Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep
Abstract
:1. Introduction
2. Methods and Materials
2.1. Ethics and Animal Husbandry
2.2. Post-Mortem and Tissue Collection
2.3. Quantification of Fetal Cardiac Protein Expression
2.4. Quantification of Fetal Cardiac Concentration of Glucocorticoid and Thyroid Hormones
2.5. Quantification of Fetal Cardiac Enzymatic Activity
2.6. Quantification of Fetal Cardiac Glycogen and Collagen Staining
2.7. Quantification of Fetal Cardiac Ki67 Staining
2.8. Statistical Analyses
3. Results
3.1. Fetal Heart and Body Growth
3.2. Hormone Concentrations of Fetal Cardiac Tissue
3.3. Abundance of Glucocorticoid Receptor Isoforms in the Fetal Heart
3.4. Molecular Markers of Fetal Cardiac Growth
3.5. Molecular Markers of Fetal Cardiac OXPHOS and Mitochondrial Content
3.6. Molecular Markers of Fetal Cardiac Glucose Metabolism
3.7. Molecular Markers of Fetal Cardiac Contractility
3.8. Fetal Cardiac Glycogen, Collagen, and Ki67 Staining
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
11βHSD | 11β-hydroxysteroid dehydrogenases |
Akt | Protein kinase B |
AS160 | Akt substrate of 160 kDa |
CS | citrate synthase |
CVD | Cardiovascular disease |
dG | days of gestation |
eNOS | Endothelial nitric oxide synthase |
ETC | Electron transport chain |
GLUT | Glucose transporter |
GR | Glucocorticoid receptor |
GC | glucocorticoid |
IGF-1 | Insulin-like growth factor-1 |
IGF-1R | Insulin-like growth factor-1 receptor |
IHC | Immunohistochemistry |
iNOS | Inducible nitric oxide synthase |
IRS-1 | Insulin receptor substrate-1 |
Ki67 | Antigen Kiel 67 |
LDH | Lactate dehydrogenase |
LV | Left ventricle |
MR | Mineralocorticoid receptor |
mTOR | Mammalian target of rapamycin |
NOX-2 | NADPH oxidase 2 |
OXPHOS | Oxidative phosphorylation |
PAS | Periodic acid–Schiff |
PCNA | Proliferating cell nuclear antigen |
PDK4 | Pyruvate dehydrogenase kinase-4 |
PGC-1α | Peroxisome proliferator-activated receptor-gamma coactivator-1alpha |
PLN | Phospholamban |
ROS | Reactive oxygen species |
SERCA | Sarcoendoplasmic reticulum calcium ATPase |
SIRT-1 | Sirtuin-1 |
T3 | Triiodothyronine |
T4 | Thyroxine |
References
- Lawlor, D.A.; Ronalds, G.; Clark, H.; Davey Smith, G.; Leon, D.A. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: Findings from the Aberdeen Children of the 1950s prospective cohort study. Circulation 2005, 112, 1414–1418. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, K.; Sundquist, J.; Winkleby, M.A. Gestational Age at Birth and Mortality in Young Adulthood. JAMA 2011, 306, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.R.; Shiell, A.W.; Law, C.M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: A systematic review of the literature. J. Hypertens. 2000, 18, 815–831. [Google Scholar] [CrossRef]
- McKeigue, P.; Lithell, H.; Leon, D. Glucose tolerance and resistance to insulin-stimulated glucose uptake in men aged 70 years in relation to size at birth. Diabetologia 1998, 41, 1133–1138. [Google Scholar] [CrossRef]
- Thornburg, K.; Jonker, S.; O’Tierney, P.; Chattergoon, N.; Louey, S.; Faber, J.; Giraud, G. Regulation of the cardiomyocyte population in the developing heart. Prog. Biophys. Mol. Biol. 2011, 106, 289–299. [Google Scholar] [CrossRef]
- Burrell, J.H.; Boyn, A.M.; Kumarasamy, V.; Hsieh, A.; Head, S.I.; Lumbers, E.R. Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. Off. Publ. Am. Assoc. Anat. 2003, 274, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Jonker, S.S.; Zhang, L.; Louey, S.; Giraud, G.D.; Thornburg, K.L.; Faber, J.J. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J. Appl. Physiol. 2007, 102, 1130–1142. [Google Scholar] [CrossRef]
- Bensley, J.G.; Stacy, V.K.; De Matteo, R.; Harding, R.; Black, M.J. Cardiac remodelling as a result of pre-term birth: Implications for future cardiovascular disease. Eur. Heart J. 2010, 31, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- Bensley, J.G.; Moore, L.; De Matteo, R.; Harding, R.; Black, M.J. Impact of preterm birth on the developing myocardium of the neonate. Pediatr. Res. 2018, 83, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Bensley, J.G.; De Matteo, R.; Harding, R.; Black, M.J. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci. Rep. 2016, 6, 23756. [Google Scholar] [CrossRef]
