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Abstract: Timely detection and response to Intraoperative Hypotension (IOH) during surgery is
crucial to avoid severe postoperative complications. Although several methods have been proposed
to predict IOH using machine learning, their performance still has space for improvement. In this
paper, we propose a ResNet-BiLSTM model based on multitask training and attention mechanism for
IOH prediction. We trained and tested our proposed model using bio-signal waveforms obtained
from patient monitoring of non-cardiac surgery. We selected three models (WaveNet, CNN, and TCN)
that process time-series data for comparison. The experimental results demonstrate that our proposed
model has optimal MSE (43.83) and accuracy (0.9224) compared to other models, including WaveNet
(51.52, 0.9087), CNN (318.52, 0.5861), and TCN (62.31, 0.9045), which suggests that our proposed
model has better regression and classification performance. We conducted ablation experiments
on the multitask and attention mechanisms, and the experimental results demonstrated that the
multitask and attention mechanisms improved MSE and accuracy. The results demonstrate the
effectiveness and superiority of our proposed model in predicting IOH.

Keywords: intraoperative hypotension; deep learning; multitask training; bio-signal prediction

1. Introduction

Intraoperative hypotension (IOH) is a common side effect during general anesthesia
surgery. The more commonly used definition of this phenomenon is a mean arterial pressure
of less than 65 mmHg during surgery. IOH is one of the risk factors for many postoperative
complications, including renal failure [1-3], myocardial injury [4,5], organ dysfunction [2],
stroke [6,7], and, in severe cases, even shock [8] and death [9-11]. Compared with other
risk factors leading to these postoperative complications, IOH is relatively controllable
and modifiable. Therefore, timely detection and treatment of IOH during surgery can help
reduce the probability of these postoperative complications. Clinically, hypotension is
usually treated with vasoactive drugs and fluid resuscitation.

During surgery, fully accurate prediction cannot be achieved even through intense
manual monitoring, and it adds a considerable surgical burden to the medical staff. Machine
learning and artificial intelligence techniques, on the other hand, are ideally suited to play
a supporting role in the field of biomedicine [12-15], and can thus be considered for IOH
prediction work. There have been a number of studies on the use of machine learning for
IOH prediction, as exemplified in Table 1.

A prevalent theme in both biomedical research, such as IOH prediction, and broader
time-series forecasting tasks is the intricate coupling of systematic feature engineering and
kernel function optimizations to bolster model efficacy. Within the realm of machine learn-
ing, several models, including Random Forests, Gaussian Processes (GPs), and Relevance
Vector Machines (RVMs), have shown their versatility in handling various tasks [16-19].
For instance, Lee et al. built a hypotension prediction model heavily reliant on feature
engineering using random forests [20]. Diverging from the bio-signal prediction but re-
maining within the ambit of time-series analysis, Guan et al. proposed a Gaussian process
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model hinging on a fusion of both feature and kernel optimizations to improve long-term
load forecasting [21]. Similarly, Qiu et al. delved into a multi-kernel relevance vector
machine, meticulously extracting aging features for predicting the lifespan of lithium-ion
batteries [22]. Although these methodologies have yielded commendable results, they
rely on meticulous manual feature extraction and kernel optimization, which potentially
stymies their broader applicability.

However, the trend in recent years leans towards more streamlined, end-to-end so-
lutions that negate the need for manual feature crafting. Choe et al. opted for a fusion of
Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), predicting
hypotension over short intervals without the traditional feature extraction methods [23].
There is also a commercially available model which uses arterial pressure waveforms to
calculate the hypotension prediction index (HPI) [24].

As mentioned above, most algorithms in the past have been limited to relying on
a single data source, such as arterial pressure waveforms. However, in addition to the
direct observation of arterial pressure to obtain a blood pressure value, blood pressure is
also closely related to many physiological characteristics [25], including electrocardiogram
(ECG), electroencephalogram (EEG), photoplethysmography (PPG), and carbon dioxide
(CO,). Recently, Jo et al. predicted IOH using arterial blood pressure (ABP) and waveforms
of ECG and EEG as well as a ResNet model [26]. Lee et al. created a multi-channel deep
learning model based on 1D-CNN which predicts IOH using ABP, ECG, PPG, and CO; [27].

Table 1. Representative studies on IOH prediction using machine learning in recent years.

