Neoplasms in the Nasal Cavity Identified and Tracked with an Artificial Intelligence-Assisted Nasal Endoscopic Diagnostic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Clinical Data and Nasal Endoscopic Image Data
2.2. Collection of Nasal Endoscopic Image Data
2.3. Model Training Methods
2.4. Tracer Test to Establish AI Endoscopic Assist System
2.5. Statistics
- (1)
- Accuracy:
- (2)
- Sensitivity (recall):
- (3)
- Precision:
3. Results
3.1. Clinical Image Data Acquisition and Classification Results
3.2. Heterogeneity of Nasal Neoplasms
3.3. Accuracy Comparison of Multiple Algorithms
3.4. Comparison Between AI and Clinicians
3.5. Tracer Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girdler, B.; Moon, H.; Bae, M.R.; Ryu, S.S.; Bae, J.; Yu, M.S. Feasibility of a deep learning-based algorithm for automated detection and classification of nasal polyps and inverted papillomas on nasal endoscopic images. Int. Forum Allergy Rhinol. 2021, 11, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Hashim, D.; Genden, E.; Posner, M.; Hashibe, M.; Boffetta, P. Head and neck cancer prevention: From primary prevention to impact of clinicians on reducing burden. Ann Oncol. 2019, 30, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58 (Suppl. S29), 1–464. [Google Scholar] [CrossRef] [PubMed]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Lin, P.; Yu, J.G.; Ye, J.; Xiao, L.; Tao, Y.; Jiang, Z.; Lin, W.; Liu, M.; Xu, J.; et al. Computer-aided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images. Ebiomedicine 2019, 48, 92–99. [Google Scholar] [CrossRef]
- Yi, S.E.; Harish, V.; Gutierrez, J.; Ravaut, M.; Kornas, K.; Watson, T.; Poutanen, T.; Ghassemi, M.; Volkovs, M.; Rosella, L.C.; et al. Predicting hospitalisations related to ambulatory care sensitive conditions with machine learning for population health planning: Derivation and validation cohort study. BMJ Open 2022, 12, e051403. [Google Scholar] [CrossRef]
- Zhao, A.; Sunny, A.I.; Li, L.; Wang, T. Machine Learning-Based Structural Health Monitoring Using RFID for Harsh Environmental Conditions. Electronics 2022, 11, 1740. [Google Scholar] [CrossRef]
- Van der Velden, B.H.; Kuijf, H.J.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Venkatesh, G.M.; Naresh, Y.G.; Little, S.; O’Connor, N.E. A Deep Residual Architecture for Skin Lesion Segmentation; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11041, pp. 277–284. [Google Scholar]
- Zunair, H.; Ben Hamza, A. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput. Biol. Med. 2021, 136, 104699. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast Online Object Tracking and Segmentation: A Unifying Approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Ren, J.; Jing, X.; Wang, J.; Ren, X.; Xu, Y.; Yang, Q.; Ma, L.; Sun, Y.; Xu, W.; Tang, N.; et al. Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique. Laryngoscope 2020, 130, E686–E693. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, J.; Deng, H.; Ren, Y.; Sun, Y.; Wang, W.; Yuan, L.; Hong, H.; Zheng, R.; Kong, W.; et al. Expert-level diagnosis of nasal polyps using deep learning on whole-slide imaging. J. Allergy Clin. Immunol. 2020, 145, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.T.; Shen, N.; Ao, F.; Chen, W.Q. Diagnostic value of contrast-enhanced harmonic endoscopic ultrasonography in predicting the malignancy potential of submucosal tumours: A systematic review and meta-analysis. Surg. Endosc. 2020, 34, 3754–3765. [Google Scholar] [CrossRef] [PubMed]
