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Abstract: Remote sensing methods have the potential to improve lake water quality monitoring and
decision-making in water management. This review discusses the use of remote sensing methods for
monitoring and assessing water quality in lakes. It explains the principles of remote sensing and the
different methods used for retrieving water quality parameters in complex waterbodies. The review
highlights the importance of considering the variability of optically active parameters and the need
for comprehensive studies that encompass different seasons and time frames. The paper addresses
the specific physical and biological parameters that can be effectively estimated using remote sensing,
such as chlorophyll-α, turbidity, water transparency (Secchi disk depth), electrical conductivity,
surface salinity, and water temperature. It further provides a comprehensive summary of the bands,
band combinations, and band equations commonly used for remote sensing of these parameters
per satellite sensor. It also discusses the limitations of remote sensing methods and the challenges
associated with satellite systems. The review recommends integrating remote sensing methods using
in situ measurements and computer modelling to improve the understanding of water quality. It
suggests future research directions, including the importance of optimizing grid selection and time
frame for in situ measurements by combining hydrodynamic models with remote sensing retrieval
methods, considering variability in water quality parameters when analysing satellite imagery,
the development of advanced technologies, and the integration of machine learning algorithms
for effective water quality problem-solving. The review concludes with a proposed workflow for
monitoring and assessing water quality parameters in lakes using remote sensing methods.

Keywords: water quality monitoring; decision-making; optically active parameters; computer
modelling; band combinations; sensors

1. Introduction

Lakes are important ecosystems that sustain a wide range of species and are essential
for a variety of industries and human activities [1,2]. However, eutrophication, human
exploitation, and climate change all have a negative impact on lake water quality and the
general health of lake ecosystems [3–7]. To address this, remote sensing evolved as an
effective method for monitoring and analysing worldwide water quality. This method,
which collects spectrum data from aerial and satellite platforms, has been used since the
1970s to assess the physical, chemical, and biological characteristics of water quality.

Traditional methods of monitoring water quality through in situ measurements and
laboratory analysis are time-consuming and costly, with limited geographical and temporal
variability [8]. Remote sensing is a cost-effective and time-saving method that provides
unique spatial information and data continuity for large-scale areas and inland water-
bodies [9–12]. It can be combined with conventional methods to address the constraints
of in situ methods [13]. Remote sensing methods and databases are highly useful for
gathering data on lake ecological indicators, particularly in unstudied lakes with minimal
in situ monitoring. Remote sensing, with sufficient in situ validation, may offer near-real-
time information on lake changes, such as algae blooms or droughts. Interdisciplinary
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collaboration and validation may improve the accuracy and efficiency of remote sensing
for waterbody evaluation and management [11], while requiring less time, effort, and
money [14,15].

The conventional method for assessing water quality includes three types of parame-
ters: (1) physical parameters such as water temperature (WT), transparency (Secchi disk
depth (SDD)), salinity, turbidity, total suspended matter (TSM), coloured dissolved organic
matters (CDOM), odour, and electrical conductivity (EC); (2) chemical parameters such as
pH, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand
(BOD), total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN),
ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), total phosphorus (TP), orthophos-
phate (PO4), heavy metal ions, and nonmetallic toxins; and (3) biological parameters such
as chlorophyll-α (chl-α), total bacteria, and total coliforms. The analysed water quality
parameters are divided into two groups using remote sensing methods. The initial catego-
rization consists of parameters with active optical characteristics, including chl-α, TSM, and
CDOM. These parameters affect the radioactive transfer process of waves by modifying the
absorption of the spectrum. The second categorization includes parameters without defined
optical properties, such as TN, TP, and DO. These parameters are commonly examined
using statistical correlations with optically active parameters [15]. The review covers six
optically active water parameters, including chl-α, turbidity, SDD, WT, salinity, and EC.

This paper presents a comprehensive review of the current research status and devel-
opments in the use of remote sensing methods to monitor lake water quality. The review
examines numerous research projects that evaluate water quality using remotely sensed
data, emphasizing the potential use of these results for environmental researchers. It aims
to offer a centralized resource for academics to obtain insights into present practices and
suggest areas for improvement or future contributions. The review focuses on optically
active physical and biological parameters that may be retrieved using satellite imagery,
and it includes data from specialists in lake hydrology, biology, ecology, and chemistry. It
also addresses the dependability of data representation by shifting from point to raster
representation. The objectives of this paper are to (1) provide a bibliometric analysis,
(2) provide insight into the current state of remote sensing methods for monitoring water
quality in lakes, (3) summarize methods for retrieving water quality parameters based
on remote sensing used in the literature, (4) provide a comprehensive summary of the
bands, band combinations, and band equations commonly used for remote sensing of
water quality parameters per satellite sensor, (5) address the importance of optimizing
grid selection and time frame for in situ measurements, and (6) propose a workflow for
monitoring and assessing water quality parameters in lakes using remote sensing methods.
In addition, this review discusses the elements that influence the correlation between water
quality parameters and satellite imagery, as well as possible solutions and limits to the
challenges of remote sensing water quality assessment in lakes. Overall, this review adds
new knowledge to the field and encourages further research and innovation in remote
sensing methods for water quality monitoring.

2. Bibliometric Analysis

Long ago, remote sensing was acknowledged as a method for global tracking of inland
water quality. Airborne and satellite spectral data collection has been used since the early
1970s to analyse a broad collection of water quality parameters [16] (Figure 1). Previous
reviews [14,15,17–19] have offered excellent summaries of hundreds of publications pre-
senting models for evaluating the biological, chemical, and physical properties of complex
waterbodies published by scientists during the past 50 years. General trends in this sense
were revealed after extensive bibliometric research of the Elsevier Scopus database (con-
ducted in May 2024). Database titles, keywords, and abstracts from 1977 until 2023 for the
terms ‘remote sensing’, ‘water quality’, and ‘lake’ in the English language were searched.
The search found 29,901 unique publications published for terms ‘water quality’ and ‘lake’
and 1788 unique publications published for terms ‘remote sensing’, ‘water quality’, and
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‘lake’. Globally, the number of publications employing remote sensing for lake water quality
falls significantly behind those that do not, as shown in Figure 1.
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Figure 2. 
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Figure 1. Number of publications retrieved from Elsevier Scopus on the search topic “(remote sensing)
lake water quality”.

Since the 1970s, papers describing the monitoring and assessment of water quality
in lakes utilizing remote sensing methods have arisen (Figure 1). Publication numbers
for the specific dataset follow a power law distribution, with a similar increase after
2008. The greatest increase in remote sensing studies from one year to the next happened
after 2008, coinciding with the availability of free Landsat imagery. This conclusion is
consistent with prior research indicating that the publication of the Landsat archive led
to an increase in the frequency and scope of EO studies in different domains [20] and has
resulted in a more comprehensive understanding of inland waterbodies to concentrate
on demanding scientific problems and expanding research scales. Research on lakes
based on remote sensing has seen a significant increase in publications in the past decade
(2014–2023) compared to the previous 37 years (1977–2013). The majority of the publications
in the bibliometric analysis were published in the United States and China, with the rest
originating from various countries across Europe and from India, Canada, Japan, and
Australia, as seen in Figure 2.

The literature review suggests that the recent advancement in evaluating inland water
quality through remote sensing initiatives can be attributed to the challenges associated
with remote sensing of complex waterbodies and the limited availability of suitable sensors
for this purpose (viz., hyperspectral airborne or space-borne remote sensing that captures
extensive spatial and spectral information, especially in small lakes) [21]. This review uses
the ‘System A’ lake typology of the WFD [22,23], which categorizes lakes based on four
abiotic characteristics. The focus of the review is on categorizing lakes based on mean
depth and surface area (Table 1). The complex bio-optical properties of a static waterbody
(vegetation and pollutants) create problems in establishing an internal correlation between
spectral responses and optically inactive water quality parameters. In tandem with the
increase in remote sensing data accessibility during the past decade, in situ data acces-
sible for model calibration and validation has increased. Modern databases offered by
government agencies, nongovernmental organizations, and scholars provide a variety of
freely accessible in situ data. In Europe, these include Eye on Water (www.eyeonwater.org

www.eyeonwater.org
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(accessed on 16 October 2023)) and Seen-monitoring (www.seen-transparent.de (accessed
on 16 October 2023)) [18]. These established databases can be enhanced with innovative
datasets collected through citizen science activities. In this way, data continuity is offered,
resulting in cost and time savings for researchers, and a multitude of samples for calibration
and validation of derived models.
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Table 1. WFD lake typology [22,23].

