Biophysics of Voice Onset: A Comprehensive Overview
Abstract
:1. Introduction
- Characteristics and systematisation of the different types of onset.
- Relationship between intraglottal pressure and glottal area.
- Phase lag of glottal area in relation to intraglottal pressure.
- Initiation of oscillation.
- Intraglottal pressure at start of oscillation.
- Evolution over time of oscillation amplitude.
- Number of cycles to reach a steady state.
- Evolution of frequency during the first cycles.
- Pressure sensors with adequate frequency response and sensitivity (Millar catheter), a flowmeter (flowglottograph, FGG), with adequate frequency response and sensitivity (Rothenberg’s mask).
- Glottal area imaging and morphometry techniques (at adequate speed): videolaryngostroboscopy, photoglottography (PGG), high-speed film, videokymography (VKG) (‘single line scan’), Doppler ultrasound.
- Transglottal electrical impedance for monitoring VF contact: electroglottography (EGG).
- Audio-recording (sound oscillogram).
2. Methodology
2.1. Vocal Fold Imaging
2.2. Glottal Area (Light Flux)
2.3. Transglottal Airflow
2.4. Translaryngeal Electrical Impedance
2.5. Doppler Ultrasound [11,21,22]
2.6. Acoustic Signal
2.7. Intraglottal Pressure
3. Systematisation of the Voice Onset Categories
4. Morphological Analysis
4.1. Imaging
4.2. Polygraphic Recordings
4.2.1. Onset with Closed Glottis (Soft (c)/Hard)
4.2.2. Open Glottal Onset (Soft (o))
5. Biomechanics
5.1. Relationship Between the Intraglottal Pressure and the Glottal Area [3]
5.2. Time Course of the Relationship Between Glottal Area and Intraglottal Pressure
5.3. Initiation of the Vibration in a Soft (o)/Breathy Onset
5.4. Intraglottal Pressure at the Time of Start
5.5. Time Course of the Amplitude of Oscillation
5.6. Number of Cycles Before Steady State
5.7. Evolution of Frequency During the First Cycles
6. Frequency Control in Onset of Singing Intervals
7. VF Intervention in Sound Attack of Brass Playing
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Baken, R.J.; Orlikoff, R.F. Clinical Measurement of Speech and Voice, 2nd ed.; Singular Publishing Group: San Diego, CA, USA, 2000. [Google Scholar]
- Köster, O.; Marx, B.; Gemmar, P.; Hess, M.; Künzel, J. Qualitative and Quantitative Analysis of Voice Onset by means of a Multidimensional Voice Analysis System (MVAS) using high-speed Imaging. J. Voice 1999, 13, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Lebacq, J.; DeJonckere, P.H. The dynamics of vocal onset. Biomed. Signal Process. Control 2019, 49, 528–539. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J. Damping of vocal fold oscillation at voice offset. Biomed. Signal Process. Control 2017, 37, 92–99. [Google Scholar] [CrossRef]
- Abramson, A.S.; Whalen, D.H. Voice onset time (VOT): Theoretical and practical issues in measuring voicing distinctions. J. Phon. 2017, 63, 75–86. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J. Experimenting ‘in vivo’ with dynamic glottal parameters: Methodological issues, technical tips and preventable pitfalls. Prog. Neurobiol. 2023, 10, 6–19. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J. The Physics of the Human Vocal Folds as a Biological Oscillator; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Svec, J.; Schutte, H.K. Videokymography: High speed line scanning of vocal fold vibration. J. Voice 1996, 10, 201–205. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J.; Bocchi, L.; Orlandi, S.; Manfredi, C. Automated tracking of quantitative parameters from single line scanning of vocal folds: A case study of the ‘messa di voce’ exercise. Logop. Phoniatr. Vocol. 2015, 40, 44–54. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Versnel, H. High-speed imaging of vocal fold vibration: Analysis by four synchronous single-line scans of onset, offset and register break. In Proceedings of the XVIII I.F.O.S. (International Federation of Oto-rhino-laryngological Societies) World Congress, Rome, Italy, 25–30 June 2005; Passali, D., Ed.; pp. 1–8. [Google Scholar]
- DeJonckere, P.H.; Lebacq, J. Vocal Fold Collision Speed in vivo: The Effect of Loudness. J. Voice 2020, 36, 608–621. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J.; Titze, I.R. Dynamics of the driving force during the normal vocal fold vibration cycle. J. Voice 2017, 31, 714–721. [Google Scholar] [CrossRef]
- Rothenberg, M. A new inverse-filtering technique for deriving the glottal airflow waveform during voicing. J. Acoust. Soc. Am. 1973, 53, 1632–1645. [Google Scholar] [CrossRef]
- Rothenberg, M. Measurement of Airflow in Speech. J. Speech Hear. Res. 1977, 20, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, M. Source-tract acoustic interaction in breathy voice. In Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control; Titze, I.R., Scherer, R.C., Eds.; The Denver Center for the Performing Arts: Denver, CO, USA, 1984; pp. 465–481. [Google Scholar]
- Badin, P.; Hertegard, S.; Karlsson, S.I. Notes on the Rothenberg mask. Dept. Speech Music. Hear. Q. Prog. Status Rep. 1990, 31, 1–7. [Google Scholar]
- Alku, P. Glottal inverse filtering analysis of human voice production. A review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana 2011, 36, 623–650. [Google Scholar] [CrossRef]
- Sarvaiya, J.N.; Pandey, P.C.; Pandey, V.K. An impedance detector for glottography. IETE J. Res. 2011, 55, 100–105. [Google Scholar] [CrossRef]
- Schindler, O.; Gonella, M.L.; Pisani, R. Doppler ultrasound examination of the vibration speed of vocal folds. Folia Phoniatr. Logop. 1990, 42, 265–272. [Google Scholar] [CrossRef]
- Angerstein, W. Sonographic examination of the larynx. In European Manual of Medicine; Phoniatrics; Zehnhoff-Dinnesen, A., Wiskirska-Woznica, B., Neumann, K., Nawka, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume I. [Google Scholar]
- Available online: www.praat.org (accessed on 1 December 2023).
