Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration
Abstract
:1. Introduction
2. Theories and Methods
2.1. Squared Constriction Factor-Based Particle Swarm Optimization (CPSO) Algorithm
2.2. Genetic Algorithm
- A population size of 50 chromosomes;
- The Roulette wheel method for selection of individual reproduction;
- The mean squared error (MSE) as fitness evaluation function;
- A one-point crossover operation with a probability of 0.8;
- Introduction of Gaussian noise (mimicking mutation process) with a probability of 0.05;
- Execution of GA for 50 generations (i.e., iterations) to identify optimal solution space.
2.3. Cost Function (Similarity Metric)
2.4. Principles of Frame Accumulation
2.5. Evaluation Metrics
3. Experimental Validation
3.1. Experimental Setup
3.2. Image Acquisition
Declaration
3.3. Image Processing
3.3.1. Image Pre-Processing
3.3.2. Multi-Frame Image Registration
- 1.
- The transformation process was initiated by applying initial input parameters (, ) to the moving image.
- 2.
- The MSE between the fixed image and the transformed moving image was computed using Equation (6), which quantified the dissimilarity between the two images.
- 3.
- The GA and CPSO techniques were integrated for optimal image registration. The GA was executed for a specified number of generations (gaMaxGen), wherein each individual’s fitness is evaluated using the objective function. Roulette wheel selection was employed for the selection operation, and the population was updated accordingly. The one-point crossover was implemented with a specified probability, facilitating gene exchange beyond a randomly chosen crossover point. Additionally, mutation introduced Gaussian noise with a certain probability, promoting genetic diversity.
3.3.3. Frame Accumulation
4. Results and Discussion
4.1. The Registration Method’s Performance Evaluation
4.1.1. Comparison of Image Registration: CPSO vs. GA-CPSO Algorithm
4.1.2. Comparison of Image Registration: GA-CPSO Algorithm vs. Other Registration Methods
4.2. Evaluation of Frame Accumulation Performance After Registration
4.3. The GA-CPSO Registration Method’s Efficiency in Mitigating Ghosting Effects
5. Comparison with Previous Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef]
- Fuentes, J.D.; Morgan, E.; de Luna Aguilar, A.; Mafra, A.; Shah, R.; Giusti, F.; Vignat, J.; Znaor, A.; Musetti, C.; Yip, C.H.; et al. Global Stage Distribution of Breast Cancer at Diagnosis: A Systematic Review and Meta-Analysis. JAMA Oncol. 2024, 10, 71–78. [Google Scholar] [CrossRef]
- Fransen, M.P.; Damman, O.C.; Bas, S.; Uiters, E.; Timmermans, D.R. Decision-making in breast cancer screening: A qualitative exploration of the match between women’s beliefs and screening information in the Netherlands. Patient Educ. Couns. 2024, 122, 108155. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, T. Rethinking screening mammography in Japan: Next-generation breast cancer screening through breast awareness and supplemental ultrasonography. Breast Cancer 2024, 31, 24–30. [Google Scholar] [CrossRef]
- Iacob, R.; Iacob, E.R.; Stoicescu, E.R.; Ghenciu, D.M.; Cocolea, D.M.; Constantinescu, A.; Ghenciu, L.A.; Manolescu, D.L. Evaluating the Role of Breast Ultrasound in Early Detection of Breast Cancer in Low- and Middle-Income Countries: A Comprehensive Narrative Review. Bioengineering 2024, 11, 262. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K.; Schrading, S.; Leutner, C.C.; Morakkabati-Spitz, N.; Wardelmann, E.; Fimmers, R.; Kuhn, W.; Schild, H.H. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 2005, 23, 8469–8476. [Google Scholar] [CrossRef] [PubMed]
- Warner, E.; Plewes, D.B.; Hill, K.A.; Causer, P.A.; Zubovits, J.T.; Jong, R.A.; Cutrara, M.R.; DeBoer, G.; Yaffe, M.J.; Messner, S.J.; et al. Surveillance of BRCA1 and BRCA2 Mutation Carriers with Magnetic Resonance Imaging, Ultrasound, Mammography, and Clinical Breast Examination. JAMA 2005, 293, 1317–1325. [Google Scholar]