Lake Parameter Value Description

Depth

<3 m Very shallow

3–15 m Shallow

>15 m Deep

Surface area

<1 km2 Small

1–10 km2 Medium

10–100 km2 Large

>100 km2 Very large

3. Materials and Methods

The principle of using remote sensing methods to assess water quality involves creat-
ing models based on spectral responses and in situ measurements of water quality parame-
ters. Locations of in situ measurements should consider hydrodynamic models and serve as
a basis for comprehensive lake-wide analysis via remote sensing by choosing bands, band
combinations, and band equations for retrieving optically active parameters. These models
are calibrated and validated using in situ measurements and used for comprehensive anal-
ysis of water quality over a larger area and longer period [15]. Bio-optical methods use the
correlation between a waterbody’s optical properties and its optically active parameters to

www.seen-transparent.de
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assess water quality. The performance of water quality retrieval models depends on spatial
factors and the inherent optical properties of the region [17]. Optically active parameters
interact with light and can be obtained through direct retrieval [24], while optically inactive
parameters can be inferred from measurable water quality parameters [25].

There are five methods commonly used for monitoring and assessing water quality
using remote sensing imagery: empirical, semi-empirical, semi-analytical, analytical, and
machine learning (ML). Each method has its own characteristics and complexity.

3.1. Analytical Methods

Analytical models, also known as physical models, are used to determine spectral
reflectance by analysing the optical properties of water and the atmosphere. These models
are based on physics [18] and use inherent and apparent optical properties to model surface
water reflectance and determine the concentration of constituents [14]. They link water
quality parameters with water-leaving radiance using radiation transmission theory [26].
The analytical method can identify all water parameters simultaneously, but it requires
accurate measuring instruments and has high application costs [27]. Model development
is challenging due to differences in spectral resolutions between satellite sensors and
ground measurements. The analytical method is infrequently used for all water quality
parameters [15] and requires theoretical breakthroughs to create more generalized models;
nevertheless, it has good portability [27]. Studying the complex optical characteristics of
water quality parameters can improve the accuracy of analytical methods [15].

3.2. Semi-Analytical Methods

Analytical and semi-analytical models are used to study the physics-based optical
properties of water and the atmosphere [28]. Semi-analytical methods simplify analytical
models and require statistical analysis [29]. Theoretical values are calculated by modelling
the optical properties of a waterbody [28]. Some models are based on water column
radiative transfer and use inversion and look-up tables to match spectral signatures and
predict water quality parameters [30]. Semi-analytical models using in situ observations
are common for remotely sensing inland water quality [17]. However, model development
is challenging and requires knowledge of atmospheric correction and substantial in situ
sampling [18]. These models have been successfully applied on broad spatiotemporal
scales to retrieve optically active parameters, such as chl-α and SDD [15].

3.3. Empirical Methods

The empirical method is a statistical approach that uses regression analysis to establish
relationships between water quality parameters and spectral response values [14,15]. This
method is used to derive distinctive bands or band combinations and create a water quality
inversion model [31]. Empirical methods include linear regression, band combination, and
principal component analysis. However, these methods lack physical mechanisms and mul-
titemporal validity, resulting in uncertainty and limited applicability. Inland waterbodies,
which are optically complex, often require multivariate regression [32]. Empirical models
also rely on in situ data and may be affected by changes in downwelling irradiance and
water surface conditions [33]. Despite these drawbacks, the empirical method is preferred
for its simplicity, low computational needs, and ability to account for specific waterbody
properties [17,32]. It is commonly used to assess turbidity, chl-α, and trophic status [16].

3.4. Semi-Empirical Methods

Semi-empirical methods combine empirical and analytical methods to correlate water
quality parameters with remote sensing data [27]. These methods involve statistical and
measured spectral analysis to select characteristic bands and develop models [34]. They use
physical and spectral data to create algorithms that correlate with measured parameters.
However, their validity is limited to a specific range of optical water quality data [33].
Semi-empirical models do not model the inherent optical properties of waterbodies like
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semi-analytical models, but they improve the spectral properties of parameters and reduce
noise. Physically based semi-empirical models are more generalizable but require sensors
with properly positioned band centres and sufficient spectral resolution [18]. Spectral band
ratios and shape algorithms are commonly used due to their generalizability and ease of
implementation, although they assume consistent water and atmospheric conditions. Spec-
tral band ratios and spectral shape methods are better for assessing regional water quality
parameter distributions than precise estimates [32]. The temporal and spatial applicability
of semi-empirical methods is limited by the availability of in situ measured data. These
methods are often used to assess parameters such as chl-α, SDD, and turbidity [35–37].

3.5. Machine Learning (ML) Methods

The use of ML methods in remote sensing has been increasing [38,39]. ML methods,
such as partial least squares regression (PLSR), support vector regression (SVR), artificial
neural networks (ANN), deep neural networks (DNN), and convolutional neural networks
(CNN), have shown promise in accurately estimating water quality parameters in remote
sensing. Traditional ML algorithms like PLSR and SVR [40,41], and deep learning (DL)-
based methods like ANN, DNN, and CNN [18] excel at solving complex nonlinear problems.
ANN models require large training samples, while SVM models are suitable for small
samples and nonlinearity [40]. CNN models are particularly effective for classifying
hyperspectral images [42].

ML models are limited by the data used to train them and require distinct training and
testing datasets. In order to ensure that representative samples of a data set are selected,
a random split of 70% training data and 30% testing data should be used, according
to [32]. They can capture complex and nonlinear relationships between water quality
parameters and remotely sensed reflectance when given appropriate inputs [18]. However,
ML methods have downsides, such as the need for a lot of training data, the challenge
of combining features from different spectral, spatial, and temporal information, and the
potential for unexplained solutions or ill-posed problems [43]. Despite these challenges,
the use of ML in remote sensing for water quality estimation has become more popular due
to algorithm development, sensor systems, computing power, and data accessibility [44].
DL methods have been found to outperform other remote sensing methods in estimating
water quality parameters such as chl-α, turbidity, NO3-N, and PO4-P [32,45].

4. Optically Active Water Quality Parameters

Water molecules have properties such as scattering, reflecting, and absorbing the
electromagnetic spectrum (Figure 3), which can create challenges for remote sensing in
aquatic environments [46]. These properties limit optical remote sensing to the visible
area of the electromagnetic spectrum [46], although the near infrared region can provide
some information [13], especially in shallow water. Optically active parameters, such as
chl-α, interact with light and modify radiation in the water column through absorption and
scattering processes [25]. Remote sensing can accurately measure these parameters and
other water quality parameters without the errors associated with in situ measurements.
In optically shallow water, the reflected light also contains information about the bottom
substrate and bathymetry [19]. The apparent optical properties depend on water quality
and radiation geometry [47], and retrieval models can be built based on the interaction
between inherent optical properties and remote sensing reflection. Remote sensing has
been successful in measuring various optically active water quality parameters, including
chl-α, SDD, turbidity, salinity, and WT [24,32,45,48–50], but there are challenges in esti-
mating parameters with weak optical properties, such as pH, DO, nutrients, and heavy
metals [31,32,50–52]. However, it is possible to estimate these parameters by establishing
correlations with optically active parameters. The review emphasizes the importance of
considering the variability of optically active biological (chl-α) and physical parameters
(SDD, EC, turbidity, salinity, and WT), the correlation with satellite imagery, and the need
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for comprehensive studies that encompass different seasons and time frames to ensure
accurate assessments and effective management of water resources.
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4.1. Chlorophyll-α (Chl-α)

Photosynthesis is a vital process for plants and other photosynthetic organisms, as it
allows them to convert light energy into usable energy. Chlorophyll, specifically chl-α, is
the most common pigment involved in photosynthesis [17]. It plays a crucial role in water-
body primary productivity, trophic status, and nutrient levels. However, excessive chl-α
concentrations can lead to harmful algal blooms, particularly those caused by phycocyanin-
producing cyanobacteria, which can be toxic to humans and wildlife [53]. The increase
in harmful algal blooms worldwide is attributed to anthropogenic nutrient loading and
climate change [54]. Therefore, it is important for local authorities to monitor and forecast
these blooms.

