Storage and Query of Drug Knowledge Graphs Using Distributed Graph Databases: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Architecture
2.2. Data Storage and Retrieval Methods
2.3. System Evaluations
3. Results
3.1. System Implementations
3.2. System Evaluation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vora, P.K.; Somani, R.R.; Jain, M.H. Drug repositioning: An approach for drug discovery. Mini Rev. Org. Chem. 2016, 13, 363–376. [Google Scholar] [CrossRef]
- Zeng, X.; Tu, X.; Liu, Y.; Fu, X.; Su, Y. Toward better drug discovery with knowledge graph. Curr. Opin. Struct. Biol. 2022, 72, 114–126. [Google Scholar] [CrossRef] [PubMed]
- MacLean, F. Knowledge graphs and their applications in drug discovery. Expert Opin. Drug Discov. 2021, 16, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, M.; Davis, J.G. A Comparative Analysis of Knowledge Graph Query Performance. In Proceedings of the 2021 Third International Conference on Transdisciplinary AI (TransAI), Laguna Hills, CA, USA, 20–22 September 2021; pp. 33–40. [Google Scholar]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Maier, D. The Theory of Relational Databases; Computer Science Press: Rockville, MD, USA, 1983; Volume 11. [Google Scholar]
- Robinson, I.; Webber, J.; Eifrem, E. Graph Databases: New Opportunities for Connected Data; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]
- Ho, L.-Y.; Wu, J.-J.; Liu, P. Distributed graph database for large-scale social computing. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 455–462. [Google Scholar]
- Wu, M.; Yi, X.; Yu, H.; Liu, Y.; Wang, Y. Nebula Graph: An open source distributed graph database. arXiv 2022, arXiv:2206.07278. [Google Scholar]
- Wu, J. Distributed System Design; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data 2017, 4, 170029. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dong, D.; Zhang, W.; Wang, R.; Lin, Y.-C.-D.; Zuo, H.; Huang, H.-Y.; Huang, H.-D. DrugRepoBank: A comprehensive database and discovery platform for accelerating drug repositioning. Database 2024, 2024, baae051. [Google Scholar] [CrossRef] [PubMed]
- Keats, T.; Rosengren, R.J.; Ashton, J.C. The rationale for repurposing sildenafil for lung cancer treatment. Anti Cancer Agents Med. Chem. 2018, 18, 367–374. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yu, D.B.; Kim, M.; Choi, Y.L. Adipogenesis induces growth inhibition of dedifferentiated liposarcoma. Cancer Sci. 2019, 110, 2676–2683. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, V.; Kulkarni, N.S.; Chauhan, G.; Shukla, S.K.; Elbatanony, R.; Patel, B.; Kunda, N.K.; Muth, A.; Gupta, V. Development of pharmaceutically scalable inhaled anti-cancer nanotherapy–repurposing amodiaquine for non-small cell lung cancer (NSCLC). Mater. Sci. Eng. C 2020, 115, 111139. [Google Scholar] [CrossRef] [PubMed]
- Ajetunmobi, O.H.; Chaturvedi, A.K.; Badali, H.; Vaccaro, A.; Najvar, L.; Wormley Jr, F.L.; Wiederhold, N.P.; Patterson, T.F.; Lopez-Ribot, J.L. Screening the medicine for malaria venture’s Pandemic Response Box to identify novel inhibitors of Candida albicans and Candida auris biofilm formation. APMIS 2023, 131, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Iannelli, F.; Roca, M.S.; Lombardi, R.; Ciardiello, C.; Grumetti, L.; De Rienzo, S.; Moccia, T.; Vitagliano, C.; Sorice, A.; Costantini, S. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J. Exp. Clin. Cancer Res. 2020, 39, 213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pu, K.; Bai, S.; Peng, Y.; Li, F.; Ji, R.; Guo, Q.; Sun, W.; Wang, Y. The anti-alcohol dependency drug disulfiram inhibits the viability and progression of gastric cancer cells by regulating the Wnt and NF-κB pathways. J. Int. Med. Res. 2020, 48, 0300060520925996. [Google Scholar] [CrossRef] [PubMed]
- Emili, M.; Stagni, F.; Salvalai, M.E.; Uguagliati, B.; Giacomini, A.; Albac, C.; Potier, M.-C.; Grilli, M.; Bartesaghi, R.; Guidi, S. Neonatal therapy with clenbuterol and salmeterol restores spinogenesis and dendritic complexity in the dentate gyrus of the Ts65Dn model of Down syndrome. Neurobiol. Dis. 2020, 140, 104874. [Google Scholar] [CrossRef]