- Munteanu, B.Ş.; Murariu, A.; Nichitean, M.; Pitac, L.G.; Dioşan, L. Value of Original and Generated Ultrasound Data Towards Training Robust Classifiers for Breast Cancer Identification. Inf. Syst. Front. 2024. [Google Scholar] [CrossRef]
- Sardanelli, F.; Magni, V.; Rossini, G.; Kilburn-Toppin, F.; Healy, N.A.; Gilbert, F.J. The paradox of MRI for breast cancer screening: High-risk and dense breasts—Available evidence and current practice. Insights Imaging 2024, 15, 96. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.S.; Fida, I.; Fatima, M.; Khan, M.S.; Mustafa, S.; Khan, M.N.; Ahmad, I. Quantitative phase imaging for characterization of single cell growth dynamics. Lasers Med. Sci. 2023, 38, 241. [Google Scholar] [CrossRef]
- Khan, F.; Naeem, K.; Khalid, A.; Khan, M.N.; Ahmad, I. Photoacoustic imaging for characterization of radiofrequency ablated cardiac tissues. Lasers Med. Sci. 2023, 38, 61. [Google Scholar] [CrossRef] [PubMed]
- Cheatle, S.L. Transillumination of the breast as an aid to diagnosis. J. R. Soc. Med. 1929, 22, 701. [Google Scholar] [CrossRef]
- Harnischmacher, N.; Rodner, E.; Schmitz, C.H. Detection of breast cancer using machine learning on time-series diffuse optical transillumination data. J. Biomed. Opt. 2024, 29, 115001. [Google Scholar] [CrossRef]
- Shimizu, K. Near-Infrared Transillumination for Macroscopic Functional Imaging of Animal Bodies. Biology 2023, 12, 1362. [Google Scholar] [CrossRef]
- Tran, M.H.; Fei, B. Compact and ultracompact spectral imagers: Technology and applications in biomedical imaging. J. Biomed. Opt. 2023, 28, 04090. [Google Scholar] [CrossRef]
- Pandey, R.; Fournier, D.; Root, G.; Riccio, M.; Shirvalkar, A.; Zamora, G.; Daigneault, N.; Sapack, M.; Zhong, M.; Harigopal, M. AI-Powered Biomolecular-Specific and Label-Free Multispectral Imaging Rapidly Detects Malignant Neoplasm in Surgically Excised Breast Tissue Specimens. Arch. Pathol. Lab. Med. 2023, 147, 1298–1306. [Google Scholar] [CrossRef]
- Ye, Y.; Li, H.; Li, G.; Lin, L. A crosstalk correction method to improve multi-wavelength LEDs imaging quality based on color camera and frame accumulation. Signal Process. Image Commun. 2022, 102, 116624. [Google Scholar] [CrossRef]
- Cheng, N.; Song, E.; Liu, H.; Hung, C.; Lu, Z. Improved method of frame accumulation technology using dual optical signals. J. Electron. Imaging 2018, 27, 043032. [Google Scholar] [CrossRef]
- Li, G.; Tang, H.; Kim, D.; Gao, J.; Lin, L. Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity. Opt. Lett. 2012, 37, 1361–1363. [Google Scholar] [CrossRef]
- Ben-Ezra, M.; Zomet, A.; Nayar, S.K. Jitter camera: A super-resolution video camera. Vis. Commun. Image Process. 2006, 6077, 607704. [Google Scholar]
- Ben-Ezra, M.; Zomet, A.; Nayar, S.K. Video super-resolution using controlled subpixel detector shifts. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 977–987. [Google Scholar] [CrossRef]
- Wang, W.; Den Brinker, A.C. Algorithmic insights of camera-based respiratory motion extraction. Physiol. Meas. 2022, 43, 075004. [Google Scholar] [CrossRef] [PubMed]
- Salvi, J.; Matabosch, C.; Fofi, D.; Forest, J. A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 2007, 25, 578–596. [Google Scholar] [CrossRef]
- Antoš, J.; Nežerka, V.; Somr, M. Real-Time Optical Measurement of Displacements Using Subpixel Image Registration. Exp. Tech. 2019, 43, 315–323. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, J.; Fan, A.; Xu, H.; Lin, G.; Lu, T.; Tian, X. Robust Feature Matching for Remote Sensing Image Registration via Linear Adaptive Filtering. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1577–1591. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, J.; Zhou, H.; Zhao, J.; Guo, X. Guided locality preserving feature matching for remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4435–4447. [Google Scholar] [CrossRef]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A review of multimodal image matching: Methods and applications. Inf. Fusion 2021, 73, 22–71. [Google Scholar] [CrossRef]
