, 2839]× 106 m3, with
a probability of ≥95% and a risk level of α = 5% for both cases. The proposed approach could be
used as a robust tool in the toolkit of engineers working on irrigation, drainage, and water resource
projects, supporting informed and effective engineering decisions.

Keywords: reservoir capacity; probability; fuzzy logic; confidence intervals; fuzzy estimators; possi-
bility theory

1. Introduction

Determining the required reservoir storage capacity to meet demand with an ac-
ceptable level of reliability has been a longstanding challenge. Traditionally, hydraulic
engineers have used Rippl’s mass curve method [1] or the sequent peak algorithm [2] for
designing water storage systems. Today, there are numerous techniques available for this
purpose [3–8], with the Gould–Dincer method being one of the simplest.

The Gould–Dincer approach is a method used for analyzing reservoir capacity, yield,
and reliability. Originally developed by Löf and Hardison in 1966 [9], it was later refined by
Professor T. Dincer from the Middle East Technical University in Turkey. This modification,
which assumed that reservoir inflows were normally distributed and serially uncorrelated,
became known as the Dincer method [2]. In 1964, Gould (1964) [10] independently derived
a similar reservoir storage–yield relationship but incorporated inflows that were Gamma
distributed. This method has become known as the Gould Gamma method [11]. To adapt
this method for skewed flows, Gould proposed a manual adjustment to transform normal
flows into Gamma-distributed flows. Vogel and McMahon (1995) [12] suggested using
the Wilson and Hilferty (1931) [13] transformation as a simpler alternative to the complex
Gould procedure for handling skewed flows. They also derived an adjustment for storage
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to account for auto-correlation identical to that of Phatarfod (1986) [14] but was achieved
through an entirely independent approach. An additional variation of the Gould–Dincer
approach has emerged, accommodating lognormal inflows. To differentiate between the
three variations of the Gould–Dincer approach, distinct labels are applied to each: Gould–
Dincer Normal (G-DN), Gould–Dincer Gamma (G-DG) and Gould–Dincer Lognormal
(G-DLN) [8,15].

Recently, storage–risk–yield (S-R-Y) relationships have been derived using data pro-
duced by various streamflow models [2]. After developing a preliminary design for a
water resources project involving one or more reservoirs, it is essential to have an effective
method for evaluating the relationship between reservoir capacity, yield, and reliability
(S-Y-R). The reservoir storage capacity can only be estimated by using the mean flow and
its validity in countries where hydrologic records are lacking or are limited. According to
McMahon et al. (2007) [2], the Gould–Dincer (G-D) suite of equations is the only technique
that can be applied universally using annual streamflows across the full range of global
hydrology. It is important to note that while there are preliminary techniques for specific
hydrologic conditions [16] or for estimating reservoir capacity for no-failure yield [17,18],
these methods cannot simultaneously estimate capacity and steady-state reliability. The
G-D suite of techniques (including normal, lognormal, and Gamma distributions) was
specifically developed to estimate the storage-yield-reliability (S-Y-R) relationship for reser-
voirs. It is the only known method available in a straightforward formula that utilizes
annual streamflow statistics to calculate the S-Y-R relationship for a single storage capacity,
applicable across the spectrum of global annual streamflow patterns. The G-D technique
is the only suitable candidate to examine the estimation capacity-steady state reliability
relationships [2]. A comprehensive analysis of the Gould–Dincer suite, including a com-
parison with extended deficit analysis, behavior analysis, and the sequent peak algorithm,
can be found in [2]. They conclude that the Gould–Dincer equation is particularly useful
for regional studies of reservoir reliability under climate change scenarios, as it relies on
regional statistics rather than time series data, which may not be readily available. The
resulting model may also prove useful in other regional planning studies to evaluate the
net benefits which result from the broad use of rainwater harvesting systems (RWH) to
meet water supply requirements. For all the above reasons, the G-DN technique has been
chosen in the current study, as it is the only known method available in the form of a
simple formula.

In the technique mentioned above, we work with measured data, and the Gould–
Dincer formula is grounded in probability theory, which introduces a degree of uncertainty.
Uncertainty can vary from a slight lack of certainty to a complete absence of knowledge
or conviction, and it arises from various sources. One source is randomness, such as
the unpredictability of a coin toss. Vagueness, resulting from imprecise information, can
also lead to uncertainty. Probability theory has long been used to measure and manage
uncertainty stemming from randomness. Zadeh (1965) [19] introduced the fuzzy set theory
to address uncertainty caused by vagueness. Although fuzzy set theory handles a different
type of uncertainty than probability theory, it does not contradict the core principles of
probability. Zadeh (1978) [20] also introduced possibility theory as an extension of fuzzy
sets, suggesting that fuzzy set theory could assess the possibility of events rather than their
probability. The mathematical framework of fuzzy set theory serves as a natural foundation
for possibility theory, playing a role similar to that of evidence theory [21] in relation
to probability theory. From this perspective, a fuzzy restriction can be understood as a
possibility distribution, where the membership function acts as the possibility distribution
function. A fuzzy variable is linked to a possibility distribution in a way analogous to
how a random variable is tied to a probability distribution. In many cases, a variable can
be associated with both a possibility and a probability distribution, with the connection
between the two governed by the possibility/probability consistency principle.