Remote sensing methods, such as satellite and aerial imagery, can be used to assess chl-
α concentrations in waterbodies. Due to sunlight-induced fluorescence, the chl-α spectrum
peaks at 680 nm in oligotrophic to mesotrophic aquatic environments [55]. Narrow bands
of imagery are needed for remote sensing chl-α concentration and its geographical and
temporal fluctuations [56]. Table S1 lists selected remotely taken measurements of chl-α
using various sensors and spectral bands, band ratios, and band combinations. As seen
from Table S1, a conducted literature review showed Landsat-5 TM and Envisat MERIS
as most suitable and popular for chl-α evaluation due to their easy accessibility, temporal
coverage, and spatial resolution, making them a good choice.

Based on the summary given in Tables S1 and S2, various methods, including analyti-
cal [57–60], semi-analytical [35,61–63], empirical [10,31,51,64–67], semi-empirical [68–70],
ML [41,71], and NNs [24,67,72], have been employed to analyse remote sensing data and
estimate chl-α concentrations in lakes. These methods utilize different approaches, such
as measuring the optical properties of water, combining field and remote sensing data,
establishing statistical relationships, and modelling complex relationships. The findings of
Wu et al., 2009 [72] and Song et al., 2011 [67] demonstrated that NN models outperformed
empirical models in utilizing spectral information and model reliance and highlighted
the superior accuracy of utilizing NN models in water quality monitoring and manage-
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ment efforts compared to empirical regressions. The application of these methods has
provided valuable insights into the dynamics and distribution of chl-α in different aquatic
ecosystems, contributing to a better understanding of algal abundance and informing
management strategies.

According to the outline provided in Table S2, waterbodies with a narrow range of
measured chl-α values (chl-α concentrations between 0.01 and 11 µg/L) show a notable
correlation with specific imagery from satellite and airborne sensors. Landsat-5 TM imagery
revealed moderate correlations (R2 = 0.513, 0.53, and 0.72) for a lake in Turkey [73] with
in situ values ranging from 0.62 to 3.99 µg/L, a reservoir in Arkansas, USA [74], with in
situ values ranging from 1.4 to 10 µg/L, and a lake in Italy [75] with in situ values ranging
from 1.11 to 4.57 µg/L, respectively. There is a moderate correlation between MIVIS aerial
hyperspectral imagery (R2 = 0.71) for a lake in Italy [58] with in situ values ranging from
0.75 to 4.3 µg/L, and between EO Hyperion-1 satellite hyperspectral imagery (R2 = 0.705)
for a lake in Guatemala [68] with in situ values ranging from 1.01 to 10.91 µg/L. There
is a strong correlation between a reservoir in Arkansas, USA [76] when compared using
Landsat-5 TM (R2 = 0.84) and in situ values ranging from 1 to 7 µg/L in four months
throughout the year. A lake in Germany [70] correlates strongly with CASI and HyMap
aerial hyperspectral imagery (R2 = 0.89) with in situ values ranging from 1 to 3 µg/L
collected from May to September.

Imagery from satellite and airborne sensors has shown a moderate to strong correlation
with waterbodies with chl-α concentrations in the medium range of 0.07 and 40 µg/L. A
moderate correlation has been discovered between chl-α and EO Hyperion-1 hyperspectral
imagery (R2 = 0.59) in a lake in Italy [57], with in situ values from 0.5 to 12 µg/L measured
in one month. Terra MODIS imagery has a moderate correlation (R2 = 0.632) for a lake in
China [72] with chl-α in situ values from 5.2 to 33.9 µg/L during a 4-month study, and
Landsat-5 TM imagery (R2 = 0.72) for a lake in Italy [75] with in situ values from 4.63 to
11.35 µg/L measured in one month. Strong correlations were observed between Landsat-5
TM and lakes in Spain [77], China [67], and Italy [78], with R2 values of 0.82, 0.98, and 0.999,
respectively. However, only four samples were used for the research of the lake in Italy [78],
and in situ values ranged from 5.5 to 7.7 µg/L, while in situ values in the lake in Spain
ranged from 0.4 to 20 µg/L in a 6-year study and in situ values in the lake in China ranged
from 5 to 30 µg/L in one month.

A correlation has been found between imagery from satellite and airborne sensors and
chl-α concentrations in waterbodies, which vary considerably in the wide range from 0.01
to 250 µg/L. A moderate correlation was observed between chl-α and Landsat-5 TM with
a coefficient of correlation R2 of 0.705 across 42 lakes in Michigan, USA [79]. The chl-α in
situ values in Michigan lakes [79] varied from 0.2 to 87 µg/L over a period of six months.
There is a strong correlation (R2 ≥ 0.8) between chl-α and several satellite and airborne
imagery sources, such as Ikonos OSA, AISA, CASI, HyMap, PROBA-CHRIS, Landsat-7
ETM+, Envisat MERIS, Sentinel-2 MSI, and Sentinel-3 OLCI. This correlation was seen
in 15 studies from Table S2 conducted across study periods ranging from one month to
13 years, with maximum chl-α levels reaching 120 µg/L.

Waterbodies with a very wide range of chl-α concentrations between 0.01 and 700 µg/L
show a strong correlation with specific satellite images. A strong correlation (R2 = 0.85)
was discovered in a 3-year study, including 13 reservoirs in Oklahoma, USA [80]. The
research used PlanetScope, Sentinel-2 MSI, and Landsat-8 OLI data in conjunction with
chl-α in situ measurements ranging from 0.6 to 540 µg/L, where Sentinel-2 MSI showed the
highest correlation with chl-α in situ values. A 6-year study conducted on nine waterbodies
in the United States, Australia, and China [41] revealed a strong correlation (R2 = 0.91)
between Sentinel-3 OLCI images and in situ readings ranging from 2.8 to 285.5 µg/L. A
1-month study conducted on 15 lakes in Minnesota, USA [81], revealed a strong corre-
lation (R2 = 0.99) between chl-α concentrations ranging from 1.8 to 397 µg/L and Terra
MODIS images.
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The literature summarized in Table S2 provides information on the most commonly
used sensors for assessing chl-α from satellite and airborne multispectral and hyperspectral
imagery. The Landsat-5 TM sensor is frequently utilized and has an average R2 value of
0.76 based on eight studies [67,73–79]. However, several other sensors have achieved better
results for assessing chl-α. Satellite multispectral sensors such as Sentinel-3 OLCI and
Ikonos OSA, satellite hyperspectral sensors such as Envisat MERIS and PROBA-CHRIS,
and airborne hyperspectral sensors such as CASI, HyMap, and AISA have achieved the best
R2 values (>0.88) for assessing chl-α. Very shallow waterbodies (<3 m) have the highest R2

values of 0.84 for retrieving chl-α from satellite and airborne imagery. The best results, with
an R2 value of 0.93, are achieved for medium-sized waterbodies (1–10 km2). Additionally,
studies lasting longer than one year have achieved better results, with an R2 value of 0.85.
The most successful methods for retrieving chl-α from satellite and airborne imagery are
empirical, NN, ML, and nonlinear regression, with R2 values exceeding 0.93.

The most effective sensors for retrieving chl-α in small waterbodies (<1 km2) are
Landsat-5 TM, airborne hyperspectral CASI, and HyMap. For medium waterbodies
(1–10 km2), the most effective satellite sensor is hyperspectral Envisat MERIS. Ikonos
OSA is the recommended multispectral sensor for large waterbodies (10–100 km2), while
multispectral Sentinel-3 OLCI and hyperspectral Envisat MERIS (satellite platforms) are
most effective for very large waterbodies (>100 km2), according to the literature in Table S2.