- James, A.P.; Dasarathy, B.V. Medical image fusion: A survey of the state of the art. Inf. Fusion 2014, 19, 4–19. [Google Scholar] [CrossRef]
- Markelj, P.; Tomaževič, D.; Likar, B.; Pernuš, F. A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 2012, 16, 642–661. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Pluim, J.P.W.; Staring, M.; Viergever, M.A. Adaptive stochastic gradient descent optimisation for image registration. Int. J. Comput. Vis. 2009, 81, 227–239. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, Y. An improved 2D-3D medical image registration algorithm based on modified mutual information and expanded Powell method. In Proceedings of the 2013 IEEE International Conference on Medical Imaging Physics and Engineering, Shenyang, China, 19–20 October 2013; pp. 24–29. [Google Scholar]
- Talbi, H.; Batouche, M.C. Particle swam optimization for image registration. In Proceedings of the International Conference on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, 23 April 2004; pp. 397–398. [Google Scholar]
- Valsecchi, A.; Damas, S.; Santamaria, J.; Marrakchi-Kacem, L. Genetic algorithms for Voxel-based medical image registration. In Proceedings of the 2013 Fourth International Workshop on Computational Intelligence in Medical Imaging (CIMI), Singapore, 16–19 April 2013; pp. 22–29. [Google Scholar] [CrossRef]
- Haskins, G.; Kruger, U.; Yan, P. Deep learning in medical image registration: A survey. Mach. Vis. Appl. 2020, 31, 8. [Google Scholar] [CrossRef]
- Kuppala, K.; Banda, S.; Barige, T.R. An overview of deep learning methods for image registration with focus on feature-based approaches. Int. J. Image Data Fusion 2020, 11, 113–135. [Google Scholar] [CrossRef]
- Arora, P.; Mehta, R.; Ahuja, R. An adaptive medical image registration using hybridization of teaching learning-based optimization with affine and speeded up robust features with projective transformation. Clust. Comput. 2023, 27, 607–627. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Klein, S.; Staring, M.; Pluim, J.P.W. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans. Image Process. 2007, 16, 2879–2890. [Google Scholar] [CrossRef]
- Liu, S.; Yang, B.; Wang, Y.; Tian, J.; Yin, L.; Zheng, W. 2D/3D Multimode Medical Image Registration Based on Normalized Cross-Correlation. Appl. Sci. 2022, 12, 2828. [Google Scholar] [CrossRef]
- Dinh, V.Q.; Pham, C.C.; Jeon, J.W. Robust Adaptive Normalized Cross-Correlation for Stereo Matching Cost Computation. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 1421–1434. [Google Scholar] [CrossRef]
- Aguerchi, K.; Jabrane, Y.; Habba, M.; El Hassani, A.H. A CNN Hyperparameters Optimization Based on Particle Swarm Optimization for Mammography Breast Cancer Classification. J. Imaging 2024, 10, 30. [Google Scholar] [CrossRef]
- Kazerani, R. Improving Breast Cancer Diagnosis Accuracy by Particle Swarm Optimization Feature Selection. Int. J. Comput. Intell. Syst. 2024, 17, 44. [Google Scholar] [CrossRef]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Refaat, A.; Elbaz, A.; Khalifa, A.E.; Elsakka, M.M.; Kalas, A.; Elfar, M.H. Performance evaluation of a novel self-tuning particle swarm optimization algorithm-based maximum power point tracker for porton exchange membrane fuel cells under different operating conditions. Energy Convers. Manag. 2024, 301, 118014. [Google Scholar] [CrossRef]
- Papazoglou, G.; Biskas, P. Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem. Energies 2023, 16, 1152. [Google Scholar] [CrossRef]