The relationship between probability and possibility has been explored by many
researchers. Most of these studies have focused on identifying principles that must be
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satisfied for transformations between the two, and they have developed equations that
meet these criteria. Dubois and Prade made significant contributions to this area, first
proposing the idea of linking fuzzy sets to nested confidence sets through a probability–
possibility transformation [22–29]. According to Oussalah (2000) [30], probability theory
and possibility theory (or fuzzy set theory in general) are not as different as they may seem
based on their distinct languages or the philosophical debates surrounding them. In fact,
probabilistic and possibilistic data can arise at different stages or even at the same stage
of problem-solving. They are also connected in the context of imprecise probability, as
introduced by Walley (1991) [31], where imprecision may be represented by intervals of
real numbers, fuzzy numbers, or fuzzy intervals; by embedding fuzzy sets into random
sets (as done by Goodman (1984) [32]); through non-additive probabilities; or through
non-monotonic reasoning [33]. According to Nguyen (2005) [34], random elements in
probability theory include random sets, which are equivalent to fuzzy sets. In other words,
probability theory and possibility theory can be used independently or together, effectively
enriching and complementing each other.

Transforming probabilistic data into possibilistic data is advantageous when limited
information renders probability data unreliable. This transformation can also facilitate
the benefits of possibility theory during the combination phase or simplify the solution
process by utilizing possibility values instead of probability values. Conversely, converting
possibilistic data into probabilistic data can be valuable in decision-making contexts where
a precise outcome is desired. In these situations, decision-makers are typically more
interested in understanding what is likely to happen in the future rather than simply what
is possible in the future.

In this paper, we present a method for estimating reservoir storage capacity using the G-DN,
enhanced by possibility theory. The approach assumes normally distributed and independent
annual flows (mean µ and variance σ2), and considers consecutive n-year inflows, accounting
for the effect of auto-correlation on reservoir capacity. To adjust for the auto-correlation effect,
the reservoir capacity can be modified by the factor (1 + ρ)/(1 − ρ), where ρ is the lag-one
serial correlation coefficient. This makes the proposed formula a function of three variables
[µ, σ2, (1 + ρ)/(1 − ρ)], which are fuzzy, with their individual probability distributions known,
but the overall probability distribution of the formula itself is unknown. To address this, we
first conduct a fuzzy estimation of the mean, variance, and auto-correlation coefficient. Then,
applying Nguyen’s proposition [35] and Mylonas’s conjecture [36], we derive a fuzzy estimator
for reservoir capacity with confidence intervals. The probability of the α-cuts (α = 0.05) is
calculated to be at least 95%. This outcome allows the hydraulic engineers working on water
resource projects (e.g., irrigation and drainage networks) to make informed decisions for rational
and efficient engineering studies.

2. Materials and Methods
2.1. Crisp Model—Gould–Dincer’s Normal Approach (G-DN)

Assuming normally distributed and independent annual inflows with mean µ and
standard deviation σ, Gould–Dicer’s normal approach for the reservoir capacity is [2]:

C =
z2

p

4(1 − D)
C2

Vµ (1)

and the period for the reservoir to fully drain from an initially full state is:

CP =
z2

p

4(1 − D)2 C2
V (2)

where
CV =

σ

µ
(3)
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In Equations (1)–(3), D is the constant draft as ratio of mean annual inflows, CV is the
coefficient of variation of the annual inflows to the reservoir, and p is the annual probability
of failure, indicating that the reservoir’s inflows will be adequate to meet the target draft
with a reliability of 1 − p.

zp = Φ−1(1 − p) (4)

Equation (4) yields the standardized normal variate at p (Φ−1 is the inverse distribution
function of the standard normal distribution).

To account for the auto-correlation effect on reservoir capacity, one can use a first-order
autoregressive model and adjust the reservoir capacity computed from Equation (1) by
(1 + ρ)/(1 − ρ) as follows [12,14]:

C =
z2

p

4(1 − D)
C2

Vµ
1 + ρ

1 − ρ
(5)

CP =
z2

p

4(1 − D)2 C2
V

1 + ρ

1 − ρ
(6)

where ρ is the lag-one serial correlation coefficient defined as:

ρ =

1
n−1 ∑n−1

i=1 XiXi+1 − 1
(n−1)2 ∑n−1

i=1 Xi∑n−1
i=1 Xi+1√

1
n−1 ∑n−1

i=1 X2
i −

1
(n−1)2 (∑

n−1
i=1 Xi)2

√
1

n−1 ∑n−1
i=1 X2

i+1 −
1

(n−1)2 (∑
n−1
i=1 Xi+1)2

(7)

where Xi is the annual inflows.

2.2. Fuzzy Framework and Definitions
2.2.1. Fuzzy Theory

For readers who may not be familiar with fuzzy theory, we provide definitions cover-
ing key concepts in fuzzy theory and the basics of possibility theory.

Definition 1. A fuzzy number is a fuzzy set
∼
u : R1 → [0, 1] with the following properties:

i.
∼
u is upper semi-continuous;

ii.
∼
u(x) = 0, outside of some interval [c, d];

iii. There are real numbers a and b, c ≤ a ≤ b ≤ d such that
∼
uis increasing (non decreasing) on

[c, a], decreasing (non-increasing) on [b, d], and
∼
u(x) = 1 for each x∈[a, b];

iv. (
∼
u(λx + (1 + λ)x) ≥ min{∼u(λx),

∼
u((1 + λ)x)

}
, λ ∈ [0, 1], and

∼
u is convex;

iv. This fuzzy number has a membership function, denoting the degree of set membership. The
membership function of a fuzzy set

∼
u is denoted by µ∼

u
(x) or by

∼
u(x).

Definition 2. Define
[∼

u]α by the following:∼
u]α =


{
(x, α)

∣∣∣∼u(x) ≥ α
}

i f 0 < α ≤ 1,
−−−−−[∼

u]0 i f α = 0,

where
[∼

u]0 denotes the closure of the support of
∼
u. Then it is easily established that

∼
u is a

fuzzy number if and only if:

i.
[∼

u]α is a closed and bounded interval for each α|α ∈ [0, 1] ;

ii.
[∼

u]α=1 ̸= 0.