The most effective sensors for retrieving chl-α in very shallow waterbodies (<3 m)
are multispectral Sentinel-3 OLCI, satellite hyperspectral Envisat MERIS, and airborne
hyperspectral CASI and HyMap. In shallow waterbodies (3–15 m), the recommended
satellite sensor is the hyperspectral Envisat MERIS. The most effective sensors for retrieving
chl-α in deep waterbodies (>15 m) are multispectral Ikonos OSA, airborne hyperspectral
CASI, and HyMap.

4.2. Turbidity

Turbidity is a measurement of the amount of suspended and dissolved particles in wa-
ter that cause light to scatter [19]. High turbidity levels can reduce water transparency and
carry contaminants and nutrients, impacting primary production, aquatic plant growth, and
water quality in lakes [82]. Remote sensing is used to map turbidity concentrations and their
variations over time and space. Various methods, including the empirical method [83–86],
have been used to measure turbidity in lakes and reservoirs. Studies have shown that ML
methods, such as NNs, can provide accurate predictions of turbidity concentrations [67,85].
Table S3 lists selected remotely taken measurements of turbidity using various sensors and
spectral bands, band ratios, and band combinations. Integrating ML into turbidity concen-
tration studies has the potential to enhance understanding of water quality dynamics in
aquatic systems.

Waterbodies with turbidity levels in a narrow range from 0.1 to 20 NTU have a
notable correlation with certain satellite images. Landsat-5 TM images showed a moderate
correlation (R2 = 0.537) for a lake in Tennessee, USA [79]. The in situ turbidity values in a
lake in Tennessee, USA [79], vary from 4.1 to 20 NTU in one month.

Waterbodies with turbidity levels in the medium range of 0.1 to 100 NTU have a
significant correlation with certain satellite images. There is a strong correlation between
turbidity and Landsat-5 TM (R2 = 0.822) in a lake in Turkey [73], with in situ values varying
from 2.9 to 33.5 NTU during a 1-month period. There is a strong correlation between
turbidity and PROBA-CHRIS (R2 = 0.9) as well as turbidity and Landsat-5 TM/Landsat-
7 ETM+ (R2 = 0.85) in a reservoir in Cyprus [87]. In situ turbidity levels ranged from
7.94 to 26.3 NTU during a period of six months (April–October 2010). The strongest
correlation was identified between turbidity and Terra ASTER data for a lake in Egypt [83],
with an R-squared value of 0.998, over the in situ range of 0–85 NTU measured during a
2-month period.

Waterbodies with turbidity levels in the wide range of 0.1 to 200 NTU exhibit a notable
correlation with certain satellite images. Analysed Landsat-8 OLI data indicated a moderate
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correlation (R2 = 0.642) for turbidity levels ranging from 13.5 to 117 NTU in a reservoir
in Columbia [88] during a 1-month period. A strong correlation has been found between
turbidity and Landsat-5 TM images for a lake in China [67] and a reservoir in China [89]
(R2 = 0.98 and 0.937, respectively). Research on a lake in China [67] spanned one month
and measured in situ values between 5 and 180 NTU. Research conducted on a reservoir in
China [89] consisted of two sessions within one month, revealing in situ values ranging
from 2.13 to 142 NTU.

Waterbodies with turbidity levels in a very wide range from 0.1 to 1000 NTU exhibit a
strong correlation with satellite imagery. Research conducted over 10 years throughout six
summer sessions in New Zealand [84] found a significant association (R2 = 0.924) between
Landsat 7 ETM+ images and in situ values from 34 shallow lakes. In situ values ranged
from 75 to 275 NTU. There is a strong correlation between turbidity and PlanetScope data
(R2 = 0.79) in a 3-year study of 13 reservoirs in Oklahoma, USA [80], where in situ turbidity
levels ranged from 0 to 966 NTU.

The literature summarized in Table S4 provides information on the most commonly
used sensors for assessing turbidity from satellite and airborne multispectral and hyper-
spectral imagery. The Landsat-5 TM sensor is frequently used and has an average R2 value
of 0.82 based on five studies. However, other satellite sensors such as Landsat-7 ETM+,
Terra ASTER, and PROBA-CHRIS have achieved better results with R2 values greater than
0.9 for assessing turbidity. Deep waterbodies (>15 m) have the highest R2 values of 0.88 for
retrieving turbidity from satellite and airborne imagery. Small-sized waterbodies (<1 km2)
achieve the best results with an R2 value of 0.98. Studies lasting between two and six
months have shown the best results, with an R2 value greater than 0.87. The most effective
methods for extracting turbidity from satellite and airborne images are empirical methods
and NN (R2 > 0.85).

According to the literature in Table S4, the most effective sensor for measuring tur-
bidity in small (<1 km2) and large (10–100 km2) waterbodies is Landsat-5 TM. For very
large waterbodies (>100 km2), the recommended sensors are multispectral Landsat-5 TM,
Landsat-7 ETM+, and hyperspectral PROBA-CHRIS. Multispectral Landsat-5 TM is also
the most effective for measuring turbidity in very shallow (<3 m) and shallow (3–15 m)
waterbodies, while the most effective sensor for retrieving turbidity in deep waterbodies
(>15 m) is hyperspectral PROBA-CHRIS.

4.3. Transparency (Secchi Disk Depth (SDD))

Water transparency, which is a measure of the clarity of lake water, is an important
indicator of water quality and the health of aquatic ecosystems [90]. It is commonly assessed
using the Secchi disk [91], a white and black disk that is lowered into the water until it is
no longer visible. However, this method is labour-intensive and limited in its ability to
capture spatial variations in water clarity. Remote sensing methods, which use satellite
data to estimate water transparency, offer a more efficient and comprehensive approach
by approximating Secchi disk depth in water with an inverse variation of the diffuse
attenuation coefficient (Kd). The diffuse attenuation coefficient of downwelling irradiance,
which is frequently measured at 490 nm, shows the exponential drop in irradiance with
increasing water depth [46].

These methods use semi-analytical, empirical [51,72,84,92], and ML models to correlate
water reflectance with transparency in lakes [93]. DL algorithms, such as NNs, have
also been used to improve the accuracy of water quality retrieval models [72]. Water
clarity is often used as a proxy for the trophic state of a lake [94], indicating nutrient
availability and chlorophyll concentrations. Turbidity and TSM levels in the water are
inversely correlated with water clarity. Various spectral bands and ratios are used in remote
sensing to measure water clarity, with wavelengths in the red spectrum being particularly
effective [84]. Table S5 summarizes these findings. Landsat-5 TM and Envisat MERIS
satellite systems have been found to be effective for evaluating water clarity due to their
comparatively low cost, temporal coverage, spatial resolution, and data availability.
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There is a significant correlation between satellite imagery and waterbodies, with SDD
values in a narrow range of 0.1 and 2 m. An analysis of Landsat-5 TM data showed a
moderate correlation (R2 = 0.588) between SDD in situ values ranging from 0.16 to 0.33 m
during a 1-month period on a lake in Tennessee, USA [79]. For a Chinese lake [72], Terra
MODIS images revealed a moderate correlation (R2 = 0.628) with in-situ SDD measurements
ranging from 0.25 to 1.2 m over the course of four months. Using in-situ measurements
ranging from 0.23 to 0.39 m over the course of a month, SDD and Envisat MERIS imagery of
a South African lake [95] show a strong correlation with a R2 value of 0.801. A month-long
investigation on an Italian lake [75] found a strong correlation between SDD and Landsat-5
TM (R2 = 0.82) with in situ values ranging from 0.25 to 1 m. A 1-month study on three lakes
in Brazil’s Lower Amazon Floodplain [92] using SDD and PlanetScope imagery revealed a
strong correlation (R2 = 0.816) with in situ values ranging from 0.6 to 1.94 m.