- Chattergoon, N.N.; Giraud, G.D.; Louey, S.; Stork, P.; Fowden, A.L.; Thornburg, K.L. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 2012, 26, 397. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.D.; Simonetta, G.; Owens, J.A.; Robinson, J.S.; Clarke, I.J.; McMillen, I.C. Placental restriction alters the functional development of the pituitary-adrenal axis in the sheep fetus during late gestation. Pediatr. Res. 1996, 40, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef]
- Chattergoon, N.; Giraud, G.; Thornburg, K. Thyroid hormone inhibits proliferation of fetal cardiac myocytes in vitro. J. Endocrinol. 2007, 192, R1–R8. [Google Scholar] [CrossRef] [PubMed]
- Forhead, A.J.; Fowden, A.L. Thyroid hormones in fetal growth and prepartum maturation. J. Endocrinol. 2014, 221, R87–R103. [Google Scholar] [CrossRef]
- Nwosu, U.C.; Kaplan, M.M.; Utiger, R.D.; Delivoria-Papadopulos, M. Surge of fetal plasma triiodothyronine before birth in sheep. Am. J. Obstet. Gynecol. 1978, 132, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Dimasi, C.G.; Darby, J.R.T.; Morrison, J.L. A change of heart: Understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J. Physiol. 2023, 601, 1319–1341. [Google Scholar] [CrossRef]
- Lu, N.Z.; Wardell, S.E.; Burnstein, K.L.; Defranco, D.; Fuller, P.J.; Giguere, V.; Hochberg, R.B.; McKay, L.; Renoir, J.-M.; Weigel, N.L. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: Glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev. 2006, 58, 782–797. [Google Scholar] [CrossRef]
- Fowden, A.L.; Giussani, D.A.; Forhead, A.J. Intrauterine programming of physiological systems: Causes and consequences. Physiology 2006, 21, 29–37. [Google Scholar] [CrossRef]
- Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 2013, 132, 1033–1044. [Google Scholar] [CrossRef]
- Clifton, V.L.; McDonald, M.; Morrison, J.L.; Holman, S.L.; Lock, M.C.; Saif, Z.; Meakin, A.; Wooldridge, A.L.; Gatford, K.L.; Wallace, M.J.; et al. Placental glucocorticoid receptor isoforms in a sheep model of maternal allergic asthma. Placenta 2019, 83, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Orgeig, S.; McGillick, E.V.; Botting, K.J.; Zhang, S.; McMillen, I.C.; Morrison, J.L. Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 309, L84–L97. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Jaswal, J.S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 2010, 56, 130–140. [Google Scholar] [CrossRef]
- Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation. Oncol. Lett. 2012, 4, 1151–1157. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Spafford, M.A.; Marsh, D.R. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am. J. Physiol.-Heart Circ. Physiol. 1991, 261, H1698–H1705. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Collins-Nakai, R.L.; Itoi, T. Developmental changes in energy substrate use by the heart. Cardiovasc. Res. 1992, 26, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Velayutham, N.; Alfieri, C.M.; Agnew, E.J.; Riggs, K.W.; Baker, R.S.; Ponny, S.R.; Zafar, F.; Yutzey, K.E. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine. J. Mol. Cell. Cardiol. 2020, 146, 95–108. [Google Scholar] [CrossRef]
- Dimasi, C.G.; Darby, J.R.T.; Holman, S.L.; Quinn, M.; Meakin, A.S.; Seed, M.; Wiese, M.D.; Morrison, J.L. Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism. J. Mol. Cell. Cardiol. Plus 2024, 9, 100084. [Google Scholar] [CrossRef]
- Shao, D.; Tian, R. Glucose transporters in cardiac metabolism and hypertrophy. Compr. Physiol. 2015, 6, 331. [Google Scholar] [PubMed]
- Montessuit, C.; Thorburn, A. Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J. Biol. Chem. 1999, 274, 9006–9012. [Google Scholar] [CrossRef]