Author

Model Data Source Innovation Year

Hatib et al. [24]
Lee et al. [27]
Choe et al. [23]

Jo et al. [26]
Lee et al. [20]

Logistic Regression IBP

Macbme Legrnmg 2018
Fine-Tuning

CNN IBP, ECG, PPG, CO, Multi-Channel Data Source 2021

Weighted-Average of

RNN and CNN ABP . 2021
Deep-Learning Models

ResNet ABP, ECG, EEG Multi-Channel Data Source 2022

Random Forests IBP Feature Extraction Model 2022

The work of Lee et al. inspires us to use multiple data sources to improve the predic-
tion of our models, but there are some areas of their work that need to be improved and
optimized. First, their selection of training data is overly stringent. In their data preprocess-
ing method, only data with low blood pressure lasting for 60 s will be selected as an IOH
sample, and only data with normal blood pressure lasting for 20 min will be selected as a
normal sample. However, in real-world application scenarios, the patient’s ABP value will
not be so ideal, and there is no guarantee that the data received by the model will meet such
stringent requirements. In a more realistic scenario, the model would perform calculations
and output predictions at short intervals, such as 10 s or so. We tried to construct a more
realistic dataset, and when applying the 1D-CNN model constructed to this new dataset,
the model performed much worse than the original. Second, although they considered
multiple data sources, they did not further address studies that use multitask learning to
predict IOH. In multitask learning, the same neural network has multiple different outputs,
each corresponding to a different task, and it is able to mine features that correlate between
different tasks to improve model performance. Our work unfolds based on these ideas.

In this paper, we adopt a more rationalized data preprocessing approach and propose
a multichannel deep learning model for predicting IOH by multitask training and receiving
multiple data sources, including ABP, ECG, PPG, and CO;. The model we use is ResNet-
BiLSTM based on multitask learning and attention mechanism. The model directly outputs
the predicted value of mean arterial pressure (MAP), and transforms the output into a
classification task result by determining whether it is less than 65 mmHg. We chose to
predict the blood pressure after 2 min because most vasoactive drugs take effect within 30 s
of administration [28], and a prediction 2 min in advance is sufficiently long to allow the
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physician to take countermeasures. In comparison with three machine learning models
dealing with time-series data, our model has sufficiently superior performance in regression
as well as classification. Thus, our study provides an effective new strategy for predicting
IOH and even for processing the physiologic signals of time-series.

The design of our study is illustrated in Figure 1. The rest of this paper is organized
as follows: Section 2 describes the data and preprocessing methods we used as well as
the structure of our multitask attention model; Section 3 reports the experimental results,
including the comparison and ablation experiments; and Section 4 discusses our model
in more depth, including its advantages, implications, etc. The conclusions are given in
Section 5.
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VitalDB Dataset —» Recorded Raw ECG Signals ‘ Data Screening ‘
Recorded Raw PPG Signals Data Augmentation
Recorded Raw CO2 Signals
4-Channel
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Figure 1. Our workflow.

2. Materials and Methods
2.1. Dataset

The dataset used in this study is the open database VitalDB [29], which is special-
ized for machine learning studies related to vital signs. The dataset was collected by
Seoul National University Hospital and contains data on multiple vital sign parameters of
6388 patients who underwent non-cardiac surgery, covering 196 intraoperative monitoring
parameters, 73 perioperative clinical parameters, and 34 time-series laboratory outcome
parameters, totaling 486,451 waveform traces. Data were from from 4 signals were used in
this study, namely, ABP, ECG, PPG, and CO,.

2.2. Signal Preprocessing

The raw waveform data was sampled at 100 Hz, and the duration of each sample was
set to 30 s. Therefore, there were a total of 3000 data point moments per sample.

To delineate individual cardiac cycles, a peak detection algorithm was applied to the
raw waveform. The peak detection parameters, such as height, prominence, and distance,
were specifically tailored for each signal type, ensuring accurate rhythm segmentation.
Several criteria were established to ensure data quality:
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e  Cardiac cycles that were detected as too slow, too fast, or undetectable were flagged as
invalid.

e Data segments containing abnormal values in any of the four channels (e.g., ABP >
160 mmHg, ABP < 20 mmHg, ECG < —1 mV, ECG > 1 mV) were also excluded.

e  Only segments maintaining a consistent rhythm for at least 10 min were considered
valid.