- Kotaki, R.; Kawashima, M.; Yamamoto, Y.; Higuchi, H.; Nagashima, E.; Kurosaki, N.; Takamatsu, M.; Kikuti, Y.Y.; Imadome, K.-I.; Nakamura, N. Dasatinib exacerbates splenomegaly of mice inoculated with Epstein-Barr virus-infected lymphoblastoid cell lines. Sci. Rep. 2020, 10, 4355. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wei, W.; Ma, L.; Yang, B.; Gill, R.M.; Chua, M.-S.; Butte, A.J.; So, S. Computational discovery of niclosamide ethanolamine, a repurposed drug candidate that reduces growth of hepatocellular carcinoma cells in vitro and in mice by inhibiting cell division cycle 37 signaling. Gastroenterology 2017, 152, 2022–2036. [Google Scholar] [CrossRef]
- Aslanoglou, D.; Bertera, S.; Friggeri, L.; Sánchez-Soto, M.; Lee, J.; Xue, X.; Logan, R.W.; Lane, J.R.; Yechoor, V.K.; McCormick, P.J. Dual pancreatic adrenergic and dopaminergic signaling as a therapeutic target of bromocriptine. iscience 2022, 25, 104771. [Google Scholar] [CrossRef]
- Zheng, Y.-D.; Zhong, T.; Wu, H.; Li, N.; Fang, Z.; Cao, L.; Yin, X.-F.; He, Q.-Y.; Ge, R.; Sun, X. Crizotinib shows antibacterial activity against Gram-positive bacteria by reducing ATP production and targeting the CTP synthase PyrG. Microbiol. Spectr. 2022, 10, e0088422. [Google Scholar] [CrossRef]
Configuration Information | Details |
---|---|
CPU cores | 4 |
Memory | 32 G |
Hard disk | 100 G |
Operating system | CentOS 7 |
Machine Name | Number of Metad Processes | Number of Storaged Processes | Number of Graphd Processes |
---|---|---|---|
Server A | 1 | 1 | 1 |
Server B | - | 1 | 1 |
Server C | - | 1 | 1 |
Path Type | Relation 1 | Relation 2 | Count of Paths | Count of Drugs | Count of Conditions | Query Time (Second) |
---|---|---|---|---|---|---|
1 | Upregulates | Upregulates | 11,591 | 578 | 36 | 10.58 |
2 | Upregulates | Associates | 26,348 | 583 | 99 | 22.40 |
3 | Upregulates | Downregulates | 9570 | 551 | 36 | 8.66 |
4 | Downregulates | Upregulates | 15,450 | 610 | 37 | 13.97 |
5 | Downregulates | Associates | 19,866 | 563 | 97 | 17.96 |
6 | Downregulates | Downregulates | 10,029 | 600 | 33 | 10.12 |
7 | Binds | Upregulates | 18,575 | 915 | 33 | 16.91 |
8 | Binds | Associates | 3830 | 1292 | 98 | 3.52 |
9 | Binds | Downregulates | 4471 | 974 | 36 | 4.12 |
Total | - | - | 119,730 | 1353 | 103 | 108.24 |
Drug Status | Drugs | Diseases | Two-Hop Paths | Drug–Disease Pairs |
---|---|---|---|---|
repoDB matched | 318 | 44 | 2303 | 424 |
Approved | 266 | 34 | 1603 | 333 (78.54%) |
Terminated | 53 | 25 | 508 | 63 (14.86%) |
Withdrawn | 25 | 11 | 173 | 24 (5.60%) |
Suspended | 5 | 4 | 19 | 4 (0.09%) |
Drug | Original Treatment | Repurposing Path | Literature |
---|---|---|---|
Sildenafil | Erectile dysfunction | [13] | |
Indomethacin | Rheumatoid arthritis | [14] | |
Amodiaquine | Malaria | [15] | |
Simvastatin | Hyperlipidemia | [16] | |
Simvastatin | Hyperlipidemia | [17] | |
Disulfiram | Alcoholism | [18] | |
Salmeterol | Asthma | [19] | |
Dasatinib | Multiple myeloma | [20] | |
Clenbuterol | Asthma | [19] | |
Niclosamide | Cestodes infection | [21] | |
Bromocriptine | Parkison’s disease | [22] | |
Crizotinib | Non-small-cell lung cancer | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Tian, Y. Storage and Query of Drug Knowledge Graphs Using Distributed Graph Databases: A Case Study. Bioengineering 2025, 12, 115. https://doi.org/10.3390/bioengineering12020115
Han X, Tian Y. Storage and Query of Drug Knowledge Graphs Using Distributed Graph Databases: A Case Study. Bioengineering. 2025; 12(2):115. https://doi.org/10.3390/bioengineering12020115
Chicago/Turabian StyleHan, Xingjian, and Yu Tian. 2025. "Storage and Query of Drug Knowledge Graphs Using Distributed Graph Databases: A Case Study" Bioengineering 12, no. 2: 115. https://doi.org/10.3390/bioengineering12020115
APA StyleHan, X., & Tian, Y. (2025). Storage and Query of Drug Knowledge Graphs Using Distributed Graph Databases: A Case Study. Bioengineering, 12(2), 115. https://doi.org/10.3390/bioengineering12020115