Waterbodies exhibiting a medium range of SDD values between 0.1 and 3.75 m
demonstrate a significant correlation with particular satellite images. A study conducted on
34 shallow lakes in New Zealand [84] identified a moderate correlation (R2 = 0.67) between
Landsat-7 ETM+ data and SDD in situ values varying from 0.05 to 3.04 m over the course
of six summer sessions spanning ten years. SDD and identical satellite imagery have a
strong correlation (R2 = 0.8), as demonstrated by a study conducted for three months in
the summer at a lake on the Canada–United States border [96] using in situ values ranging
from 0.1 to 3 m. A strong correlation (R2 = 0.82 and 0.929) was observed between SDD and
Landsat-5 TM imagery for one lake in Italy [75] and one lake in Thailand [97], respectively.
The 1-month study conducted in Italy [75] has measured in situ values from 3 to 3.75 m. For
a study conducted in Thailand [97] over the course of three spring sessions in two months,
the values ranged from 0.2 to 2.5 m.

Waterbodies exhibiting a wide range of SDD values between 0.1 and 15 m demonstrate
a moderate-to-strong correlation with particular satellite images. A study conducted on a
lake in Spain [77] identified a moderate correlation (R2 = 0.63) between Landsat-5 TM data
and SDD in situ values spanning a duration of six years, with values varying from 1.33 to
7.53 m. The correlation between SDD and Terra MODIS imagery is moderate (R2 = 0.52), as
demonstrated by a 1-month study involving 15 lakes in Minnesota, USA [81], with in situ
values ranging from 0.2 to 6.1 m. In three years, Sentinel-2 MSI imagery revealed a strong
correlation (R2 = 0.8) between in situ SDD values ranging from 0.08 to 4 m for 13 reservoirs
in Oklahoma, USA [80]. Multiple studies [76,78,98] have found a significant correlation
(R2 > 0.82) between SDD and Landsat-5 TM/Landsat-7 ETM+, with SDD in situ values
varying from 0.02 to 6.8 m and study durations spanning from one month to two years.
There is a strong correlation (R2 = 0.95) between SDD and PROBA-CHRIS, with in situ
values ranging from 0.1 to 6 m, according to a 1-month study of ten lakes in Poland [99]. A
strong correlation (R2 = 0.989) was observed between SDD and Ikonos OSA imagery and
in situ values ranging from 0.8 to 6.5 m in a Turkish estuary during a 1-month study [100].
Two Finnish studies [36,101] demonstrate a strong correlation (R2 > 0.86) between SDD and
AISA imagery within the in situ range of 0.3 to 7 m.

The literature summarized in Table S6 provides information on the most commonly
used sensors for assessing SDD from satellite and airborne imagery. The Landsat-5 TM
sensor is frequently used and has an average R2 value of 0.8 based on seven studies.
However, other satellite sensors such as Ikonos OSA, PROBA-CHRIS, and airborne AISA
have achieved better results with R2 values greater than 0.87 for assessing SDD. Deep
waterbodies (>15 m) have the highest R2 values of 0.88 for retrieving SDD from satellite
and airborne imagery. Large waterbodies (10–100 km2) achieve the best results with an R2

value of 0.92. Studies lasting between two and three months have shown the best results,
with an R2 value of 0.87. The most effective method for extracting SDD from satellite and
airborne images is through empirical methods and multiple regression (R2 > 0.82).

The literature in Table S6 suggests that the most effective sensor for measuring SDD in
small (<1 km2) and very large (>100 km2) waterbodies is Landsat-5 TM. For large water-
bodies (10–100 km2), both multispectral Landsat-5 TM and Ikonos OSA are recommended.
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Hyperspectral Envisat MERIS is the recommended sensor for medium-sized waterbodies
(1–10 km2) and very shallow waterbodies (<3 m). Landsat-5 TM is most effective for
assessing SDD in shallow waterbodies (3–15 m), while multispectral Landsat-5 and Ikonos
OSA are most effective for assessing SDD in deep waterbodies (>15 m).

4.4. Water Temperature (WT)

WT is an important indicator of ecosystem health and water quality [14]. Accurate
surface WT measurements are crucial for weather and climate research, and remote sensing
can provide these measurements. However, measurements can be affected by factors like
emissivity and atmospheric absorptions [102]. Infrared radiometers can provide surface
WT measurements with a precision of around 0.5 ◦C, but optical remote sensing methods
should be used to identify and mask clouds and fog. Passive microwave approaches
can be used in cloudy locations with an accuracy limit of roughly 1.5–2 ◦C [103]. While
passive microwave radiometers have lower accuracy and resolution compared to infrared
radiometers, they are not affected by air and cloud influences [9]. Estimating primary
production and phytoplankton growth rates can be performed using remote sensing and
in situ measurements of WT [14]. WT also affects DO concentrations and the distribution
of contaminants in the water. Remote sensing, combined with in situ measurements, can
provide accurate data on temperature zones at a reasonable cost. Various studies have
explored the challenges and benefits of using empirical methods [83,104] and numerical
weather prediction models to estimate WT in different types of lakes. Following a conducted
review of the literature, Table S7 summarizes how combinations of bands may be used
to measure WT. The most commonly utilized instruments mounted on satellites used for
remote sensing retrieval of WT are Landsat-8 TIRS and Terra MODIS.

A correlation has been observed between specific satellite imagery and waterbodies
exhibiting WT concentrations that have narrow-range variability. An R-squared value of
0.535 indicates a moderate correlation between WT and Terra ASTER for a lake in Egypt [83],
where WT levels fluctuate between 29.7 and 31.2 ◦C over the course of two months.

Waterbodies characterized by wide range in WT levels demonstrate a significant
correlation with satellite imagery. Over a 10-month period, Landsat-7 ETM+ and Landsat-5
TM satellite imagery established a strong correlation (R2 = 0.921) with WT in multiple lakes
located in northern Germany [105]. The in situ temperatures measured during this period
varied between 2.5 and 21.5 ◦C. Based on 120 sessions over six years and in situ values
spanning from 1 to 29 ◦C, a study on four lakes in Switzerland–France, Hungary, Sweden,
and Finland [106] reveals a strong correlation (R2 = 0.792) between WT and NOAA-9, -11,
-12, -14, -16, -17, and-19 AVHRR. A strong correlation (R2 = 0.92 and 0.9928, respectively)
is observed between Terra MODIS and WT in two lakes in Sweden [107] and one lake in
Iran [104]. The research in Sweden [107] spanned two years from April to October and
utilized in situ temperatures varying from 1 to 22 ◦C. The Iranian study [104] spanned four
years and utilized in situ temperatures ranging from 3.5 to 32 ◦C.

The literature summarized in Table S8 provides information on the most commonly
used sensors for assessing WT from satellite imagery. The Terra MODIS sensor is frequently
used and has an average R2 value of 0.96 based on two studies, making it the most effective
sensor for retrieving WT. Medium-sized waterbodies (1–10 km2) have the highest R2 value
of 0.92 for retrieving WT from satellite imagery. Deep waterbodies (>15 m) achieve the best
results with an R2 value of 0.96. Studies lasting more than six months have shown the best
results, with an R2 value greater than 0.89. The most effective method for extracting WT
from satellite images is through the empirical method, which has an R2 value of 0.84.

The literature in Table S8 suggests that different sensors are recommended for assessing
WT in different sizes and depths of waterbodies. For very large waterbodies (>100 km2),
Terra MODIS is considered the most effective sensor. For medium-sized waterbodies
(1–10 km2), multispectral Landsat-5 TM and Landsat-7 ETM+ are the recommended sensors.
Landsat-7 ETM+ and Terra MODIS are the most effective for assessing WT in shallow
(3–15 m) and deep waterbodies (>15 m).
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4.5. Salinity

Salinity is an important parameter for brackish lakes but not relevant for freshwater
lakes. It affects water density and currents, as well as the exchange of gases between air
and water. Satellite measurements can be affected by a layer of fresh surface water on
top of salty water. Salinity in inland waterbodies varies due to factors like precipitation,
evaporation, river runoff, and interactions with oceans [14]. Monthly salinity maps can help
determine variations in freshwater input and outflow. Table S9 lists the band combinations
needed to accurately measure salinity using optical sensors on satellites like Landsat-5 TM,
Landsat-8 OLI, and Sentinel-2 MSI. Table S9 presents a concise overview of the studies
conducted to assess salinity in shallow lakes through empirical [83], ML [108], and NN
methods [109]. Indirect methods, such as brightness temperature, CDOM, and temperature
profiles, are used to estimate salinity. Due to the lack of a direct colour signal from salinity,
the colour signal can instead be estimated using relationships between salinity, WT, and
brightness temperature [110] and between salinity and CDOM [111].