- Ghaheri, A.; Shoar, S.; Naderan, M.; Hoseini, S.S. The applications of genetic algorithms in medicine. Oman Med. J. 2015, 30, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Kruppa, J.; Lepenies, B.; Jung, K. A genetic algorithm for simulating correlated binary data from biomedical research. Comput. Biol. Med. 2018, 92, 1–8. [Google Scholar] [CrossRef]
- Penney, G.P.; Weese, J.; Little, J.A.; Desmedt, P.; Hill, D.L. A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imaging 1998, 17, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Munawar, A.; WIN, N.S.S.; Fan, M.; Nawaz, M.Z.; Lin, L. Multispectral breast image grayscale and quality enhancement by repeated pair image registration & accumulation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124558. [Google Scholar]
- Young, A.L.; van den Boom, W.; Schroeder, R.A.; Krishnamoorthy, V.; Raghunathan, K.; Wu, H.T.; Dunson, D.B. Mutual information: Measuring nonlinear dependence in longitudinal epidemiological data. PLoS ONE 2023, 18, e0284904. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, G.; Lin, L. Threshold method to improve the speed of “Registration-Frame accumulation” and its application in breast multispectral transmission images. Infrared Phys. Technol. 2023, 129, 104571. [Google Scholar] [CrossRef]
- Li, G.; Ye, Y.; Zhou, M.; Shang, H.; Yang, Y.; Ma, S.; Lin, L. Multi-resolution transmission image registration based on “Terrace Compression Method” and normalized mutual information. Chemom. Intell. Lab. Syst. 2022, 223, 104529. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Fakhry, A.E.; El-henawy, I.; Qiu, T.; Sangaiah, A.K. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization. J. Med. Syst. 2017, 41, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Gao, K.; Miu, X.; Han, L.; Gong, X. Infrared and visual image registration based on mutual information with a combined particle swarm optimization—Powell search algorithm. Optik 2016, 127, 188–191. [Google Scholar] [CrossRef]
- Song, Y.; Fan, M.; Li, G.; Lin, L. Enhance the frame accumulation accuracy of breast multispectral transmission image by the improved Powell registration algorithm. Opt. Lasers Eng. 2023, 164, 107486. [Google Scholar] [CrossRef]
- Ballerini, L. Particle Swarm Optimization in 3D Medical Image Registration: A Systematic Review. Arch. Comput. Methods Eng. 2024. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Fan, M.; Win, N.S.S.; Lin, L. Enhancing registration precision of multispectral breast images by fusing multi-wavelength information based on an improved gradient descent method. Biomed. Signal Process. Control 2024, 96, 106596. [Google Scholar] [CrossRef]
- Song, J.; Yang, K.; Zhang, Z.; Li, M.; Cao, T.; Ghaffari, M. Iterative PnP and its application in 3D-2D vascular image registration for robot navigation. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 17560–17566. [Google Scholar]
- Li, X.; Lin, Z.; Lv, H.; Yu, L.; Heidari, A.A.; Zhang, Y.; Chen, H.; Liang, G. Advanced slime mould algorithm incorporating differential evolution and Powell mechanism for engineering design. iScience 2023, 26, 107736. [Google Scholar] [CrossRef]
Image Path | Iteration Number | Best Value | Registration Time (s) | ||||
---|---|---|---|---|---|---|---|
Wavelength (nm) | CPSO with CCF | CPSO with SCF | CPSO with CCF | CPSO with SCF | CPSO with CCF | CPSO with SCF | |
1 | 600 | 83 | 43 | 1.36 | 1.34 | 411.69 | 192.56 |
2 | 600 | 93 | 44 | 3.75 | 3.76 | 370.09 | 188.09 |
3 | 620 | 94 | 36 | 2.61 | 2.60 | 373.20 | 190.19 |
4 | 620 | 64 | 43 | 6.18 | 6.18 | 364.11 | 187.81 |
5 | 670 | 95 | 46 | 6.08 | 6.08 | 362.58 | 180.27 |
6 | 670 | 96 | 45 | 17.34 | 17.34 | 370.33 | 181.08 |
7 | 760 | 82 | 32 | 7.09 | 7.08 | 376.42 | 185.27 |