- Titze, I.R. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 1988, 83, 1536–1552. [Google Scholar] [CrossRef]
- Titze, I.R. Principles of Voice Production 2nd Printing; National Center for Voice and Speech: Iowa City, IA, USA, 2000. [Google Scholar]
- DeJonckere, P.H.; Lebacq, J. In vivo quantification of the intraglottal pressure: Modal phonation and voice onset. J. Voice 2019, 34, 645.e19–645.e39. [Google Scholar] [CrossRef]
- Fink, B.R. Adaptations for phonatory efficiency in the human vocal folds. Ann. Otol. Rhinol. Laryngol. 1962, 71, 79–85. [Google Scholar] [CrossRef]
- Fink, B.R.; Demarest, R.J. Laryngeal Biomechanics; Harvard University Press: Cambridge, UK; London, UK, 1978; ISBN 0-674-51085-2. [Google Scholar]
- DeJonckere, P.H.; Kob, M. Pathogenesis of vocal fold nodules: New insights from a modelling approach. Folia Phoniatr. Logop. 2009, 61, 171–179. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J. Mechanism of initiation of oscillatory motion in human glottis. Arch. Internat. Physiol. Biochim. 1981, 89, 127–136. [Google Scholar] [CrossRef]
- DeJonckere, P.H. EMG of the Larynx; Pietteur: Liège, Belgium, 1987; ISBN 2-87211-000-3. [Google Scholar]
- DeJonckere, P.H.; Lebacq, J.; Manfredi, C. Anticipation of a neuromuscular tuning in M. vocalis perturbs the periodicity of vocal fold vibration: The unexpected finding of a pitch-matching experiment comparing students with high-level professionals. In Models and Analysis of Vocal Emissions for Biomedical Applications: 8th International Workshop Dec 16–18, 2013; Firenze University Press: Firenze, Italy, 2013; pp. 153–156. ISBN 978-88-6655-740-7. [Google Scholar]
- Titze, I.R. Acoustic interpretation of the resonant voice. J. Voice 2001, 15, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Scherer, R.C.; Fulcher, L.P.; Wang, X.; Qiu, L.; Wan, M.; Wang, S. Effects of vertical glottal duct length on intraglottal pressures and phonation threshold pressure in the uniform glottis. J. Voice 2018, 32, 8–22. [Google Scholar] [CrossRef] [PubMed]
- DeJonckere, P.; Lebacq, J. Relation de phase entre la dynamique de la pression sous-glottique et le mouvement oscillatoire des cordes vocales: II. Attaque vocalique et fin d’émission. Arch. Physiol. Biochem. 1980, 88, 343–355. [Google Scholar] [CrossRef] [PubMed]
- DeJonckere, P.H.; Lebacq, J. Intraglottal aerodynamics at vocal fold vibration onset. J. Voice 2019, 35, 156.e23–156.e32. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y. Application of some acoustic measures for the evaluation of laryngeal dysfunction. Stud. Phonol. 1973, 7, 17–23. [Google Scholar] [CrossRef]
- Hillel, A.D. The study of laryngeal muscle activity in normal human subjects and in patients with laryngeal dystonia using multiple fine-wire electromyography. Laryngoscope 2001, 111 (Suppl. 2), 1–47. [Google Scholar] [CrossRef]
- DeJonckere, P.H. Les mécanismes musculaires élémentaires de régulation de la tension de la corde vocale au cours de la phonation. Folia. Phon. 1980, 32, 1–13. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Orval, F.; Miller, R.; Sneppe, R. Oscillatory mechanism of the glottis in horn playing. Brass Bulletin 1983, 41, 28–35. [Google Scholar]
- Damsté, P.H. Vocal cord vibrations compared to the vibrations of a trombone player’s lips. J. Fr. Otorhinolaryngol. Chir. Maxillofac. 1966, 15, 395–396. [Google Scholar]
- DeJonckere, P.H. Théorie Oscillo-Impédantielle de la Vibration des Cordes Vocales. Ph.D. Thesis, Catholic University of Louvain, Belgium, Brussel, 1981. [Google Scholar]
- Cornut, G.; Lafon, J.C. L’attaque, phase critique de la phonation. J. Franç. Otorhinolaryngol. 1959, 8, 875–885. [Google Scholar]
- Chacon, A.M.; Nguyen, D.D.; Holik, J.; Döllinger, M.; Arias-Vergara, T.; Madille, C.J. Vowel onset measures and their reliability, sensitivity and specificity: A systematic literature review. PLoS ONE 2024, 19, e0301786. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeJonckere, P.H.; Lebacq, J. Biophysics of Voice Onset: A Comprehensive Overview. Bioengineering 2025, 12, 155. https://doi.org/10.3390/bioengineering12020155
DeJonckere PH, Lebacq J. Biophysics of Voice Onset: A Comprehensive Overview. Bioengineering. 2025; 12(2):155. https://doi.org/10.3390/bioengineering12020155
Chicago/Turabian StyleDeJonckere, Philippe H., and Jean Lebacq. 2025. "Biophysics of Voice Onset: A Comprehensive Overview" Bioengineering 12, no. 2: 155. https://doi.org/10.3390/bioengineering12020155
APA StyleDeJonckere, P. H., & Lebacq, J. (2025). Biophysics of Voice Onset: A Comprehensive Overview. Bioengineering, 12(2), 155. https://doi.org/10.3390/bioengineering12020155