An R-squared value of 0.657 indicates a moderate correlation between Sentinel-2 MSI
imagery and salinity for a hypersaline lake in Iran [108], where salinity values fluctuate
between 30.7 and 36.1 over the course of three months (April, June, and July 2021). In
April and June of 2019, a strong correlation (R2 = 0.94) was identified between salinity
measurements obtained from Sentinel-2 MSI in the same lake in Iran [109]. In situ values
for this correlation varied from 6.5 to 32.

The literature on remote sensing-based salinity assessment in lakes is limited, with
only two studies conducted on Urmia Lake, a very large and shallow waterbody. Both
studies used the Sentinel-2 MSI sensor and found promising results, as highlighted in
Table S10. The first study, which lasted for three months, used the ML method and achieved
an R2 value of 0.66. The second study, which lasted for two months, used the NN method
and achieved a high R2 value of 0.94.

4.6. Electrical Conductivity (EC)

The EC of water is a measure of its ability to conduct electricity and is influenced
by the concentration of ions or salt in the water [112]. The standard unit of measurement
for EC is microSiemens per centimetre (µS/cm). Higher salinity levels in water lead to
a decrease in oxygen absorption. Changes in EC that occur rapidly can indicate water
contamination. Anions like chloride, phosphate, and nitrate can increase EC when added to
sewage discharge or agricultural runoff [112]. The combination of chemical and biological
processes can cause changes in EC, and diurnal variations in EC have been observed during
low-flow cycles [113]. Conductivity probes are used to measure EC in the laboratory or
field, and some devices can also measure salinity. Correlations between EC and spectral
measurements are challenging due to complex interactions with optically active water
quality elements [32]. Table S11 lists selected remotely taken measurements of EC using
various sensors and spectral bands and band combinations. Landsat-8 OLI is commonly
used for retrieving EC, either as a single band or in combination with other bands.

Waterbodies with EC in a narrow range from 0.01 to 4 mS/cm exhibit a moderate
correlation with specific satellite images. An R-squared value of 0.699 indicates a moderate
correlation between EC and Landsat-8 OLI imagery for a reservoir in Columbia [88] (EC
values range from 0.54 to 1.82 mS/cm over one month) and an R-squared value of 0.615
for the same satellite imagery in a lake in Kashmir, India [86] (EC levels range from 0.01 to
0.3 mS/cm over one month).

Waterbodies with EC in the medium range of 40 to 60 mS/cm exhibit a strong correla-
tion with specific satellite imagery. A strong correlation was identified between EC and
Landsat-8 OLI in a lake in Egypt [114] over the course of one month, with in situ values
varying from 42.86 to 52.55 mS/cm and coefficient of correlation R2 = 0.87.

The literature summarized in Table S12 provides information on the most commonly
used sensors for assessing EC from satellite imagery. The Landsat-8 OLI sensor is frequently
used and has been found to be the most effective sensor for retrieving EC, with an average
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R2 value of 0.73 based on three 1-month studies [86,88,114]. These studies were conducted
on very large (>100 km2) and shallow waterbodies (3–15 m). The most effective method for
extracting EC is regression, which has an R2 value of 0.87 [114].

5. Sensors for Assessing Water Quality Parameters

The complementary use of traditional in situ monitoring and remote sensing data/products
maximizes strengths and minimizes existing weaknesses in lake monitoring. Satellite and
airborne (aircraft and unmanned aerial vehicle (UAV)) remote sensing methods are im-
portant for evaluating the quality of inland waterbodies [14]. To monitor water quality
over time, it is necessary to calibrate and validate satellite and airborne data using in
situ measurements. Different types of sensors on UAVs, aircrafts, and satellites (Table 2)
can analyse waterbody radiation at different wavelengths and scales. Multispectral and
high-resolution remote sensing devices record reflected or emitted radiation in a few spec-
tral bands that cover a considerable section of the electromagnetic spectrum for inland
water quality monitoring [115–118]. Hyperspectral sensors measure continuously across
the electromagnetic spectrum in up to 200 narrow spectral bands [119]. Due to their high
spatial and spectral resolutions and simultaneous collection of narrower and contiguous
bands, hyperspectral sensors can measure and monitor many water quality parameters in
lakes [36,101,120]. Spaceborne sensors with visible, infrared, and microwave wavelengths
can also monitor water quality. UAVs integrated with various sensors are practical and
efficient for water management and can accurately recover water quality parameters due
to its higher spatial and spectral resolution for smaller waterbodies. Data fusion from
multiple satellite sensors can provide higher spatial, temporal, and spectral resolution for
water quality monitoring [121]. Atmospheric correction and addressing adjacency effects
are important for post-processing remote sensing data. Atmospheric correction reduces
atmospheric radiation error and improves the evaluation of water quality parameters [8].
UAVs with high-resolution sensors can measure water quality without atmospheric im-
pacts [122]. Factors such as white caps, sun glare, wave motion, and vegetation density
can affect remote sensing imagery processing [46]. Reflection and refraction can be limited
by collecting data during calm conditions and using a nadir sensor setup [123]. Bathy-
metric data enhances water column correction by providing information on the depth
of waterbodies.

The spatial, temporal, and spectral resolution limitations of numerous contemporary
satellite and airborne sensors can restrict the use of remotely sensed data for evaluating
water quality. Satellite sensors are preferable for large and very large waterbodies, while
airborne and UAV sensors are effective in collecting frequent and wide-ranging data
for small and medium-sized waterbodies [124]. Nonsatellite remote sensing data is less
affected by atmospheric conditions. The cost of hyperspectral or airborne data is one of the
primary limitations of using these remote sensing methods for assessing water quality. UAV
remote sensing data collection is challenging due to limitations in flight duration, weather
conditions, and the data requirements for creating high-quality orthomosaic maps [124].
Remote sensing technologies, such as satellite and airborne sensors, are useful for collecting
historical lake ecological indicator data in unstudied lakes without monitoring networks
or data. The project budget, spatial and spectral resolution, and geographic coverage
area determine the remote sensing platform. Table 2 includes regularly used satellite and
airborne sensors in aquatic environments.

Table 2. Overview of satellite and airborne sensors commonly used in aquatic environments.

Satellite Sensor Full Name of the Sensor Platform Sensor Type Agency Operational
Years Reference

AISA
Airborne Imaging
Spectrometer for

Applications
Airborne Hyperspectral Specim - [125]
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Table 2. Cont.