The label of the sample was obtained by calculating the average ABP of 5 cardiac cycles
after 2 min of input data. Eventually, data from 1378 patients were obtained. The total
number of samples initially obtained was 1,215,362, of which 122,643 were hypotensive
samples.

In the dataset, hypotension samples constituted only about 10% of the total. Such an
imbalance could potentially influence the training outcomes. To address this, we utilized
oversampling as our chosen data augmentation strategy. Specifically, we replicated each
hypotension sample eight times, thereby increasing the number of hypotension samples to
a total of 1,103,787.

2.3. Evaluation Metrics

In this paper, we first analyzed the predicted MAP values from the model output
using regression metrics. Next, we classified the output based on whether the predicted
MAP value is less than 65 mmHg, and then analyzed it using classification metrics. As
shown in Table 2, the regression metrics we used include Mean Squared Error (MSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of
determination (R2). The classification metrics we used include Accuracy (ACC), F1 score
(F1), and Precision (PRE).

Table 2. Regression and classification metrics used in our work.

Metrics Formula Description

MSE (Regression) % f (9; — yi)Z Mean Squared Error

MAE (Regression) %l:fl: 19: — vil Mean Absolute Error
MAPE (Regression) %01":1'% ‘%‘ Mean Absolute Percentage Error

R2 (Regression) 1— W Coefficient of Determination

ACC (Classification) % Accuracy

F1 (Classification) % F1 Score
PRE(Classification) TpTipr Precision

In Table 2, n is the number of samples, §; is the predicted MAP, y; is the ground truth
value, TP is the number of true positive samples, TN is the number of true negative samples,
FP is the number of false positive samples, and FN is the number of false negative samples.

2.4. Deep Learning Model

The overall structure of our proposed Multitask ResNet-BiLSTM-Attention for IOH
prediction consists of ResNet structures, a BILSTM, and an Attention mechanism. Each of
these modules is described below.

2.4.1. ResNet

ResNet is a deep neural network structure, meaning residual network, and the main
idea is to build the network through residual connections to solve the problem of gradient
vanishing and gradient explosion [30]. In traditional CNNs, simply stacking the network
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depth brings about the gradient vanishing, gradient explosion, and degradation problems.
The degradation problem refers to the fact that as the network depth increases, the accuracy
reaches saturation, and continuing to increase the network depth leads to a rapid decrease
in accuracy. ResNet avoids the problem of gradient vanishing in deeper networks by
introducing residual connectivity, which preserves the information from the previous layer.
In residual learning, the function to be fitted is changed from H(x) to F(x) = H(x) — X,
where x is called the constant transform and F(x) is called the residual function, making the
network easier to optimize.

A residual block consists of a convolutional layer, a batch normalization layer, an
activation function (ReLU), and residual feedback. Figure 2 shows the structure of the
residual block we have constructed.
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Figure 2. The structure of a residual block which we constructed.

Output

2.4.2. BiLSTM

BiLSTM [31] consists of two unidirectional and opposite LSTMs that process sequences
from two directions. The outputs of the two LSTMs will be spliced after processing is
complete. In forward LSTM, the input sequences are processed in left to right order, while
in reverse LSTM, they are processed in right to left order. Forward and reverse LSTM
learn the forward and backward feature representations of the sequence data in the time
dimension, respectively. Compared to unidirectional LSTM, BiLSTM takes into account
both past and future information, and thus understands the features of sequence data more
comprehensively.

2.4.3. Attention

The simplified version of the Attention module we built is shown in Figure 3. The
input dimension is B X C x L, where B represents the batch size, C represents the number
of channels, and L represents the length of data. After the fully connected layer as well
as softmax outputs the data with dimension B x C x 1, which represents the attention
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weights of each time step, the input x is weighted and summed using the attention weights,
and the final output dimension is B x L. Calculating the attention weights for weighting
makes the important time steps receive more weights. The summation aggregates the
information from different time steps and assigns more attention to the important time
steps by weighting, resulting in a more meaningful and focused output.

Input

—

Linear Layer

Out_features=1

l

softmax

l Weights

> sum

l Output

Figure 3. The structure of an attention layer we constructed.