- Puente, B.N.; Kimura, W.; Muralidhar, S.A.; Moon, J.; Amatruda, J.F.; Phelps, K.L.; Grinsfelder, D.; Rothermel, B.A.; Chen, R.; Garcia, J.A. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014, 157, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, N.; Li, M.; Calvert, J.W.; Tejada, T.; Lambert, J.P.; Wu, J.; Kesteven, S.H.; Holman, S.R.; Matsuda, T.; Lovelock, J.D. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 2014, 157, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Giraud, G.; Louey, S.; Jonker, S.; Schultz, J.; Thornburg, K. Cortisol stimulates cell cycle activity in the cardiomyocyte of the sheep fetus. Endocrinology 2006, 147, 3643–3649. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, A.M.; Roman, C.; Gournay, V. Perinatal Myocardial DNA and Protein Changes in the Lamb: Effect of Cortisol in the Fetus. Pediatr. Res. 1999, 46, 141–146. [Google Scholar] [CrossRef]
- Lumbers, E.R.; Boyce, A.C.; Joulianos, G.; Kumarasamy, V.; Barner, E.; Segar, J.L.; Burrell, J.H. Effects of cortisol on cardiac myocytes and on expression of cardiac genes in fetal sheep. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 288, R567–R574. [Google Scholar] [CrossRef]
- Segar, J.L.; Bedell, K.; Page, W.V.; Mazursky, J.E.; Nuyt, A.-M.; Robillard, J.E. Effect of cortisol on gene expression of the renin-angiotensin system in fetal sheep. Pediatr. Res. 1995, 37, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, A.; Forhead, A.; Fowden, A.; Vandenberg, J. Cortisol influences the ontogeny of both alpha-and beta-subunits of the cardiac sodium channel in fetal sheep. J. Endocrinol. 2004, 180, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Chattergoon, N.N. Thyroid hormone signaling and consequences for cardiac development. J. Endocrinol. 2019, 242, T145–T160. [Google Scholar] [CrossRef]
- Grundy, D. Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. J. Physiol. 2015, 100, 755–758. [Google Scholar]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen & Co. Limited: Methuen, MA, USA, 1959. [Google Scholar]
- Soo, P.S.; Hiscock, J.; Botting, K.J.; Roberts, C.T.; Davey, A.K.; Morrison, J.L. Maternal undernutrition reduces P-glycoprotein in guinea pig placenta and developing brain in late gestation. Reprod. Toxicol. 2012, 33, 374–381. [Google Scholar] [CrossRef]
- Wang, K.C.; Brooks, D.A.; Thornburg, K.L.; Morrison, J.L. Activation of IGF-2R stimulates cardiomyocyte hypertrophy in the late gestation sheep fetus. J. Physiol. 2012, 590, 5425–5437. [Google Scholar] [CrossRef]
- Botting, K.J.; Loke, X.Y.; Zhang, S.; Andersen, J.B.; Nyengaard, J.R.; Morrison, J.L. IUGR decreases cardiomyocyte endowment and alters cardiac metabolism in a sex-and cause-of-IUGR-specific manner. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2018, 315, R48–R67. [Google Scholar] [CrossRef]
- Wang, K.C.; Tosh, D.N.; Zhang, S.; McMillen, I.C.; Duffield, J.A.; Brooks, D.A.; Morrison, J.L. IGF-2R-Gαq signaling and cardiac hypertrophy in the low-birth-weight lamb. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 308, R627–R635. [Google Scholar] [CrossRef]
- Saif, Z.; Hodyl, N.A.; Hobbs, E.; Tuck, A.R.; Butler, M.S.; Osei-Kumah, A.; Clifton, V.L. The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta 2014, 35, 260–268. [Google Scholar] [CrossRef] [PubMed]
- McBride, G.M.; Meakin, A.S.; Soo, J.Y.; Darby, J.R.; Varcoe, T.J.; Bradshaw, E.L.; Lock, M.C.; Holman, S.L.; Saini, B.S.; Macgowan, C.K. Intrauterine growth restriction alters the activity of drug metabolising enzymes in the maternal-placental-fetal unit. Life Sci. 2021, 285, 120016. [Google Scholar] [CrossRef]
- Dimasi, C.G.; Darby, J.R.T.; Cho, S.K.S.; Saini, B.S.; Holman, S.L.; Meakin, A.S.; Wiese, M.D.; Macgowan, C.K.; Seed, M.; Morrison, J.L. Reduced in utero substrate supply decreases mitochondrial abundance and alters the expression of metabolic signalling molecules in the fetal sheep heart. J Physiol 2024, 602, 5901–5922. [Google Scholar] [CrossRef] [PubMed]
- Lock, M.C.; Botting, K.J.; Allison, B.J.; Niu, Y.; Ford, S.G.; Murphy, M.P.; Orgeig, S.; Giussani, D.A.; Morrison, J.L. MitoQ as an antenatal antioxidant treatment improves markers of lung maturation in healthy and hypoxic pregnancy. J. Physiol. 2023, 601, 3647–3665. [Google Scholar] [CrossRef]