The
[∼

u]α is a crisp set and is called α-cut or α-level set of
∼
u.
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Definition 3. Let
∼
u ∈ F (R), where F (R) is the fuzzy space of all nonempty compact convex

subsets of a Banach space. The α-cuts of
∼
u are

[∼
u]α = [u−

α , u+
α ] . According to the representation

theorem [37] and the theorem of [38], the membership function and the α-cut form of a fuzzy number
∼
u are equivalent and in particular the α-cuts

[∼
u]α = [u−

α , u+
α ] uniquely represent

∼
u provided that

the two functions are monotonic (u−
α increasing, u+

α decreasing) and u−
α=1 ≤ u+

α=1.

The α-cuts arithmetic operators follow the same rules as those for classical interval
numbers [39,40]. These operations maintain properties like associativity and commutativity.
But distributivity may not always apply, which can result in the widening of intervals
after distribution. This failure occurs because two identical interval numbers are treated as
independent. To address this and avoid interval widening, alternative methods such as
the vertex method [41] or the reduced transformation method [42,43] can be applied for
practical purposes.

2.2.2. Possibility Theory

Below we provide critical definitions regarding the possibility theory that was imple-
mented in the current work.

Definition 4. Assume that
∼
F is a fuzzy subset of referential set Ω, representing the set of admissible

and mutually exclusive values of a variable x. Now, consider
∼
A as another subset of Ω; one can

assess the degree to which
∼
A intersects with

∼
F (representing the possibility of event

∼
A) and the

extent to which
∼
A encompasses

∼
F (representing the certainty of event

∼
A). This can be expressed by

introduction of possibility measure Π and necessity measure Nec:

i. Possibility of
∼
A: Π(

∼
A) = sup{α

∣∣∣∣∼A ∩
∼
Fα ̸= 0

}
;

ii. Necessity (certainty) of
∼
A: Nec(

∼
A) = 1 − sup{α

∣∣∣∣∼A ∩
∼
Fα ̸= 0

}
,
∼
A = compl.

∼
A.

The above relation (ii) means that Nec (
∼
A) =1-Π (

∼
A), i.e., the certainty of

∼
A reflects the

impossibility of its complement
∼
A.

Definition 5. Possibility measures are set functions similar to probability measures, but they rely
on an axiom which only involves the operation “supremum.” A possibility measure Π on a set X
(e.g., the set of reals) is characterized by a possibility distribution π: X → [0, 1] and is defined by:

∀A ∈ X, Π(A) = sup{π(x), x ∈ A}

On finite sets this definition reduces to:

∀A ∈ X, Π(A) = max{π(x), x ∈ A}

Definition 6. The possibility distribution function π(

[∼
A]α) of Π(

[∼
A]α) is equal to membership

function µ∼
A

of
∼
A [20]:

π(

[∼
A]α) ≡ µ∼

A
.

Definition 7. The two possibility distributions πx, π′
x are consistent with the probability distribu-

tion px . The πx distribution is more specific than π′
x if πx < π′

x. A possibility distribution
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πx consistent with the probability distribution px is called maximal specificity if it is more specific
than each other possibility distribution:

πx : πx < π′
x, ∀x

Definition 8. The principle of possibility/probability consistency (PPCP) establishes conditions
under which probability and possibility distributions are considered consistent with each other.
Initially the PPCP introduced by [20], the principle proposes a set of statements that define the
relationship between possibility and probability, allowing for the transformation of possibilistic data
into probabilistic data and vice versa. According to Dubois and Prade (2001) [26], this principle is
based on the idea that possibility represents a less strict concept than probability. This leads to

∀A measurable,Nec(
[∼

A]α) ≤P(
[∼

A]α) ≤ Π(

[∼
A]α)

Definition 9. For a variable Y with a known continuous probability distribution function p, the

fuzzy number
∼
Y, which has a possibility measure Π(

[∼
Y]α) = µ∼

Y
, is the fuzzy estimator of Y. This

fuzzy number satisfies the consistency principle and verifies P (

[∼
Y]α) ≥ Nec(

[∼
Y]α) = 1 − α , so

that the probability of
[∼

Y]α is greater than equal to 1− α. The α-cuts are the confidence intervals of

P, and the confidence level is α.

Definition 10. For a fuzzy function
∼
F(

∼
X1,

∼
X2, ...

∼
XN) with unknown probability distribution, while

∼
X1,

∼
X2, ...

∼
XN are fuzzy numbers with known probability distribution, the α-cut

[∼
F]α = [F−

α , F+
α ]

following Nguyen (1978) [35] is
[∼

F]α =

[∼
F([X1]α, [X2]α, ....., [XN ]α)]α.

Definition 11. A The probability of α-cuts of
∼
F(

∼
X1,

∼
X2, ...

∼
XN) is greater than or equal to 1 − α

and the α-cuts are the intervals of confidence of
∼
F(

∼
X1,

∼
X2, ...

∼
XN) [36].

2.2.3. Fuzzy Model of the Gould–Dincer Normal (G-DN) Approach

The Gould–Dincer normal approach model in fuzzy case is written as follows:

(a) Case ρ included

∼
C =

z2
p

4(1−D)

∼
C

2

V
∼
µ
∼
G, CV =

σ

µ
, G =

1 + ρ

1 − ρ
(8)

∼
CP =

z2
p

4(1 − D)2

∼
C

2

V
∼
G, CV =

σ

µ
, G =

1 + ρ

1 − ρ
(9)

For practical reasons, the following is posed:

f =
z2

p

4(1 − D)
,

∼
X1 =

∼
σ

2
,

∼
X2 =

∼
G,

∼
X3 =

∼
µ (10)

Equations (8) and (9) take the following form:

∼
C = f

∼
X1

∼
X2

∼
X3

(11)



Hydrology 2024, 11, 172 7 of 18

∼
CP = f1

∼
X1

∼
X2

∼
X

2

3

(12)