2.4.4. Multitask Learning

Multitask Learning [32] is a research direction in machine learning whose main goal
is to improve the learning of each task by training multiple related tasks simultaneously.
Compared with traditional single-task learning methods, Multitask Learning can more
effectively exploit the correlation between multiple tasks, share representations and knowl-
edge, and thus improve generalization ability and learning speed. It is also better able to
handle data-scarcity situations because by sharing information, multitask models can draw
on data from other tasks to improve task-specific performance.

A typical framework for multitask learning is a neural network, in which different
tasks share the underlying network structure and have their own specific task heads. This
structure allows the underlying feature representation to be shared between tasks, while
the respective task heads are optimized specifically for each task.

2.4.5. Our Proposed Model

Our proposed model consists of modules mentioned above and its architecture is
shown in Figure 4. It includes a series of residual blocks, a BILSTM, an Attention layer,
and four fully connected layers to obtain the final outputs. The dimension of the input
datais B x 4 x 3000, where B represents batch size, 4 represents the number of features,
and 3000 represents the number of time steps. After a series of residual blocks as well as
a pooling layer, the dimension of the data becomes B x 128 x 64. By stacking multiple
residual blocks, we are able to construct deep neural networks and effectively solve the
problems of gradient vanishing and gradient exploding, thus providing more powerful
modeling capabilities for our task. Then, through the BiLSTM as well as the Attention
layer, the information of each time step of the time-series is learned and integrated, and the
outputs with dimensions of B x 128 x 512 and B x 512 are obtained, respectively. Finally,
the data are passed into four fully connected layers, each of which is used to predict the
value of a single physiological feature, respectively, and has an output dimension of B x 1.
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Figure 4. The structure of our proposed model.

Our choice of this hybrid architecture stems from the inherent challenges of IOH
prediction. The fusion of ResNet and BiLSTM ensures the capture of intricate features and
temporal dependencies, respectively, while the Attention mechanism allocates importance
to the most pivotal data segments. Furthermore, the multitask learning approach augments
the model’s generalization capabilities and enriches the extracted features, thus solidifying
the architecture’s suitability for the intricate task of IOH prediction.

2.5. Machine Learning Models for Comparison

Three machine learning models used to analyze time-series data are selected for
comparison in our study, including CNN, WaveNet, and TCN, to validate the performance
of our proposed model.

2.5.1. CNN

CNN [33], namely, Convolutional Neural Network, is a deep learning model special-
ized for processing grid-like data, such as images and audio. CNN contains a convolutional
layer, a pooling layer, and, usually, a fully connected layer. It achieves efficient processing
and feature extraction of data, such as images, by capturing local features in the input data
through convolutional operations and reducing the data dimensionality through pooling
layers. In this paper, we directly choose the 1D-CNN model built by Lee et al. in their
paper for comparison.

2.5.2. WaveNet

WaveNet [34] is designed to generate speech and audio data, and its main features are
the efficient generation process and the high quality of the generated samples. WaveNet
uses a structure of stacked convolutional layers which predicts the output at the current
moment by considering inputs from multiple past moments. In this paper, we use a 10-layer
WaveNet model.
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2.5.3. TCN

Temporal Convolutional Network (TCN) [35] is a model proposed in 2016 to solve time
series forecasting. It is based on the CNN model with two improvements: the use of causal
convolution to apply to the sequence model and the application of dilated convolution
and residual blocks to memorize the history to achieve the effect of grasping the long
time-dependent information.

3. Results
3.1. Experimental Settings
3.1.1. Dataset Split

In our experiments, we randomly disrupted the data at the patient level, ensuring
patient-wise consistency, and we subsequently divided the dataset according to the ratio of
training set, validation set, and test set as 7:1:2. The data distribution before and after data
augmentation is shown in Figure 5, where 50.25% of the data are IOH samples after data
augmentation.

a b

176,000

40,000

150,000
Non-IOH: IOH: Non-IOH:
89.91% 50.25% 49.75%

10H:

Counts

30,000
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125,000
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c

3
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W N
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MAP Values (mmHg)

Figure 5. The distribution of data before and after data augmentation, where samples with
MAP < 65 mmHg are labeled as IOH samples. (a) The distribution of data before data augmentation,
where 10.09% of the data are IOH samples. (b) The distribution of data after data augmentation,
which is used in our study, where 50.25% of the data are IOH samples.