- Lock, M.C.; Darby, J.R.T.; Soo, J.Y.; Brooks, D.A.; Perumal, S.R.; Selvanayagam, J.B.; Seed, M.; Macgowan, C.K.; Porrello, E.R.; Tellam, R.L.; et al. Differential response to injury in fetal and adolescent sheep hearts in the immediate post-myocardial infarction period. Front. Physiol. 2019, 10, 208. [Google Scholar] [CrossRef]
- McMillen, I.C.; Thorburn, G.D.; Walker, D.W. Diurnal variations in plasma concentrations of cortisol, prolactin, growth hormone and glucose in the fetal sheep and pregnant ewe during late gestation. J. Endocrinol. 1987, 114, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Ho, J.T.; Torpy, D.J.; Rogers, A.; Doogue, M.; Lewis, J.G.; Czajko, R.J.; Inder, W.J. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 2011, 96, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Mastorakos, G.; Ilias, I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann. New York Acad. Sci. 2003, 997, 136–149. [Google Scholar] [CrossRef]
- Wintour, E.; Bell, R.; Carson, R.; MacIsaac, R.; Tregear, G.; Vale, W.; Wang, X.-M. Effect of long-term infusion of ovine corticotrophin-releasing factor in the immature ovine fetus. J. Endocrinol. 1986, 111, 469–475. [Google Scholar] [CrossRef]
- Mastorakos, G.; Ilias, I. Maternal hypothalamic-pituitary-adrenal axis in pregnancy and the postpartum period: Postpartum-related disorders. Ann. New York Acad. Sci. 2000, 900, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Rose, J.C. Development of the pituitary adrenal axis in fetal sheep twins. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1998, 274, R1–R8. [Google Scholar] [CrossRef]
- Holt, P.; Oliver, I. Plasma corticosterone concentrations in the perinatal rat. Biochem. J. 1968, 108, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.Z.; Cidlowski, J.A. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol. 2006, 16, 301–307. [Google Scholar] [CrossRef]
- Lu, N.Z.; Cidlowski, J.A. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell 2005, 18, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.Z.; Cidlowski, J.A. The Origin and Functions of Multiple Human Glucocorticoid Receptor Isoforms. Ann. N. Y. Acad. Sci. 2004, 1024, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.Z.; Collins, J.B.; Grissom, S.F.; Cidlowski, J.A. Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol. Cell. Biol. 2007, 27, 7143–7160. [Google Scholar] [CrossRef]
- Sundgren, N.C.; Giraud, G.D.; Schultz, J.M.; Lasarev, M.R.; Stork, P.J.; Thornburg, K.L. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2003, 285, R1481–R1489. [Google Scholar] [CrossRef]
- Li, J.; Forhead, A.; Dauncey, M.; Gilmour, R.; Fowden, A. Control of growth hormone receptor and insulin-like growth factor-I expression by cortisol in ovine fetal skeletal muscle. J. Physiol. 2002, 541, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Reini, S.A.; Wood, C.E.; Jensen, E.; Keller-Wood, M. Increased maternal cortisol in late-gestation ewes decreases fetal cardiac expression of 11β-HSD2 mRNA and the ratio of AT1 to AT2 receptor mRNA. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006, 291, R1708–R1716. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.W.; Zhang, L.; McMillen, I.C.; Botting, K.J.; Duffield, J.A.; Zhang, S.; Suter, C.M.; Brooks, D.A.; Morrison, J.L. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb. J. Physiol. 2011, 589, 4709–4722. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Kalinichenko, V.V.; Yutzey, K.E. FoxO1 and FoxM1 Transcription Factors Have Antagonistic Functions in Neonatal Cardiomyocyte Cell-Cycle Withdrawal and IGF1 Gene Regulation. Circ. Res. 2013, 112, 267–277. [Google Scholar] [CrossRef]
- Kadenbach, B. Complex IV–the regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2021, 58, 296–302. [Google Scholar] [CrossRef]
- Kalpage, H.A.; Wan, J.; Morse, P.T.; Zurek, M.P.; Turner, A.A.; Khobeir, A.; Yazdi, N.; Hakim, L.; Liu, J.; Vaishnav, A. Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int. J. Biochem. Cell Biol. 2020, 121, 105704. [Google Scholar] [CrossRef]