Satellite Sensor Full Name of the Sensor Platform Sensor Type Agency Operational
Years Reference

CASI Compact Airborne
Spectrographic Imager Airborne Hyperspectral Itres Research - [126]

Daedalus ATM Airborne Thematic
Mapper Airborne Multispectral Daedalus

Enterprises - [127]

HyMap - Airborne Hyperspectral NASA - [128]

HyperOCR Ocean Colour
Radiometer Airborne Hyperspectral Sea-Bird - [129]

MIVIS
Multispectral Infrared
and Visible Imaging

Spectrometer
Airborne Hyperspectral

Italian National
Research
Council

- [130]

Envisat MERIS Medium Resolution
Imaging Spectrometer Satellite Hyperspectral ESA 2002–2012 [131]

EO-1 Hyperion - Satellite Hyperspectral NASA 2000–2017 [132]

Ikonos OSA Optical Sensor Assembly Satellite Multispectral GeoEye 1999–2015 [133]

ISS HICO Hyperspectral Imager for
the Coastal Ocean Satellite Hyperspectral NASA 2009–2014

Landsat-5 MSS Multi-Spectral Scanner Satellite Multispectral NASA 1972–2011 [134]

Landsat-5 TM Thematic Mapper Satellite Multispectral NASA 1982–2011 [134]

Landsat-7
ETM+

Enhanced Thematic
Mapper Plus Satellite Multispectral NASA 1999–present [135]

Landsat-8 OLI Operational Land Imager Satellite Multispectral NASA 2013–present [136]

Landsat-8 TIRS Thermal Infra-Red
Sensor Satellite Multispectral NASA 2013–present [136]

NOAA AVHRR
Advanced Very

High-Resolution
Radiometer

Satellite Radiometer NOAA 1998–present [137]

PlanetScope - Satellite Multispectral Planet 2014–present [138]

PROBA-CHRIS
Compact High

Resolution Imaging
Spectrometer

Satellite Hyperspectral UKSA 2002–present [139]

Sentinel-2 MSI Multispectral Instrument Satellite Multispectral ESA 2015–present [140]

Sentinel-3 OLCI Ocean and Land Colour
Instrument Satellite Multispectral ESA 2016–present [141]

Terra ASTER
Advanced Spaceborne
Thermal Emission and
Reflection Radiometer

Satellite Multispectral NASA 2000–present [142]

Terra MODIS
Moderate Resolution

Imaging
Spectroradiometer

Satellite Multispectral NASA 2000–present [143]

WorldView-2 - Satellite Multispectral DigitalGlobe 2010–present [144]

6. Discussion and Recommendations

This paper discusses the use of remote sensing methods for monitoring water quality
in lakes. The paper focuses on three main areas: bibliometric analysis of published literature,
methods for retrieving water quality using remote sensing, and exploring optically active
water quality parameters that may be assessed using remote sensing.
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The literature reviewed in this study provides information on the most commonly
used sensors and methods for assessing various water quality parameters from satellite and
airborne imagery. The Landsat-5 TM sensor is frequently utilized and has a consistently
significant value of R2 for all parameters, regardless of the waterbody size and depth.
Different sensors and methods have achieved the best results for different parameters,
with some sensors consistently performing well across multiple parameters. For small
waterbodies, the most effective satellite sensor for chl-α, turbidity, and SDD retrieval is
Landsat-5 TM. For chl-α retrieval from small and medium-sized waterbodies, the most
effective airborne sensors are CASI and HyMap, whereas the most effective satellite sensor
for recovering chl-α and SDD for medium waterbodies is MERIS. For large waterbodies,
the most effective satellite sensor for assessing chl-α and SDD is the Ikonos OSA, while
the Landsat-5 TM is the most effective sensor for retrieving turbidity and SDD. The most
effective satellite sensors for chl-α retrieval from very large waterbodies are hyperspec-
tral MERIS and multispectral Sentinel-3 OLCI. The most effective sensors for turbidity
and SDD retrieval from very large waterbodies include multispectral Landsat-5 TM and
Landsat-7 ETM+, and hyperspectral PROBA-CHRIS. For very large waterbodies, the most
effective sensor for retrieving WT is MODIS, for salinity is Sentinel-2 MSI, and for EC is
Landsat-8 OLI.

The retrieval of water quality parameters using remote sensing can be achieved
through various methods. One commonly used method is the analytical method, also
known as the physical method, which is characterized by its theoretical analyses of spectral
data. Statistical analyses are commonly used in empirical and semi-empirical methods,
which are preferred due to their complexity. On the other hand, ML methods, which are
empirical in nature, are known for their computational complexity and ability to manage
nonlinear relationships. NNs are essential components of ML and have gained significant
importance in solving different tasks in supervised ML [145]. The most successful methods
for retrieving chl-α and turbidity from satellite and airborne imagery are the empirical and
NN methods, with a high coefficient of correlation (R2) value of 0.98. The most effective
method for extracting salinity from satellite and airborne images is the NN method with
a high correlation coefficient (R2 = 0.94). Regression is the most effective algorithm for
retrieving SDD and EC, while the empirical method is the most suitable for retrieving WT.

Satellite data is acknowledged as a useful tool for monitoring water quality parameters
in lakes. Unlike in situ measurements, satellite imagery gather water quality data simulta-
neously using a grid-based method. The concept of using remote sensing technology for
water quality monitoring is based on the different spectral characteristics of pure water
compared to contaminated or saturated water. The properties of individual water quality
parameters are analysed in relation to their interaction with the spectrum to identify bands.
These bands are combined to obtain the parameter’s value and its distribution over the
lake [14].

However, there are limitations to remote sensing methods, including spatial, tempo-
ral, and spectral resolutions of satellite systems, the optical complexity of inland waters,
atmospheric and cloud interference, the need for proper calibration and validation with
in situ measurements [14], errors in creating standard satellite products like atmospheric
correction [146], and the cost of commercial satellite imagery or deploying aircrafts or UAVs
for study purposes. Various satellite systems, such as Landsat, Sentinel-2, and Terra, are
used in the literature to estimate water quality metrics, but for smaller lakes, the selection
of available satellite sensors is limited. Satellites with spatial resolution like Terra MODIS
(260 m, 500 m, and 1000 m), Envisat MERIS (260 m × 300 m), or OrbView-2 SeaWiFS
(260 m, 500 m, and 1000 m) are not recommended due to their tendency to overgeneralize
the state of the parameters. This especially applies to parts of smaller lakes with stronger
external influences (the influence of ballast water or nutrients from agricultural land). For
the purpose of determining amplitude values on an annual level, bands with a higher
spatial resolution can be used; however, if smaller changes in parameters are to be observed
in shorter periods of time (day, week, month), it is necessary to provide bands with a better
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spatial resolution. UAVs with integrated sensors are effective for water management and
can accurately measure water quality parameters in smaller waterbodies. Their higher
spatial and spectral resolution makes them practical and efficient for this purpose. The se-
lection of satellite and aerial images should depend on the dynamics of parameter changes
within the lake and the lake’s size, rather than just the availability of images.

To conduct effective remote research, it is important to familiarize oneself with the
lake and its environment, understand the seasonal cycle of submerged macrophytes and
phytoplankton, identify external sources of water flow into the lake, consider meteoro-
logical conditions during specific times of the year (including water temperature, water
levels, dry spells, and high-water periods following heavy rainfall prior to measurement),
and understand agricultural practices around the lake. The correlation between satellite
and airborne imagery and in situ values varies depending on the size and depth of the
waterbodies. The research suggests that small waterbodies have the highest correlation for
retrieving turbidity, medium waterbodies for chl-α and WT, large waterbodies for SDD, and
very large waterbodies for salinity and EC. Deep waterbodies have the highest correlation
for retrieving WT, turbidity, and SDD, while very shallow waterbodies have the highest
correlation for assessing chl-α, and shallow waterbodies have the highest correlation for
retrieving salinity and EC. Extensive temporal statistical analysis of in situ data (specific
water quality parameters) along with meteorological and hydrological data (water level,
lake depth, and dry and rainy periods) is recommended to identify correlations and miti-
gate negative effects. Modelling based on specific conditions can provide insight into the
movement of parameter concentrations on the lake’s surface. The development of ML
and NN methods aligns well with this scenario, as it leverages the progress in computer
technology and storage capacity to enhance productivity and retain data for future studies.
In this way, a system is established that acquires and applies all acquired “knowledge”
(representing stored results) for subsequent analyses.