According to Nguyen (1978) [35] (Definition 9), if

x1 ∈
∼
X1, x2 ∈

∼
X2, x3 ∈

∼
X3,

∼
C :

∼
X1 ×

∼
X2 ×

∼
X3 →

∼
Z (13)

thus, a necessary and sufficient condition for achieving the following equalities,∼
C]α = f

[∼
X1]α ·

[∼
X2]α

[X3]α
(14)

 ∼
CP]α = f1

[∼
X1]α ·

[∼
X2]α[∼

X
2

3]α

(15)

ensuring the function’s continuity, the following relation is obtained:

∀z ∈
∼
Z, sup

(x1,x2,x3)∈
∼
C
−1

(z)
{µ∼

X1
(x1) ∧ µ∼

X2
(x2) ∧ µ∼

X3
(x3)

}
(16)

(b) Case ρ is avoided

∼
C =

z2
p

4(1 − D)

∼
C

2

V
∼
µ =

z2
p

4(1 − D)

∼
σ

2

∼
µ

(17)

∼
CP =

z2
p

4(1 − D)2

∼
σ

2

∼
µ

2 (18)

For practical reasons, the following is posed:

f =
z2

p

4(1 − D)
,

∼
X1 =

∼
σ

2
,

∼
X2 =

∼
µ (19)

Equations (8) and (9) take the following form:

∼
C = f

∼
X1
∼
X2

(20)

∼
CP = f1

∼
X1
∼
X

2

2

(21)

According to Nguyen (1978) (Definition 9) [35] if

x1 ∈
∼
X1, x2 ∈

∼
X2,

∼
C :

∼
X1 ×

∼
X23 →

∼
Z (22)

thus, a necessary and sufficient condition for achieving the following equalities,∼
C]α = f

[∼
X1]α

[X2]α
(23)
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∼
[CP ]α = f1

[∼
X1]α[∼
X

2

2]α

(24)

ensuring the function’s continuity, the following relation is obtained:

∀z ∈
∼
Z, sup

(x1,x2)∈
∼
C
−1

(z)
{µ∼

X1
(x1) ∧ µ∼

X2
(x2)

}
(25)

The arithmetic operation for interval numbers in Equations (14) and (15) is avoided,
for practical reasons and in order to prevent widening; for these reasons, the reduced
transformation method [42–44] is used.

2.2.4. Transformation Method

Decomposition of fuzzy numbers

Two forms of the transformation method are available, the general and the reduced
forms [42–44]. The reduced form is applied when dealing with functions that have n inde-
pendent parameters, which are assumed to be uncertain. Additionally, the function must
be monotonic with respect to each variable, without any local extrema. For more complex,
non-monotonic problems, the general transformation method is used. In this study, the
reduced form was employed for practical reasons, as the functions in Equations (11) and (12)
are monotonic, nonlinear, and involve three fuzzy variables. Each fuzzy number is divided
into m intervals, j = 1, 2, . . ., m, as defined by the α-cuts at the a-levels µj.

The fuzzy numbers of Equations (11) and (12) (n = 3 in this case) can be broken down
into a set of m intervals, j = 1, . . ., m, of the form (decomposition principle) [20]:

X(j)
i =

{
X(1)

i , X(2)
i , . . . , X(m)

i

}
(26)

with X(j)
i =

[
a(j)

i , b(j)
i

]
, a(j)

i ≤ b(j)
i , j = 1, 2, ..., m.

Notation: All the fuzzy parameters X(1)
i , X(2)

i , . . . , X(m)
i can be regarded as the coordi-

nates of points located on the n-dimensional hypersurface X(1)
i × X(2)

i , . . . ,×X(m)
i , nested

according to their level of membership. In the case of the reduced transformation form,
only the 2n vertex points of the n-dimensional cuboids are considered for the evaluation of
the problem. Figure 1 illustrates the case n = 3, which is a cube with 23 vertices and α = 0,
1/3, 2/3, 1. The cuboid for the membership level µ = 1 is degenerated to one single point.
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൦𝛸෠ଵ௝𝛸෠ଶ௝𝛸෠ଷ௝൪ = ൦𝛼ଵ(௝),𝛼ଵ(௝),𝛼ଵ(௝),𝛼ଵ(௝),𝛽ଵ(௝),𝛽ଵ(௝),𝛽ଵ(௝),𝛽ଵ(௝)𝛼ଶ(௝),𝛼ଶ(௝),𝛽ଶ(௝),𝛽ଶ(௝),𝛼ଶ(௝),𝛼ଶ(௝),𝛽ଶ(௝),𝛽ଶ(௝)𝛼ଷ(௝),𝛽ଷ(௝),𝛼ଷ(௝),𝛽ଷ(௝),𝛼ଷ(௝),𝛽ଷ(௝),𝛼ଷ(௝),𝛽ଷ(௝)൪ = [3 × 8] (29)

The above matrix can now be written as follows: 

൦𝛸෠ଵ௝𝛸෠ଶ௝𝛸෠ଷ௝൪ = ⎣⎢⎢
⎡𝛼ଵ,ଵ(௝),𝛼ଵ,ଶ(௝),𝛼ଵ,ଷ(௝),𝛼ଵ,ସ(௝),𝛼ଵ,ହ(௝),𝛼ଵ,଺(௝),𝛼ଵ,଻(௝),𝛼ଵ,଼(௝)𝛼ଶ,ଵ(௝),𝛼ଶ,ଶ(௝),𝛼ଶ,ଷ(௝),𝛼ଶ,ସ(௝),𝛼ଶ,ହ(௝),𝛼ଶ,଺(௝),𝛼ଶ,଻(௝),𝛼ଶ,଼(௝)𝛼ଷ,ଵ(௝),𝛼ଷ,ଶ(௝),𝛼ଷ,ଷ(௝),𝛼ଷ,ସ(௝),𝛼ଷ,ହ(௝),𝛼ଷ,଺(௝),𝛼ଷ,଻(௝),𝛼ଷ,଼(௝)⎦⎥⎥