Each sample of the dataset contains time-series of four physiological indicators with
3000 data points each, corresponding to 30 s, and the dimensionality of the input data
is 4 x 3000. The label of each sample of the dataset contains predictions for the four
physiological indicators with the dimensionality of 4 x 1.

3.1.2. Model Implementation and Training Details

Our proposed model and CNN, WaveNet, and TCN models were implemented using
PyTorch [36]. The choice of hyperparameters was empirically determined based on a series
of preliminary experiments and adjustments to optimize the model’s performance. The
Adam optimizer was adopted for its observed advantages in convergence rate and stability
during preliminary testing. A batch size of 128 achieved a balance between efficiency and
generalization. The learning rate of 0.0001 was selected for consistent convergence, and the
models were trained for 50 epochs.

3.1.3. Hardware Configuration

All computational tasks were executed on an NVIDIA Tesla V100 (32 G) GPU, sourced
from NVIDIA, Santa Clara, California, USA. To manage the expansive dataset and to
prevent I/O bottlenecks, a memory allocation of 384 GB was utilized.
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3.2. Experimental Results
3.2.1. Comparison Experiments

Table 3 shows the results of the comparison between our proposed model and the
three traditional models. In terms of regression performance, our model has the smallest
MSE, MAE, and MAPE values (MSE: 43.83, MAE: 4.46, MAPE: 0.0545), and the largest
R2 value (R2: 0.7731) compared to the conventional models (MSE > 51.52, MAE > 4.86,
MAPE > 0.0589, R2 < 0.7502), which indicates that our model predicts MAP values with
minor error and higher accuracy. In terms of classification performance, our model had the
largest ACC, F1, and PRE values (ACC: 0.9224, F1: 0.6985, PRE: 0.6117) compared to the
conventional models (ACC < 0.9087, F1 < 0.6625, PRE < 0.5355), which suggests that our
model has a better ability to differentiate between IOH and non-IOH samples.

Table 3. The regression and classification results of our proposed model and three conventional

models.
Metrics WaveNet CNN TCN Our Proposed Model
MSE 51.52 318.52 62.31 43.83
MAE 4.86 16.49 5.74 4.46
MAPE 0.0589 0.2010 0.0678 0.0545
R2 0.7502 —0.6732 0.6611 0.7731
ACC 0.9087 0.5861 0.9045 0.9224
F1 0.6625 0.3627 0.6129 0.6985
PRE 0.5355 0.2219 0.4678 0.6117

Figure 6 shows a scatter plot between a portion of the reference values and the
corresponding model predictions of MAP. Their Pearson correlation coefficient is 0.8541,
indicating a significant correlation between the predicted MAP and the reference values.

140
Pearson correlation
coefficient:
0.8541
a 120 A
I
£
E
(/)] -
3 100
=
(L]
>
& 80 - Ty 3
=
e 33
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©
:a 60 1 ‘ A
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40 60 80 100 120 140

Ground Truth MAP Values (mmHg)

Figure 6. The scatter plot between a portion of the reference values and the corresponding model
predictions of MAP. The red line represents the fitted curve in the best case, and the dots on the line
represent the ground truth MAP values and the predicted MAP values being equal.
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3.2.2. Ablation Experiments

In this study, two improvements were made based on the ResNet-BiLSTM model:
the model was trained using multitask method instead of single-task method, and the
attention mechanism was inserted into the output module to enhance the model’s ability to
focus on information at key time points. In order to verify the effectiveness of these two
improvements, we conducted ablation experiments on these two improvements separately,
producing a total of four sets of comparison results, as shown in Table 4.

Table 4. The regression and classification results in the ablation experiments.

. . ResNet-BiLSTM + ResNet-BiLSTM + ResNet-BiLSTM +
Metrics ResNet-BiLSTM Attention Multitask Multitask + Attention
MSE 50.67 48.27 45.56 43.83
MAE 491 4.76 4.74 4.46
MAPE 0.0604 0.0575 0.0579 0.0545
R2 0.7234 0.7599 0.7578 0.7731
ACC 0.9018 0.9178 0.9185 0.9224
F1 0.6014 0.6418 0.6484 0.6985
PRE 0.4820 0.5319 0.5457 0.6117

It can be seen from the result that without adding multitask and attention mechanism,
the MSE of the model is 50.67 and ACC is 0.9018. After adding one improvement, the MSE
and ACC of the model are both improved, and only multitask makes the MSE decrease by
5.11 and the ACC increase by 0.0167, whilst adding only attention makes the MSE decrease
by 2.40 and the ACC increase by 0.0160. It can be seen that multitask has a greater effect
on the model’s improvement. Finally, the MSE and the ACC of the model were improved
even more by adding both two improvements, with the MSE reduced by 6.84 and the ACC
increased by 0.0206.

