Non-Singular Burton–Miller Boundary Element Method for Acoustics
Abstract
:1. Introduction
2. The Burton–Miller Framework
2.1. Overview
2.2. The Standard Boundary Integral Equation
2.3. The Normal Derivative of the Boundary Integral Equation
2.4. The Non-Singular Burton–Miller Formulation
3. Results
3.1. Scattering from a Rigid Sphere
3.2. Scattering from a Rigid Cube
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Singular Behaviour of the Green’s Functions
References
- Rienstra, S.W.; Hirschberg, A. An Introduction to Acoustics; Eindhoven University of Technology: Eindhoven, The Netherlands, 2004. [Google Scholar]
- von Helmholtz, H. Theorie der Luftschwingungen in Röhren mit Offenen Enden; Verlag von Wilhelm Engelmann: Leipzig, Germany, 1896. [Google Scholar]
- Nita, B.G.; Ramanathan, S. Fluids in Music: The Mathematics of Pan’s Flutes. Fluids 2019, 4, 181. [Google Scholar] [CrossRef]
- Kadar, H.; Le Bras, S.; Bériot, H.; de Roeck, W.; Desmet, W.; Schram, C. Trailing-edge noise prediction by solving Helmholtz equation with stochastic source term. AIAA J. 2021, 60, 1–20. [Google Scholar] [CrossRef]
- Smyk, E.; Markowicz, M. Impact of the Soundproofing in the Cavity of the Synthetic Jet Actuator on the Generated Noise. Fluids 2022, 7, 323. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Ostachowicz, W.; Yang, Z. Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array. Mech. Syst. Signal Process. 2018, 108, 21–32. [Google Scholar] [CrossRef]
- Lighthill, J. Waves in Fluids; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Pergamon Press: London, UK, 1987. [Google Scholar]
- Rayleigh, R. The Theory of Sound; Macmillan and Co., Ltd.: New York, NY, USA, 1896; Volume 2. [Google Scholar]
- Becker, A.A. The Boundary Element Method in Engineering; McGraw-Hill Book Company: London, UK, 1992. [Google Scholar]
- Brebbia, C.A.; Walker, S. Boundary Element Techniques In Engineering; Newnes-Butterworths: London, UK, 1980. [Google Scholar]
- Amini, S.; Harris, P.J.; Wilton, D.T. Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Bai, M.R. Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. J. Acoust. Soc. Am. 1992, 92, 533–549. [Google Scholar] [CrossRef]
- Liu, Y. On the BEM for acoustic wave problems. Eng. Anal. Bound. Elem. 2019, 107, 53–62. [Google Scholar] [CrossRef]
- Sommerfeld, A. Die Greensche Funktion der Schwingungsgleichung. Jahresber. Dtsch.-Math.-Ver. 1912, 21, 309–353. [Google Scholar]
- Klaseboer, E.; Charlet, F.D.E.; Khoo, B.C.; Sun, Q.; Chan, D.Y.C. Eliminating the fictitious frequency problem in BEM solutions of the external Helmholtz equation. Eng. Anal. Bound. Elem. 2019, 109, 106–116. [Google Scholar] [CrossRef]
- Schenck, H.A. Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 1968, 44, 41–58. [Google Scholar] [CrossRef]
- Burton, A.J.; Miller, G.F. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc. R. Soc. A 1971, 323, 201–210. [Google Scholar]
- Marburg, S. The Burton and Miller method: Unlocking another mystery of its coupling parameter. J. Comput. Acoust. 2016, 24, 1550016. [Google Scholar] [CrossRef]
- Langrenne, C.; Garcia, A.; Bonnet, M. Solving the hypersingular boundary integral equation for the Burton and Miller formulation. J. Acoust. Soc. Am. 2015, 138, 3332. [Google Scholar] [CrossRef] [Green Version]
- Klaseboer, E.; Sun, Q.; Chan, D.Y.C. Non-singular boundary integral methods for fluid mechanics applications. J. Fluid Mech. 2012, 696, 468–478. [Google Scholar] [CrossRef]