⎤ ≡ ൦𝛼ଵ(௝),𝛼ଵ(௝),𝛼ଵ(௝),𝛼ଵ(௝),𝛽ଵ(௝),𝛽ଵ(௝),𝛽ଵ(௝),𝛽ଵ(௝)𝛼ଶ(௝),𝛼ଶ(௝),𝛽ଶ(௝),𝛽ଶ(௝),𝛼ଶ(௝),𝛼ଶ(௝),𝛽ଶ(௝),𝛽ଶ(௝)𝛼ଷ(௝),𝛽ଷ(௝),𝛼ଷ(௝),𝛽ଷ(௝),𝛼ଷ(௝),𝛽ଷ(௝),𝛼ଷ(௝),𝛽ଷ(௝)൪ (30)

According to transformation method for each column (i): 𝑤௜(௝) = 𝑓 ఈభ,೔(ೕ)ఈమ,೔(ೕ)ఈయ,೔(ೕ) , 𝑤௜(௝) = 𝑓 ఈభ,೔(ೕ)ఈమ,೔(ೕ)ఈయ,೔(ೕ) , i = 1, 2, …, 8, (for [𝐶ሚ]ఈ) (31)

𝑤௜(௝) = 𝑓ଵ ఈభ,೔(ೕ)ఈమ,೔(ೕ)(ఈయ,೔(ೕ))మ , i = 1, 2, …, 8, (for [𝐶𝑃෪ ]ఈ) (32)

Thus, for each α-cut = i we have: 

[𝐶ሚ]ఈୀ௜ = ቎൭𝑚𝑖𝑛 ൝𝑓 𝛼ଵ,௜(௝)𝛼ଶ,௜(௝)𝛼ଷ,௜(௝) ൡ൱ି ,൭𝑚𝑎𝑥 ൝𝑓 𝛼ଵ,௜(௝)𝛼ଶ,௜(௝)𝛼ଷ,௜(௝) ൡ൱ା቏ , 𝑗 = 1,2, . . . ,𝑚. (33)

(a1a2a3)0

(a1a2b3)0 (a1b2b3)0

(a1b2a3)0

(b1a2b3)
(b1b2b3)0

(b1a2a3)0 (b1b2a3)0

x1

x2

x3

(a1)0
(a2)0

(b1)0

(a3)0

(b3)0

α=0

α=0.33

α=0.6

α=1

α=0.66

(b2)0

Figure 1. Geometric interpretation of the transformation scheme for n = 3.

Transformation of the intervals
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The intervals X(j)
i , i = 1, 2, ... n could be transformed into arrays (based on the

reduced transformation method) of the following form:

X̂(j)
i =

2i−1couples︷ ︸︸ ︷
((a(j)

i , b(j)
i ), (a(j)

i , b(j)
i ), ..., (a(j)

i , b(j)
i ) (27)

a(j)
i = (α

(j)
i , . . . , α

(j)
i )︸ ︷︷ ︸

2n−ielements

, b(j)
i = (β

(j)
i , . . . , β

(j)
i )︸ ︷︷ ︸

2n−ielements

(28)

(a) In the present case (
∼
C,

~
CP, n = 3 variables, ρ included):X̂ j

1
X̂ j

2
X̂ j

3

 =

α
(j)
1 , α

(j)
1 , α

(j)
1 , α

(j)
1 , β

(j)
1 , β

(j)
1 , β

(j)
1 , β

(j)
1

α
(j)
2 , α

(j)
2 , β

(j)
2 , β

(j)
2 , α

(j)
2 , α

(j)
2 , β

(j)
2 , β

(j)
2

α
(j)
3 , β

(j)
3 , α

(j)
3 , β

(j)
3 , α

(j)
3 , β

(j)
3 , α

(j)
3 , β

(j)
3

 = [3 × 8] (29)

The above matrix can now be written as follows:

X̂ j
1

X̂ j
2

X̂ j
3

 =


α
(j)
1,1, α

(j)
1,2, α

(j)
1,3, α

(j)
1,4, α

(j)
1,5, α

(j)
1,6, α

(j)
1,7, α

(j)
1,8

α
(j)
2,1, α

(j)
2,2, α

(j)
2,3, α

(j)
2,4, α

(j)
2,5, α

(j)
2,6, α

(j)
2,7, α

(j)
2,8

α
(j)
3,1, α

(j)
3,2, α

(j)
3,3, α

(j)
3,4, α

(j)
3,5, α

(j)
3,6, α

(j)
3,7, α

(j)
3,8

 ≡

α
(j)
1 , α

(j)
1 , α

(j)
1 , α

(j)
1 , β

(j)
1 , β

(j)
1 , β

(j)
1 , β

(j)
1

α
(j)
2 , α

(j)
2 , β

(j)
2 , β

(j)
2 , α

(j)
2 , α

(j)
2 , β

(j)
2 , β

(j)
2

α
(j)
3 , β

(j)
3 , α

(j)
3 , β

(j)
3 , α

(j)
3 , β

(j)
3 , α

(j)
3 , β

(j)
3

 (30)

According to transformation method for each column (i):

w(j)
i = f

α
(j)
1,i α

(j)
2,i

α
(j)
3,i

, w(j)
i = f

α
(j)
1,i α

(j)
2,i

α
(j)
3,i

, i = 1, 2, . . . , 8, (for
[∼

C]α ) (31)

w(j)
i = f1

α
(j)
1,i α

(j)
2,i

(α
(j)
3,i )

