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Abstract: As devices become more miniaturized and integrated, the heat flux density has increased,
highlighting the issue of heat concentration, especially for low thermal conductivity gallium oxide
(Ga2O3). This study utilizes diamond composite substrates with an AlN transition layer to assist
Ga2O3 in rapid thermal dissipation. All samples were prepared using pulsed laser deposition
(PLD) and annealed at 600–1000 ◦C. The microstructure, surface morphology, vacancy defects, and
thermal characteristics of post-annealed Ga2O3 were then thoroughly investigated to determine the
mechanism by which annealing temperature influences the heat transfer of heterostructures. The
results demonstrate that increasing the annealing temperature can improve the crystallinity of Ga2O3

while also reducing oxygen vacancy defects from 20.6% to 9.9%. As the temperature rises to 1000 ◦C,
the thermal conductivity of Ga2O3 reaches a maximum of 12.25 W/(m·K). However, the interface
microstructure has no direct correlation with annealing temperature. At 700 ◦C, Ga2O3/diamond
exhibits a maximum thermal boundary conductance of 127.06 MW/(m2·K). Higher temperatures
(>800 ◦C) cause irregular mixtures to form near the heterointerface, intensifying phonon interface
scattering and sharply deteriorating interfacial heat transfer. These findings contribute to a better
understanding of the heterointerface thermal transfer influence mechanism and provide theoretical
guidance for the thermal management design and physical analysis of Ga2O3-based power devices.

Keywords: Ga2O3; diamond composite substrates; annealing; interfacial heat transfer

1. Introduction

Electric vehicles (EVs) are rapidly expanding due to the consumers’ demand for
energy conservation and emission reduction. Semiconductors, as the core of electronic
products and the foundation of modern technology, may help to advance the development
of EVs. Therefore, wide and ultra-wide bandgap semiconductor materials have received
widespread attention. In contrast to the currently industrialized silicon carbide (SiC) and
gallium nitride (GaN), emerging gallium oxide (Ga2O3) has an ultra-wide bandgap width
(4.5–4.9 eV) and an ultra-high critical breakdown field (8 MV/cm), thus resulting in a higher
voltage resistance and a lower power loss [1]. In addition, β-Ga2O3 prevails over other
wide bandgap materials like SiC and GaN due to its low cost and scalable melting growth
techniques, including edge-defined film-fed growth (EFG) and Czochralski methods [2,3].
Therefore, the growth rate of Ga2O3 single-crystal substrates is faster, the iteration cycle
is shorter, and the manufacturing cost can be 78% less than SiC using iridium-free tech-
nology [4]. These characteristics have driven the development of β-Ga2O3-based power
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devices. In 2012, the National Institute of Information and Communications Technol-
ogy (NICT) [5] demonstrated the first Ga2O3 metal-semiconductor field-effect transistors
(MESFETs). Breakthroughs have continued to occur as research has progressed [5–15].