8 | 760 | 91 | 37 | 22.63 | 22.62 | 382.70 | 192.76 |
Wavelength Parameters | 600 nm (20, 20, 0.5) | 620 nm (30, 25, −5) | 670 nm (50, −50, 10) | 760 nm (10, 10, −15) | ||||
---|---|---|---|---|---|---|---|---|
CPSO | GA-CPSO | CPSO | GA-CPSO | CPSO | GA-CPSO | CPSO | GA-CPSO | |
x displacement | 19.025 | 20.009 | 29.415 | 30.055 | 49.990 | 50.027 | 09.599 | 09.959 |
y displacement | 19.600 | 19.966 | 24.541 | 24.990 | −50.689 | −49.955 | 10.059 | 10.089 |
Angle θ displacement | 00.505 | 00.500 | −05.170 | −05.000 | 10.180 | 10.004 | −15.032 | −15.000 |
Accuracy (%) | 97.375 | 99.928 | 97.605 | 99.925 | 98.934 | 99.939 | 98.396 | 99.566 |
Wavelength Parameters | 600 nm (05, 05, 0.2) | 620 nm (50, 45, −10) | 670 nm (25, −20, 05) | 760 nm (−80, 60, 15) | ||||
---|---|---|---|---|---|---|---|---|
CPSO | GA-CPSO | CPSO | GA-CPSO | CPSO | GA-CPSO | CPSO | GA-CPSO | |
x displacement | 05.016 | 05.008 | 50.606 | 49.891 | 24.596 | 25.059 | −79.299 | −79.878 |
y displacement | 05.239 | 05.002 | 44.898 | 45.013 | −20.193 | −20.090 | 60.703 | 60.025 |
Angle θ displacement | 00.201 | 00.200 | −10.160 | −10.000 | 05.120 | 05.000 | 15.120 | 15.000 |
Accuracy (%) | 98.133 | 99.933 | 98.987 | 99.918 | 98.340 | 99.771 | 99.051 | 99.935 |
Evaluation Metric | GA-CPSO Algorithm | Powell Algorithm [54] | TC-NMI [55] |
---|---|---|---|
600 nm | |||
CC | 0.9950 | 0.9702 | 0.9785 |
MI | 4.2474 | 3.2390 | 3.9065 |
RMSE | 1.5129 | 3.6545 | 6.0218 |
Registration time (s) | 406.57 | 3638.60 | 3513.10 |
620 nm | |||
CC | 0.9982 | 0.9531 | 0.9510 |
MI | 3.9921 | 1.3533 | 3.0554 |
RMSE | 1.6419 | 9.2852 | 6.9321 |
Registration time (s) | 388.80 | 3670.60 | 2540.83 |
670 nm | |||
CC | 0.9896 | 0.9669 | 0.9528 |
MI | 4.4218 | 4.0118 | 3.8401 |
RMSE | 1.1218 | 2.8039 | 15.1538 |
Registration time (s) | 397.15 | 4864.52 | 2691.00 |
760 nm | |||
CC | 0.9963 | 0.9268 | 0.9697 |
MI | 4.3894 | 3.1888 | 3.9803 |
RMSE | 2.9488 | 10.7126 | 8.7365 |
Registration time (s) | 397.88 | 5864.50 | 9423.78 |
Final Image | EOG | Brenner | GL | SD | Entropy |
---|---|---|---|---|---|
600 nm | |||||
Direct accumulation | 2.6854 × 106 | 3.9852 × 106 | 42.1654 | 21.9603 | 5.2871 |
Registration + accumulation | 9.4465 × 106 | 9.6038 × 106 | 49.5544 | 22.8078 | 6.0456 |
620 nm | |||||
Direct accumulation | 4.2420 × 106 | 9.5382 × 106 | 45.0301 | 33.4953 | 6.0492 |
Registration + accumulation | 1.6499 × 107 | 3.3134 × 107 | 47.3931 | 36.6195 | 7.6781 |
670 nm | |||||
Direct accumulation | 4.0418 × 106 | 9.8232 × 106 | 53.6046 | 25.0007 | 6.0260 |
Registration + accumulation | 1.6144 × 107 | 3.5610 × 107 | 56.3670 | 29.9015 | 7.4870 |
760 nm | |||||
Direct accumulation | 2.5743 × 106 | 4.8203 × 106 | 52.7060 | 37.0349 | 6.8005 |
Registration + accumulation | 5.7916 × 106 | 6.7017 × 106 | 57.1003 | 40.5402 | 7.4568 |
Metrics | Proposed GA-CPSO | Gradient Descent [52] |
---|---|---|
EOG (×106) | 10.09 | 8.58 |
Branner (×107) | 11.35 | 1.69 |
MMD (×105) | 14.23 | 8.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, T.S.M.; Munawar, A.; Nawaz, M.Z.; Chen, Y. Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration. Bioengineering 2024, 11, 1281. https://doi.org/10.3390/bioengineering11121281
Mahmoud TSM, Munawar A, Nawaz MZ, Chen Y. Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration. Bioengineering. 2024; 11(12):1281. https://doi.org/10.3390/bioengineering11121281
Chicago/Turabian StyleMahmoud, Tsabeeh Salah M., Adnan Munawar, Muhammad Zeeshan Nawaz, and Yuanyuan Chen. 2024. "Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration" Bioengineering 11, no. 12: 1281. https://doi.org/10.3390/bioengineering11121281
APA StyleMahmoud, T. S. M., Munawar, A., Nawaz, M. Z., & Chen, Y. (2024). Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration. Bioengineering, 11(12), 1281. https://doi.org/10.3390/bioengineering11121281