4. Discussion

In the landscape of models available for IOH prediction, our proposed model stands
out with its unique hybrid architecture, multitask training, and attention mechanism.

Hybrid Architecture (ResNet-BiLSTM): The integration of ResNet and BiLSTM ad-
dresses specific challenges presented by the IOH prediction task. While ResNet offers the
ability to mitigate the vanishing gradient problem by its shortcut connections, BiILSTM
captures the forward and backward dependencies in time-series data. The fusion of these
architectures results in better representation and understanding of bio-signal waveforms.

Multitask Training: Our decision to adopt multitask training is rooted in its capability
to harness potential relationships between different yet related prediction tasks. Training
the model on multiple tasks simultaneously not only improves its generalization but also
facilitates extraction of a diverse array of features from the input data, enhancing the overall
prediction performance.

Attention Mechanism: IOH prediction necessitates a model that can discern the critical
segments in bio-signal waveforms. Our attention mechanism serves this purpose by
allocating more weight to the informative segments of the data, ensuring the model focuses
on the most pertinent parts for prediction.

Compared to the work of Lee et al., we constructed a hypotension dataset that is more
suitable for real application scenarios. Experiments demonstrate that the model constructed
by Lee et al. does not show better performance on our dataset, while the model we built is
more suitable for real application scenarios. The data from the aforementioned comparison
experiments show that with the addition of multitask and attention mechanisms, our model
is an effective predictor of IOH with better prediction of MAP values as well as the ability
to differentiate between IOH relative to conventional models. Furthermore, our model
function is not limited to predicting blood pressure signals. As our model can effectively
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extract relevant features from biological signal waveformes, it is suitable for the prediction
of more types of biological signals.

Integrating multitask training as well as attention mechanisms with time-series data,
especially in the medical domain, is a notable innovation. The data from the aforementioned
ablation experiments have shown the effectiveness of these two mechanisms, which provide
unprecedented accuracy and reliability for predicting IOH in surgery, bringing practical,
tangible value to the medical field.

We set the model as a regression task, but also obtained results for the classification
task based on binarization judgments of the model’s output. However, there is still no
standardized criteria for hypotension in clinical applications. Blood pressure varies from
individual to individual, and the ability of individual organs to tolerate hypotension also
varies [37]. Therefore, we believe that the results of the regression task are more valuable
for reference and practical application.

Our model still has some challenges and limitations. First, although the deep learning
model can provide highly accurate prediction results, it is difficult to provide an intuitive
understanding of the decision-making process. This decision analysis is extremely impor-
tant for the biomedical field, which determines the degree of acceptance of the prediction
results for the medical staff. Another challenge lies in the large differentiation among
different patients, where MAP data from different cases may vary or even contradict each
other. The model’s learning of one patient case will better predict the MAP of this patient,
but may not necessarily have the same accuracy to predict the MAP of other patients. How
to improve the generalization ability of the model when encountering different patient
cases is an issue that deserves further research.

5. Conclusions

In this paper, we propose the intraoperative hypotension prediction model based on
a multitask ResNet-BiLSTM-attention model. The model simultaneously receives four
physiologic time-series signals, ABP, ECG, PPG, and CO,, and outputs the prediction of the
values of these four physiologic indices after 2 min. We performed comparative experiments
between our proposed model and three conventional models used for time-series signal
analysis, which showed that our proposed model outperformed these conventional models
in regression and classification. We also conducted ablation experiments to verify the
effectiveness of the multitask and attention mechanisms in this work. The experimental
results demonstrate that our proposed model is an effective means for predicting IOH. The
versatility of our proposed solution does not confine it to IOH prediction alone; its design
potentially paves the way for forecasting a broader range of physiological signals in other
medical applications.
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