- Sun, Q.; Klaseboer, E.; Chan, D.Y.C. A robust and accurate formulation of molecular and colloidal electrostatics. J. Chem. Phys. 2016, 145, 054106. [Google Scholar] [CrossRef]
- Sun, Q.; Klaseboer, E.; Khoo, B.C.; Chan, D.Y. A robust and non-singular formulation of the boundary integral method for the potential problem. Eng. Anal. Bound. Elem. 2014, 43, 117–123. [Google Scholar] [CrossRef]
- Klaseboer, E.; Sun, Q. Helmholtz equation and non-singular boundary elements applied to multi-disciplinary physical problems. Commun. Theor. Phys. 2022, 74, 085003. [Google Scholar] [CrossRef]
- Meyer, W.; Bell, W.; Zinn, B.; Stallybrass, M. Boundary integral solutions of three dimensional acoustic radiation problems. J. Sound Vib. 1978, 59, 245–262. [Google Scholar] [CrossRef]
- Chen, K.; Cheng, J.; Harris, P.J. A new study of the Burton and Miller method for the solution of a 3D Helmholtz problem. IMA J. Appl. Math. 2008, 74, 163–177. [Google Scholar] [CrossRef]
- Hwang, W.S. Eliminating the fictitious frequency problem in BEM solutions of the external Helmholtz equation. J. Acoust. Soc. Am. 1997, 101, 3336. [Google Scholar] [CrossRef]
- Sun, Q.; Klaseboer, E.; Khoo, B.C.; Chan, D.Y.C. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics. R. Soc. Open Sci. 2015, 2, 140520. [Google Scholar] [CrossRef]
- Morse, P. Vibration and Sound, 4th ed.; American Institute of Physics: New York, NY, USA, 1991. [Google Scholar]
- Klaseboer, E.; Sun, Q.; Chan, D.Y.C. Non-singular field-only surface integral equations for electromagnetic scattering. IEEE Trans. Antennas Propag. 2017, 65, 972–977. [Google Scholar] [CrossRef]
- Sun, Q.; Klaseboer, E.; Chan, D.Y.C. A Robust Multi-Scale Field-Only Formulation of Electromagnetic Scattering. Phys. Rev. B 2017, 95, 045137. [Google Scholar] [CrossRef]
- Klaseboer, E.; Sun, Q.; Chan, D.Y.C. A field only integral equation method for time domain scattering of electromagnetic pulses. Appl. Opt. 2017, 56, 9377. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Klaseboer, E.; Yuffa, A.J.; Chan, D.Y.C. Field-only surface integral equations: Scattering from a perfect electric conductor. J. Opt. Soc. Am. A 2020, 37, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Klaseboer, E.; Yuffa, A.J.; Chan, D.Y.C. Field-only surface integral equations: Scattering from a dielectric body. J. Opt. Soc. Am. A 2020, 37, 284–293. [Google Scholar] [CrossRef]
- Sun, Q.; Klaseboer, E. A Non-Singular, Field-Only Surface Integral Method for Interactions between Electric and Magnetic Dipoles and Nano-Structures. Annal. Phys. 2022, 534, 2100397. [Google Scholar] [CrossRef]
- Klaseboer, E.; Sun, Q. Analytical solution for a vibrating rigid sphere with an elastic shell in an infinite linear elastic medium. Int. J. Solids Struct. 2022, 239, 111448. [Google Scholar] [CrossRef]
- Klaseboer, E.; Sepehrirahnama, S.; Chan, D.Y.C. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform. J. Acoust. Soc. Am. 2017, 142, 697–707. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Klaseboer, E. Non-Singular Burton–Miller Boundary Element Method for Acoustics. Fluids 2023, 8, 56. https://doi.org/10.3390/fluids8020056
Sun Q, Klaseboer E. Non-Singular Burton–Miller Boundary Element Method for Acoustics. Fluids. 2023; 8(2):56. https://doi.org/10.3390/fluids8020056
Chicago/Turabian StyleSun, Qiang, and Evert Klaseboer. 2023. "Non-Singular Burton–Miller Boundary Element Method for Acoustics" Fluids 8, no. 2: 56. https://doi.org/10.3390/fluids8020056