However, with the increasing power density, its extremely low natural thermal con-
ductivity (10–27 W/m·K), only 1/30 of SiC and 1/10 of GaN [16], brings unavoidable
issues of heat dissipation. Furthermore, Ga2O3 with thin films or nanowire structures
can increase phonon-boundary scattering, further deteriorating its thermal conductiv-
ity [1,17,18]. Such low thermal conductance has become one of the technical bottlenecks
in its application and promotion, and the resulting self-heating effect (SHE) can lead to
an increase in the near-junction temperature of power devices and uneven distribution of
dissipated power, resulting in the restricted stability, decreased device reliability, and short-
ened lifetime [19]. Thus, an effective thermal management strategy is urgently required. At
present, a hetero-integration method has been proposed to minimize the SHE of β-Ga2O3
MOSFETs. This involves ion bonding or heterojunction growth of Ga2O3 with high thermal
conductivity materials. The effectiveness of hetero-integration schemes in improving the
high-temperature characteristics of Ga2O3 power devices has also been verified experi-
mentally. In 2019, the Shanghai Institute of Microsystems [20] used an ion-cutting process
to achieve hetero-integration of single-crystal Ga2O3 and SiC through bonding and pre-
pared the high-temperature characteristics of switch devices. The electrical characterization
results showed that SiC-based Ga2O3 devices had significantly higher thermal stability
than Ga2O3-based Ga2O3 devices, including stable on-resistance, forward saturation cur-
rent, and reverse leakage current being significantly advanced. In 2024, the same research
group [21] achieved higher thermal conductivity of Ga2O3 and lower thermal boundary
resistance (TBR) by introducing an Al2O3 intermediate layer and post-annealing to improve
the quality of Ga2O3 films and the heterointerfaces. Although single-crystal Ga2O3 can be
directly transferred to a high thermal conductivity substrate through mechanical exfoliation
and ion bonding, this method has obvious limitations and is only suitable for research
purposes, not for future industrial development. In contrast, heterogeneous growth with
flexible process compatibility has a greater potential. When growing Ga2O3 directly on a
high thermal conductivity substrate, it is important to consider the lattice mismatch be-
tween Ga2O3 and the high thermal conductivity substrate [4,22]. A larger lattice mismatch
will generate a large number of defects and voids at the interface, further increasing thermal
resistance and limiting interfacial heat transfer [4,22]. In addition, large differences in ther-
mal expansion coefficients may generate large residual stress in the Ga2O3 layer, causing it
to rupture during the heating and cooling process. These issues can be further addressed
by using appropriate thermal interface materials (TIMs, proper lattice matching, thermal
expansion coefficient, thickness, thermal conductivity, and crystal plane orientation) to
reduce the thermal boundary resistance between the heterostructures [23–25].

The simulation results show that the higher the thermal conductivity of a substrate
material as a heat sink, the greater the heat dissipation effect on the low thermal conduc-
tivity materials (such as GaN and Ga2O3) [26,27]. Diamond’s high thermal conductivity
(1000–2000 W/(m·K)) makes it a popular choice for managing heat in low thermal conduc-
tivity materials and improving device performance [27]. In addition, transitions between
different semiconductor materials are frequently carried out via intermediate layers to
reduce various physical mismatches such as lattice mismatch, crystal type mismatch, in-
terdiffusion, and antiphase domains between different semiconductor materials. Due to
a large lattice mismatch of 11% between GaN and diamond, SiN and AlN are commonly
used as interlayers, and a number of systematic studies have been conducted to investigate
the thermal properties and influence mechanisms of GaN on diamonds with and without
SiN and AlN interlayers [27]. It was found [28] that the introduction of the SiN intermedi-
ate layer can result in smooth interfaces without too much disorder, effectively reducing
phonon scattering and obtaining an extremely low TBR of 6.5 m2·K/GW. Similarly, Jia
et al. [29] further confirmed that forming a silicon–carbon–nitrogen (Si-C-N) layer between
GaN and diamond results in a strong adhesion with a SiN interlayer and a lower TBR
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(<10 m2·K/GW). To reduce the impact of a significant mismatch of Ga2O3 with diamond,
AlN was selected as the thermal interface material for Ga2O3/diamond. The published
work mainly focuses on the optimization of the growth processes of Ga2O3 films on dia-
mond composite substrates; however, the effect of these optimizations is limited [30].