- Entezami, A.; Shariatmadar, H.; De Michele, C. Non-parametric empirical machine learning for short-term and long-term structural health monitoring. Struct. Health Monit. 2022, 21, 2700–2718. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Humbert-Droz, M.; Mukherjee, P.; Gevaert, O. Strategies to Address the Lack of Labeled Data for Supervised Machine Learning Training With Electronic Health Records: Case Study for the Extraction of Symptoms From Clinical Notes. JMIR Med. Inform. 2022, 10, e32903. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Thygesen, M.K.; Baatrup, G.; Petersen, C.; Qvist, N.; Kroijer, R.; Kobaek-Larsen, M. Screening individuals’ experiences of colonoscopy and colon capsule endoscopy; a mixed methods study. Acta Oncol. 2019, 58, S71–S76. [Google Scholar] [CrossRef]
- Lu, S.C.; Xu, C.; Nguyen, C.H.; Geng, Y.; Pfob, A.; Sidey-Gibbons, C. Machine Learning-Based Short-Term Mortality Prediction Models for Patients With Cancer Using Electronic Health Record Data: Systematic Review and Critical Appraisal. JMIR Med. Inform. 2022, 10, e33182. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zhang, K.; Fung, K.M.; Thai, T.C.; Moore, K.; Mannael, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022, 79, 102444. [Google Scholar] [CrossRef]
- Carneiro, G.; Tavares, J.M.R.; Bradley, A.P.; Papa, J.P.; Belagiannis, V.; Nascimento, J.C.; Lu, Z. Special issue: 4th MICCAI workshop on deep learning in medical image analysis. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 501. [Google Scholar] [CrossRef]
- Jericó, C.; Zalba-Marcos, S.; Quintana-Díaz, M.; López-Villar, O.; Santolalla-Arnedo, I.; Abad-Motos, A.; Lco-Morales, M.J.; Sancho, E.; Subira, M.; Bassas, E.; et al. Relationship between ABO Blood Group Distribution and COVID-19 Infection in Patients Admitted to the ICU: A Multicenter Observational Spanish Study. J. Clin. Med. 2022, 11, 3042. [Google Scholar] [CrossRef]
- Apostolidis, K.D.; Papakostas, G.A. A Survey on Adversarial Deep Learning Robustness in Medical Image Analysis. Electronics 2021, 10, 2132. [Google Scholar] [CrossRef]
- Parmar, P.; Habib, A.-R.; Mendis, D.; Daniel, A.; Duvnjak, M.; Ho, J.; Smith, M.; Roshan, D.; Wong, E.; Singh, N. An artificial intelligence algorithm that identifies middle turbinate pneumatisation (concha bullosa) on sinus computed tomography scans. J. Laryngol. Otol. 2020, 134, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.I.; Smith, T.L.; Chandra, R.K.; Turner, J.H. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks. Int. Forum Allergy Rhinol. 2019, 9, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.; Surda, P. Unsupervised Learning Techniques for the Investigation of Chronic Rhinosinusitis. Ann. Otol. Rhinol. Laryngol. 2019, 128, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ren, W.; Hu, X.; Li, K.; Shen, H.; Cao, X. SRGAT: Single Image Super-Resolution With Graph Attention Network. IEEE Trans Image Process. 2021, 30, 4905–4918. [Google Scholar] [CrossRef]