2
, i = 1, 2, . . . , 8, (for

∼
[CP ]α) (32)

Thus, for each α-cut = i we have:∼
C]α=i =

min

 f
α
(j)
1,i α

(j)
2,i

α
(j)
3,i


−

,

max

 f
α
(j)
1,i α

(j)
2,i

α
(j)
3,i


+, j = 1, 2, ..., m. (33)

 ~
CP]α=i =

min

 f1
α
(j)
1,i α

(j)
2,i

α
(j)
3,i


−

,

max

 f1
α
(j)
1,i α

(j)
2,i

α
(j)
3,i


+, j = 1, 2, ..., m. (34)

(b)
∼
C,

~
CP, n = 2 variables, ρ is avoided:[

X̂ j
1

X̂ j
2

]
=

[
α
(j)
1 , α

(j)
1 , β

(j)
1 , β

(j)
1

α
(j)
2 , β

(j)
2 , α

(j)
2 , β

(j)
2

]
= [2 × 4]

[
X̂ j

1
X̂ j

2

]
=

[
α
(j)
1,1, α

(j)
1,2, α

(j)
1,3, α

(j)
1,4

α
(j)
2,1, α

(j)
2,2, α

(j)
2,3, α

(j)
2,4

]
≡

[
α
(j)
1 , α

(j)
1 , β

(j)
1 , β

(j)
1

α
(j)
2 , β

(j)
2 , α

(j)
2 , β

(j)
2

]
(35)

w(j)
i = f

α
(j)
1,i

α
(j)
2,i

, i = 1, 2, . . . , 4, (for
[∼

C]α ) (36)
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w(j)
i = f1

α
(j)
1,i

(α
(j)
2,i )

2
, i = 1, 2, . . . , 4, (for

[
~

CP]α ) (37)

Thus, for each α-cut = i we have:∼
C]α=i =

min

 f
α
(j)
1,i

α
(j)
2,i


−

,

max

 f
α
(j)
1,i

α
(j)
2,i


+, j = 1, 2, ..., m. (38)

 ~
CP]α=i =

min

 f1
α
(j)
1,i

α
(j)
2,i


−

,

max

 f1
α
(j)
1,i

α
(j)
2,i


+, j = 1, 2, ..., m. (39)

The final solution is:

P(
[∼

C]α) ≥ Nec(
[∼

C]α) = 1 − α (40)

P(
[

~
CP]α) ≥ Nec(

[
~

CP]α) = 1 − α (41)

According to possibility theory,
[∼

C]α ,
[

~
CP]α are called confidence intervals and the

confidence level, i.e., the probability of these intervals P(
[∼

C]α) , P(
[

~
CP]α

)
, is greater than

or equal to 1 − α. The risk level is α, i.e., the probability that the real value falls outside the
interval. Normally 95%, 99% values of (1 − α) often used in the measurement area [27].

3. Results and Discussion

The storage capacity and the length of the critical drawdown period of Mitta Mitta
River at Tallandoon are estimated using the inflow data for a period of 34 years [45].

3.1. Crisp Estimation of C and CP

For the crisp estimations of the storage capacity required and the length of the critical
drawdown period, the values of µ and σ are given for a period of n = 34 years as follows:

x = 1274 × 106 m3 and σ = 731 × 106 m3

Using the above values, the estimation of the coefficient of variation is

CV =
σ

x
=

731 × 106

1274 × 106 = 0.57

Considering now D = 0.75 and ρ = 5%, for which zρ = Φ−1(1 − 0.05) = 1.65, we obtain
from Equations (1) and (2)

C =
z2

p

4(1 − D)
C2

V x = 1127 × 106m3

and

CP =
z2

p

4(1 − D)2 C2
V = 3.53 years

For D = 0.5, we have
C = 563.5 × 106 m3

and
CP = 0.884 years
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The annual serial correlation of these annual flows is found to be ρ = 0.06, so the
adjustment factor is

1 + ρ

1 − ρ
= 1.1276

Therefore, the adjusted crisp estimation of the storage capacity and the length of the
critical drawdown period for D = 0.75 is

C = 1.13 × 1127 × 106 ≈ 1271 × 106 m3

CP = 1.13 × 3.53 ≈ 3.99 years

and for D = 0.50
C ≈ 635.51 × 106m3

CP ≈ 0.997 years.

3.2. Fuzzy Estimation of C and CP

The fuzzy forms of Equations (1) and (2) are Equations (8) and (9):

∼
C =

z2
p

4(1 − D)

∼
σ2

∼
µ

∼
G, G =

1 + ρ

1 − ρ
,

∼
CP =

z2
p

4(1 − D)2

∼
σ2

∼
µ

2

∼
G

We cannot infer confidence intervals of C and CP, since we cannot derive probabil-
ity density function of the statistics σ2

x
1+ρ
1−ρ and σ2

x2
1+ρ
1−ρ . But it is possible to use Nguyen

proposition [35] and find the following form [Equations (14) and (15)] for α-cuts:∼
C]α = f

[
∼
σ

2
]α[∼

µ]α

[∼
G]α, G =

1 + ρ

1 − ρ
,

 ∼
CP]α = f1

[
∼
σ

2
]β[

∼
µ

2
]α

[∼
G
]

α (42)

3.2.1. Estimation of the Mean µ of a Random Variable from a Large Sample (
∼
X1)

If the random variable X follows any distribution, then the (1 − β)% confidence
interval of the mean µ of X derived from a random sample of observations of X of large
size n (n > 30) with sample mean and variance x and s2 is[

x − z β
2

s√
n

, x + z β
2

s√
n

]
(43)

Notation: In statistics, the letter α is used instead of β. But here the letter β is used,
because the letter α is used for α-cuts.