- Arnold, S.; Goglia, F.; Kadenbach, B. 3, 5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem. 1998, 252, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Bartho, L.A.; Fisher, J.J.; Walton, S.L.; Perkins, A.V.; Cuffe, J.S.M. The effect of gestational age on mitochondrial properties of the mouse placenta. Reprod. Fertil. 2022, 3, 19–29. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Sauerwein, H.; Higashiyama, Y.; Picard, B.; Abe, H. Prenatal developmental changes in glucose transporters, intermediary metabolism and hormonal receptors related to the IGF/insulin-glucose axis in the heart and adipose tissue of bovines. Reprod. Nutr. Dev. 2006, 46, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Santalucia, T.; Camps, M.; Castelló, A.; Munoz, P.; Nuel, A.; Testar, X.; Palacin, M.; Zorzano, A. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 1992, 130, 837–846. [Google Scholar] [CrossRef]
- Alcendor, R.R.; Kirshenbaum, L.A.; Imai, S.-i.; Vatner, S.F.; Sadoshima, J. Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ. Res. 2004, 95, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.A.; Arango, M.; Abderrahmane, S.; Lambert, E.; Tourette, C.; Catoire, H.; Néri, C. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet. 2005, 37, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, M.; Li, X.; Li, H.; Lai, Y.; Huang, S.; He, X.; Si, X.; Zheng, H.; Liao, W.; et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging 2019, 11, 12546–12567. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, D.H.; Kranias, E.G. Phospholamban: A crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 2003, 4, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Boutjdir, M. Gene expression of SERCA2a and L-and T-type Ca channels during human heart development. Pediatr. Res. 2001, 50, 569–574. [Google Scholar] [CrossRef]
- Posterino, G.S.; Dunn, S.L.; Botting, K.J.; Wang, W.; Gentili, S.; Morrison, J.L. Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus. J. Appl. Physiol. 2011, 111, 236–243. [Google Scholar] [CrossRef]
Preterm (n = 8) | Near Term (n = 7) | p Value | |
---|---|---|---|
Fetal Parameters | |||
Body weight (kg) | 2.1 ± 0.3 (n = 7) | 4.5 ± 0.4 | <0.0001 |
Crown-rump length (CRL, cm) | 45.2 ± 2.7 (n = 7) | 56.9 ± 2.9 | <0.0001 |
Heart weight (g) | 16.8 ± 4.5 | 33.6 ± 6.4 | <0.0001 |
Heart weight: body weight (g/kg) | 8.0 ± 1.6 (n = 7) | 7.3 ± 1.5 | 0.4334 |
LV weight (g) | 9.2 ± 3.1 (n = 7) | 16.7 ± 3.0 (n = 6) | 0.0011 |
LV weight: body weight (g/kg) | 4.2 ± 1.3 (n = 6) | 3.7 ± 0.7 (n = 6) | 0.4534 |
RV weight (g) | 5.1 ± 0.9 (n = 7) | 10.0 ± 1.7 (n = 6) | <0.0001 |
RV weight: body weight (g/kg) | 2.3 ± 0.4 (n = 6) | 2.2 ± 0.4 (n = 6) | 0.6571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanollahi, R.; Holman, S.L.; Bertossa, M.R.; Meakin, A.S.; Thornburg, K.L.; McMillen, I.C.; Wiese, M.D.; Lock, M.C.; Morrison, J.L. Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep. J. Cardiovasc. Dev. Dis. 2025, 12, 36. https://doi.org/10.3390/jcdd12020036
Amanollahi R, Holman SL, Bertossa MR, Meakin AS, Thornburg KL, McMillen IC, Wiese MD, Lock MC, Morrison JL. Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep. Journal of Cardiovascular Development and Disease. 2025; 12(2):36. https://doi.org/10.3390/jcdd12020036
Chicago/Turabian StyleAmanollahi, Reza, Stacey L. Holman, Melanie R. Bertossa, Ashley S. Meakin, Kent L. Thornburg, I. Caroline McMillen, Michael D. Wiese, Mitchell C. Lock, and Janna L. Morrison. 2025. "Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep" Journal of Cardiovascular Development and Disease 12, no. 2: 36. https://doi.org/10.3390/jcdd12020036
APA StyleAmanollahi, R., Holman, S. L., Bertossa, M. R., Meakin, A. S., Thornburg, K. L., McMillen, I. C., Wiese, M. D., Lock, M. C., & Morrison, J. L. (2025). Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep. Journal of Cardiovascular Development and Disease, 12(2), 36. https://doi.org/10.3390/jcdd12020036