- Akbar, K.; Zou, Y.; Awais, Q.; Baig, M.J.A.; Jamil, M. A Machine Learning-Based Robust State of Health (SOH) Prediction Model for Electric Vehicle Batteries. Electronics 2022, 11, 1216. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Volokitin, A.; Regli, L.; Konukoglu, E.; Serra, C. Machine Vision for Real-Time Intraoperative Anatomic Guidance: A Proof-of-Concept Study in Endoscopic Pituitary Surgery. Oper. Neurosurg. 2021, 21, E302–E303. [Google Scholar] [CrossRef]
- Buijs, M.M.; Kroijer, R.; Kobaek-Larsen, M.; Spada, C.; Fernandez-Urien, I.; Steele, R.J.; Baatrup, G. Intra and inter-observer agreement on polyp detection in colon capsule endoscopy evaluations. United Eur. Gastroenterol. J. 2018, 6, 1563–1568. [Google Scholar] [CrossRef]
- Dimauro, G.; Ciprandi, G.; Deperte, F.; Girardi, F.; Ladisa, E.; Latrofa, S.; Gelardi, M. Nasal cytology with deep learning techniques. Int. J. Med. Inform. 2018, 122, 13–19. [Google Scholar] [CrossRef]
NP | NIP | FS | NMT | p Value | |
---|---|---|---|---|---|
Gender | 266/221 | 70/92 | 114/95 | 104/88 | 0.0711 |
male/female | |||||
Age | 219/268 | 66/96 | 80/136 | 93/138 | 0.2284 |
≤50 yrs/>50 yrs | |||||
Stuffy nose | 279/208 | 97/65 | 127/82 | 109/83 | 0.7826 |
neg/pos | |||||
Impaired sense of smell | 440/47 | 145/17 | 189/20 | 174/18 | 0.9860 |
neg/pos | |||||
Epistaxis | 460/27 | 125/37 | 173/36 | 79/113 | <0.0001 |
neg/pos |
Accurary | Specificity | Sensitive | PPV | NPV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DeepSnake | U-Net | Att_res_2UNet | DeepSnake | U-Net | Att_res_2UNet | DeepSnake | U-Net | Att_res_2UNet | DeepSnake | U-Net | Att_res_2UNet | DeepSnake | U-Net | Att_res_2UNet | |
NP | 0.963 | 0.992 | 0.994 | 0.976 | 0.771 | 0.998 | 0.659 | 0.771 | 0.785 | 0.555 | 0.811 | 0.885 | 0.984 | 0.996 | 0.996 |
NIP | 0.955 | 0.972 | 0.986 | 0.960 | 0.990 | 0.979 | 0.743 | 0.763 | 0.958 | 0.307 | 0.866 | 0.708 | 0.994 | 0.980 | 0.991 |
FS | 0.955 | 0.987 | 0.991 | 0.976 | 0.993 | 0.994 | 0.824 | 0.778 | 0.873 | 0.669 | 0.774 | 0.782 | 0.990 | 0.994 | 0.997 |
NMT | 0.958 | 0.983 | 0.986 | 0.963 | 0.991 | 0.996 | 0.893 | 0.833 | 0.812 | 0.667 | 0.828 | 0.929 | 0.991 | 0.991 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Yun, B.; Zhao, Y.; Jin, L.; Zong, Y.; Yu, G.; Zhao, C.; Fan, K.; Zhang, X.; Tan, S.; et al. Neoplasms in the Nasal Cavity Identified and Tracked with an Artificial Intelligence-Assisted Nasal Endoscopic Diagnostic System. Bioengineering 2025, 12, 10. https://doi.org/10.3390/bioengineering12010010
Xu X, Yun B, Zhao Y, Jin L, Zong Y, Yu G, Zhao C, Fan K, Zhang X, Tan S, et al. Neoplasms in the Nasal Cavity Identified and Tracked with an Artificial Intelligence-Assisted Nasal Endoscopic Diagnostic System. Bioengineering. 2025; 12(1):10. https://doi.org/10.3390/bioengineering12010010
Chicago/Turabian StyleXu, Xiayue, Boxiang Yun, Yumin Zhao, Ling Jin, Yanning Zong, Guanzhen Yu, Chuanliang Zhao, Kai Fan, Xiaolin Zhang, Shiwang Tan, and et al. 2025. "Neoplasms in the Nasal Cavity Identified and Tracked with an Artificial Intelligence-Assisted Nasal Endoscopic Diagnostic System" Bioengineering 12, no. 1: 10. https://doi.org/10.3390/bioengineering12010010
APA StyleXu, X., Yun, B., Zhao, Y., Jin, L., Zong, Y., Yu, G., Zhao, C., Fan, K., Zhang, X., Tan, S., Zhang, Z., Wang, Y., Li, Q., & Yu, S. (2025). Neoplasms in the Nasal Cavity Identified and Tracked with an Artificial Intelligence-Assisted Nasal Endoscopic Diagnostic System. Bioengineering, 12(1), 10. https://doi.org/10.3390/bioengineering12010010