Therefore, the α-cuts of the membership function of the fuzzy estimator
∼
µ for the

mean µ of X are

µ∼
µ
[α] =

[
x − z α

2

s√
n

, x + z α
2

s√
n

]
, 0.001 < α ≤ 1 (44)

where
z α

2
= Φ−1(1 − α

2
) (45)
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3.2.2. Estimation of the Serial Correlation Coefficient (
∼
X2)

The point estimator of the serial correlation coefficient ρ of a sequence of n measure-
ments xi of the random variable X defined in Equation (7) is

r =
1

n−1 ∑n−1
i=1 xixi+1 − 1

n−1 ∑n−1
i=1 xi

1
n−1 ∑n−1

i=1 xi+1√
1

n−1 ∑n−1
i=1 x2

i −
1

(n−1)2 (∑
n−1
i=1 xi)2

√
1

n−1 ∑n−1
i=1 x2

i+1 −
1

(n−1)2 (∑
n−1
i=1 xi+1)2

(46)

As proved in Fisher (1915) [46], the transformed random variable

Zr =
1
2

ln
1 + r
1 − r

(47)

follows normal distribution with mean

E(Zr) =
1
2

ln
1 + ρ

1 − ρ
(48)

where ρ is the serial correlation coefficient and standard deviation

σr =

√
1

n − 3
(49)

Therefore,

Prob
{
−z

1− β
2
≤ Zr−E(Zr)

σr
≤ z

1− β
2

}
= 1 − β

⇔ Prob
{

Zr − z
1− β

2
σr ≤ E(Zr) ≤ Zr + z

1− β
2

σr

}
= 1 − β

⇔ Prob
{

Zr − z
1− β

2
σr ≤ 1

2 ln 1+ρ
1−ρ ≤ Zr + z

1− β
2

σr

}
= 1 − β

⇔ Prob
{

e
2(Zr−z

1− β
2

σr)
≤ 1+ρ

1−ρ ≤ e
2(Zr+z

1− β
2

σr)
}

= 1 − β

(50)

Therefore, the (1 − β)% confidence interval of 1+ρ
1−ρ derived from a sample of n obser-

vations is [
e

2(Zr−z
1− β

2
σr)

≤ 1 + ρ

1 − ρ
≤ e

2(Zr+z
1− β

2
σr)

]
(51)

where zr is the sample value of Zr. So, the α-cuts of the possibility distribution associated

with the fuzzy function
∼
G of G = (1 + ρ)/(1 − ρ) are[∼

G]α =

[
e

2(Zr−z1− α
2

σr) ≤ 1 + ρ

1 − ρ
≤ e

2(Zr+z1− α
2

σr)
]

, 0.001 ≤ α ≤ 1 (52)

Figure 2 illustrates the fuzzy estimators or possibility distributions of
∼
µ,

∼
G

and G = 1+ρ
1−ρ for which the probability distribution functions are known and for that

reason the corresponding possibility distribution functions are similar [47].
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and (b)
∼
G of the annual inflows X.

3.2.3. Estimation of the Variance σ2 of a Normal Variable (
∼
X3)

If the random variable X is normally distributed, the (1 – β)% confidence interval for
the variance σ2 of X can be calculated using a random sample size n and a sample variance
s2, as specified in [47]:  (n − 1)s2

χ2
R, β

2 ;n−1

,
(n − 1)s2

χ2
L, β

2 ;n−1

 (53)

where χ2
n−1 is the value of the chi-squared distribution with k = n − 1 degrees of freedom

and F−1
n−1 is the inverse distribution function of the χ2

n−1 distribution:

χ2
L,β;n−1 = χ2

1−β;n−1 = F−1
n−1(β),

χ2
R,β;n−1 = χ2

β;n−1 = F−1
n−1(1 − β).

(54)

Therefore, the α-cuts of the possibility distribution for the fuzzy estimator of the
variance σ² are as follows: ∼

σ
2
]α =

 (n − 1)s2

χ2
R, α

2 ;n−1
,
(n − 1)s2

χ2
L, α

2 ;n−1

 (55)

Figure 3 illustrates the fuzzy estimators or possibility distributions of
∼
σ

2
for which

the probability distribution functions are known and for that reason the corresponding
possibility distribution functions are similar.
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3.3. Estimation of the α-Cuts of
∼
C and

~
CP

After having estimated now the estimators
∼
X1,

∼
X2,

∼
X3, it is easy to find the α-cuts of

∼
C and

~
CP by application of Equations (24) and (25), in which f = 2.7225, f1 = 10.89 for

D = 0.75, and f = 1.36125, f1 = 2.7225 for D = 0.5. The results are shown in Figures 4–7.
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Specifically, Figures 4 and 5 illustrate the fuzzy estimators of reservoir capacity
∼
C and

the critical drawdown period
~

CP adjusting (1 + ρ)/(1 − ρ), with ρ being the lag-one serial
correlation coefficient, for a constant draft D equal to 0.75 and 0.5.

Figures 6 and 7 illustrate also the fuzzy estimators of reservoir capacity
∼
C and the

critical drawdown period
~

CP without adjusting the ratio (1 + ρ)/(1 − ρ), but with the same
constant draft D equal to 0.75 and 0.50.

In all figures of fuzzy estimators or possibility distributions, the nodal values of π (xm)
coincide with the crisp values; e.g., crisp estimation for C in case of D = 0.75 was found to
be 1271 × 106 m3. The nodal value xm in Figure 5a illustrating the fuzzy estimator of the
storage capacity (D = 0.75) has exactly the same value.

Moreover, and in order to draw reliable conclusions, it was considered necessary to

calculate the confidence intervals for the reservoir capacity
∼
C for a constant draft D equal

to 0.75 and 0.5 and for the α-cuts 0.01, 0.05, 1, 2, 4, 6, 8, and 1 (Table 1).