The range of a specific parameter measured in situ inside the lake throughout the
study duration and the length of the study (year, season, month, week, and day) are crucial
pieces of information for estimating water quality parameters based on remote sensing.
The time period with the highest correlation between satellite and airborne imagery and in
situ values varies for different water quality parameters. The highest correlation between
satellite and airborne imagery and in situ values for retrieving turbidity, SDD, and salinity
is found within a time frame of 2–3 months. For EC, the highest correlation is achieved
in studies lasting one month, while for chl-α and WT, it takes studies lasting more than
six months up to several years to obtain the highest correlation. When water quality
measurements are determined annually (over twelve months), all influences on the lake
(both internal and external) are averaged. The parameter values are observed throughout
the year, but variations due to varied weather conditions (seasons and meteorological data)
and other external parameters are not included. The purpose of a forecasting model is to
predict extreme events that significantly impact the lake, such as heavy rainfall during
intense agricultural activity or the intrusion of seawater during an extremely dry period,
in order to minimize their impact on the lake’s water quality. Following a thorough
examination of how external influences impact internal parameters and the dispersion of
water quality parameters in the lake, it is essential to choose suitable satellite or airborne
data to achieve optimal outcomes. This pertains to the spatial resolution of imagery to
represent the frequency of changes in water quality parameter values, the spectral bands
of sensors for calculating optically active water quality parameters, and the temporal
resolution of the system. Ensuring that in situ measurements are taken on the day of the
satellite’s overpassing (or in a window of a few days prior to or after the overpass) allows
for conducting correlation analysis between the observed parameter values from in situ
measurements and calculated parameter values from satellite data.

The synergy of computer resources, remote sensing methods and data, GIS multicrite-
ria analysis, decision support systems, and ML methods enable a high-quality assessment
of water quality parameters. The authors’ knowledge collected in this review and previous
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general and specific knowledge about the considered problem and the field of remote
sensing resulted in the creation of a framework for monitoring water quality parameters in
the lake, supported by remote sensing methods (Figure 4).
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The proposed working framework (Figure 4) includes three main components: (1) con-
ducting a literature review to gain theoretical knowledge, (2) practical work involving data
collection and analysis, and (3) analysing the results for decision-making. The theoretical
part of the workflow includes the following:

(1) Conducting a thorough time analysis of the waterbody and its surroundings (for
a period of 10 to 15 years, utilizing meteorological and in situ data) under various
conditions (dry period, rainfall period, etc.).

(2) Determining and evaluating all internal and external factors that may influence
water quality.

(3) Referring to relevant scientific research.
(4) Determining which water quality parameters will be included in the study.
(5) Determining the study period based on historical analysis by recognizing various

environmental scenarios such as seasons, dry periods, and heavy rainfall. If a lake is
susceptible to ice or snow, the study period should focus on the coldest months when
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the lake is affected by these conditions. Similarly, if a brackish lake experiences dry
periods leading to increased salinity due to evaporation and low water influx, the
study period should include this phenomenon.

(6) Analysing temporal statistical data and water quality parameter distribution through-
out the waterbody, taking into account the hydrological model of the lake’s bathymetry
and important tributaries, to determine the sampling grid and the quantity and loca-
tions of in situ measurement locations.

(7) Choosing the appropriate satellite or airborne sensor(s) for data collection based on
spectral characteristics, number of bands, spatial resolution, time resolution (if the
system is a satellite), lake size and depth, and chosen water quality parameters.

The operational features of the workflow can be determined by considering certain
factors, as follows:

(1) In situ measurement collection is based on a defined study period and sampling grid;
data collection should occur on the day of the chosen sensor’s overpassing or in a
small window frame (±4 days) around that day.

(2) In situ data should be analysed by removing outliers and normalizing the data. This is
important in order to make the measured values for different parameters comparable,
even if they are measured in different units (e.g., chl-α is usually measured in µg/L,
while WT is measured in ◦C).

(3) A total of 30% of in situ measurements shall be utilized for validation purposes, while
the remaining 70% shall be utilized to calibrate the calculated values of water quality
parameters via the spectral band combinations of the chosen sensor(s).

(4) To ensure accurate remote sensing data, it is important to collect the data using a
suitable satellite, aircraft, or UAV platform.

(5) All imagery should be resampled to the same spatial resolution and undergo necessary
corrections such as geometric, radiometric, and atmospheric correction. Any obstruc-
tions like clouds, haze, or other obstacles covering water pixels on an image should be
masked out. Satellite measurements use a grid-based method to gather water quality
data simultaneously, so the reflectance values of different water sampling locations
are extracted to analyse the spectral characteristics.

(6) Remote sensing technology is used to monitor water quality by analysing the interac-
tion of water quality parameters with the spectrum and identifying specific bands.
These bands are combined as single bands, band ratios, and band combinations to
obtain the parameter’s value and its distribution over the lake.

(7) A correlation analysis is performed between measured in situ data and band com-
binations from selected sensors. This analysis is conducted on a training dataset in
order to determine the best method (e.g., analytical, empirical, or ML), which is the
one with the highest correlation coefficient.

(8) The developed models are validated using 30% of in situ measurements as a
testing dataset.

The final part of the workflow involves analysing the results for decision-making,
as follows:

(1) Conducting spatiotemporal distribution analysis and generating accurate spatial
distribution maps based on validation results.

(2) Optimizing sampling locations by using spatiotemporal analysis and GIS multicriteria
analysis. This involves considering various influencing factors such as key water
quality parameters, meteorological data, and environmental influences (e.g., distance
to the tributaries and land cover-land use data).

(3) Creating a database of outputs for different lake environment scenarios, which can be
used by ML methods to simulate and forecast lake behaviour in similar scenarios.

(4) Recommendations to the authorities in charge of managing the lake on how to im-
prove lake resource management based on data collection, analysis, and modelling.
Developed models can be used by local authorities to obtain surface water quality pa-
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rameters of the lake during periods with similar weather conditions as the ones used
for model generation. This approach offers reduced cost and time while maintaining
reasonable accuracy.

7. Conclusions

Conducting effective remote research on lakes requires a comprehensive understand-
ing of the lake and its environment, including factors such as submerged macrophytes,
phytoplankton, hydrology, bathymetry, meteorological conditions, and agricultural prac-
tices. Analysing year-round fluctuations from historical water quality data and categorizing
data based on common criteria can help identify significant seasonal variations. The use
of satellite and airborne imagery, along with in situ data and statistical analysis, can help
identify correlations and mitigate negative effects. Empirical methods are commonly used
for monitoring and analysing water quality due to the complexity of analytical methods,
but ML and NN methods show promise in simplifying and analysing large datasets with
high accuracy. Modelling based on specific conditions can provide valuable insights into
parameter concentrations on the lake’s surface. By leveraging advancements in computer
technology and storage capacity, a system can be established to acquire and apply knowl-
edge for future analyses. Overall, remote research methods offer valuable insights into lake
ecosystems and water quality.

The proposed workflow aims to provide guidance for effectively monitoring and
managing the quality of lakes. It combines theoretical knowledge about the study area,
practical work regrading data collection, and data analysis to provide a comprehensive
approach to understanding and improving water quality. Furthermore, the framework
includes conducting thorough analysis, choosing appropriate sensors, and incorporating re-
mote sensing technology to generate accurate water quality models and spatial distribution
maps. The output generated by the workflow has multiple benefits, including scientific
purposes, decision-making, and resource management. The proposed framework aims to
enhance global water quality monitoring by integrating different data sources and methods
to understand spatiotemporal water quality trends.

The review highlights the importance of integrating remote sensing methods using
in situ measurements and computer modelling to improve the understanding of water
quality. Future research should focus on (1) the development of advanced technologies,
such as advanced algorithms, for in-depth statistical analyses of data (meteorological and
measured in situ water quality parameters); (2) selection of a sampling grid of strategic in
situ measurements (according to the distribution and concentration of a particular water
quality parameter) and time period, (3) integration of very high resolution spectral data
(the selection of spectral bands and increased use of hyperspectral sensors for estimating
water quality parameters), and (4) integration of ML and NN algorithms for effective water
quality problem solving (use of modern computer technologies in modelling different
scenarios of impact on lake water). These technologies can enhance the ability to detect and
respond promptly to water quality issues, optimize sampling locations and time frames,
estimate optically inactive parameters indirectly, and facilitate real-time monitoring and
timely response to potential risks or anomalies. Additionally, ML and NN algorithms can
provide valuable insights and predictive models for future water resource management,
especially in dynamic and ever-changing water systems.
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