Table 1. Confidence intervals for the reservoir capacity
∼
C for a constant draft D equal to 0.75 and 0.5

and for the α-cuts 0.01, 0.05, 1, 2, 4, 6, 8, and 1, (1 + ρ)/(1 − ρ) adjusting.

α-cut P=1−a

C×106 m3

D=0.75 D=0.50

C− C+ C− C+

0.01 0.99 206 12,821 103 6410
0.05 0.95 315 5679 158 2839
0.1 0.9 389 4341 195 2171
0.2 0.8 497 3360 248 1680
0.4 0.6 675 2346 337 1173
0.6 0.4 857 1842 428 921
0.8 0.2 1055 1400 527 700
1 0 1271 1271 635 635

These α-cuts have a risk level α; i.e., the likelihood of the real value falling outside the
interval, e.g., choosing α = 0.95 for D = 0.75, one has a probability greater than or equal to
be in the interval [315, 5679] and a risk of 5% to be outside this interval.

For convenience, let us take as an example the case of α = 5% based on Table 1. For
this case, the corresponding reservoir storage capacity resulted in 315 × 106 m3 and by
extension to a low construction cost of the dam, with a high probability to be constructed
(95%) and with a risk of 5% to not be constructed. On the other hand, if we considered the
case of the reservoir storage capacity of 497 × 106 m3, then the construction cost of the dam
will be increased with a lower probability to be constructed equal to 80% and with a risk of
20% to not be constructed.

In addition, it is crucial to highlight that according to Dubois and Prade (1990) [29],
there is a link between fuzzy sets and random sets using the concept of the α-cut, and
the random sets can be arranged into a nested family of sets with inclusion. From the
engineering perspective, the extreme values of the confidence intervals are considered the
most important, while the left boundary seems to include the most valuable information
because it can provide significantly lower construction costs. In contrast, the right boundary
does not seem to provide the same level of information as the left. For a better explanation,
let us assume that a hydraulic engineer at the design phase chooses 5679 × 106 m3 as a
construction value, which corresponds to a high probability of construction (95%) with
5% risk. However, in this case the construction cost will be very expensive, while the
5% risk concerns only the water and not the construction cost of the dam. In the end,
if the risk will be satisfied, then the water volumes will exceed the design ones, with
disastrous consequences for the dam. Thus, it is reasonable to conclude that although the



Hydrology 2024, 11, 172 16 of 18

risk seems small regarding the design water volumes, the financial costs are very big and
the construction health of the dam cannot be guaranteed.

Summarizing the results, in the present crisp case with D = 0.75, the value of the
capacity C was found to be 1271 × 106 m3, and for D = 0.5, it was 634.5 × 106 m3. In the
fuzzy case using the possibility theory, the value of the capacity for D = 0.75 is the internal
[315, 5679]× 106 m3 with a probability of ≥95% and a risk level α = 5%, and for D = 0.5,
the value of the capacity C is interval [158, 2839]× 106 m3 with a probability of ≥95% and
a risk level α = 5%.

From all the above, we could state that the general problem of the design and construc-
tion of a hydraulic project such as a dam, is multicriteria while except the storage capacity
depends also on other crucial factors like the construction costs, environmental issues, soil
characteristics, policies, etc.

In general, the proposed approach successfully captures the complex interplay be-
tween reservoir capacity C or the period for the reservoir to empty CP and the mean annual
inflows µ, the standard deviation of annual inflows σ, and the lag-one serial correlation
coefficient, allowing for reliable predictions of reservoir capacity and period for the reser-
voir to empty. The capacity to quantify uncertainties and validate predictions significantly
boosts the model’s reliability in informing decision-making processes concerning water re-
source management. These insights are particularly relevant for managing water resources
in semi-arid regions, offering accurate estimations of reservoir capacity. The validated
model acts as a crucial decision support tool, facilitating the formulation of effective water
management strategies.

4. Conclusions

This work underscores the advantages of integrating fuzzy logic into hydrological
modeling. By offering a framework for calculating fuzzy intervals, it provides a more
comprehensive tool for managing uncertainty in reservoir storage capacity and discharge.

The main innovation of this work is that it handles the fuzzy logic theory in such a
way that allows us to estimate the fuzzy intervals for both reservoir capacity (C) and time
required for a reservoir to empty (CP) by leveraging the possibility distributions of fuzzy
estimators for the mean and variance, coupled with interval arithmetic. The proposed
methodology is particularly valuable in scenarios where weak sources of information
make probability-based data unrealistic or insufficient. Moreover, it reduces computational
complexity in certain cases by using possibility values instead of probability values. Thus,
the proposed approach not only enhances the accuracy of estimations but also provides
a more detailed understanding of uncertainty, supporting more reliable and informed
decision-making for sustainable water resource management. This framework offers
engineers a practical tool for tackling real-world hydrological challenges, particularly
when conventional probabilistic methods may fall short. The method is applicable to a
wide range of engineering problems where uncertainty and limited data are significant
concerns, making it a valuable addition to the existing toolkit for water resources and other
environmental engineering projects.

In general, it should be highlighted that for practical applications, such as in water
resource projects, it is crucial for engineers to make well-informed decisions by considering
the deviations between crisp values and fuzzy intervals. This ensures that decisions are
based on robust probability estimates with minimal risk, ultimately leading to more resilient
and adaptive infrastructure designs.

In conclusion, probability theory and possibility theory can be utilized independently
or in combination, each enhancing and complementing the other in a meaningful way. In the
future, this method should be extended in cases of multicriteria analysis in order to include
more complex engineering problems. This expansion would enable its use in broader range
of scenarios, including those that require balancing multiple conflicting objectives, thereby
enhancing its utility in decision-making processes across various engineering disciplines.
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