The key to efficiently utilizing the high thermal conductivity of diamond is to optimize
interface heat transfer and thus enhance overall heat dissipation performance. It is reported
that thermal annealing technology has advanced significantly and has been widely used for
material heat treatment. Such a post-treatment process can effectively improve the quality
of the films and heterointerface by stress relaxation and recrystallization, thus further
improving their thermal properties [21]. Zhe Cheng et al. [31] found that 800 ◦C annealing
treatment can effectively remove the injection-induced strain in the film, and increase
the thermal conductivity of β-Ga2O3 by more than twice. Michael et al. [32] obtained an
enhanced thermal boundary conductance (TBC) of Ga2O3/4H-SiC from 66 MW/(m2·K) to
77 MW/(m2·K) after annealing at 800 ◦C for 1 h. Xu et al. [1] further employed a thinner
20 nm Al2O3 intermediate layer to form a Ga2O3/Al2O3/4H-SiC composite structure
and then annealed at an even higher temperature of 900 ◦C, achieving a higher TBC
of ~130 MW/m2·K. Recently, similar work has started to get on with Ga2O3/diamond.
Seo et al. [33] adopted the mist chemical vapor deposition (CVD) method to prepare
Ga2O3 on the diamond. They found that at a growth temperature of 500 ◦C, Ga2O3
becomes polycrystalline, and interface separation occurs. However, at higher temperatures
(550 ◦C and 600 ◦C), only β phase Ga2O3 exists, and the interface adhesion remains stable
after thermal treatment at 800 ◦C. These reports present an effective method to improve
the heterointerface microstructure and thermal properties, but so far, few investigations
involve the enhancement of Ga2O3/diamond interfacial thermal transport using thermal
treatment, and the related influence mechanisms of heat transfer and regulation are yet to
be fully figured out, so further research is required.

In the current work, diamond composite substrates consist of a ~180 nm thick AlN
film and a ~300 um diamond bulk. AlN films were pre-grown using an RF magnetron
sputtering system, and then Ga2O3 thin films were deposited using pulsed laser deposi-
tion (PLD). After deposition, post-annealing treatment was performed for comparative
investigations to compare the effects of growth temperature on the microstructure, defect
concentration, and thermal properties of Ga2O3 thin films on diamond composite sub-
strates. By comprehensively exploring the element mixing, structural disorder, interface
binding force, chemical bonding, crystal orientation, and roughness of heterointerfaces, the
influence mechanism of annealing temperature on heat transfer at non-uniform interfaces
is revealed.

2. Materials and Methods
2.1. Sample Preparations

The AlN film was prepared by radio frequency magnetron sputtering method at a
growth pressure of 0.2 Pa and a growth temperature of 400 ◦C. After preparing the AlN
films, they were vacuum encapsulated. Ga2O3 was then grown on the aforementioned
diamond composite substrate using a Coherent COMPex 102 PLD system equipped with
a KrF excimer laser source (wavelength of 248 nm, pulse width of 25 ns; Santa Clara,
CA, USA). The Ga2O3 ceramic targets were made from high-purity Ga2O3 polycrystalline
powder (99.999%, Alfa Aesar (China) Chemical Co., Ltd., Shanghai, China) by cold pressing
andsintering in air at 1350 ◦C for 24 h [34]. The irradiation pulse laser frequency was 10 Hz,
and the energy density was 1.0 J/cm2. The distance between the substrate and the Ga2O3
target was 50 mm. The growth pressure was 1 Pa, and the growth temperature was 650 ◦C.
After 32,000 laser pulses, an appropriate amount of pure O2 was introduced to maintain
the pressure at 200 Pa, and the temperature was lowered to 550 ◦C for in situ annealing for
30 min.
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2.2. Characterizations

After the sample preparation was completed, multiple characterizations including
X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy
(XPS), high-resolution transmission electron microscopy (HRTEM), and time-domain ther-
mal reflection (TDTR) were performed. A comprehensive study was conducted on the
microstructure, chemical state, and thermal conductivity of Ga2O3, establishing the in-
trinsic relationship between post-annealing conditions and heterostructure quality. The
formation and control mechanisms of defects were identified. Specifically, the crystallinity
and crystal structure were evaluated using a Bruker D8 DISCOVER XRD spectrometer
(Billerica, MA, USA) equipped with a 40 kV, 30 mA, and 1.54 Å Cu Ka radiation source.
The surface morphology is characterized by the Brxuker Dimension ICON AFM system
(Billerica, MA, USA) in tapping mode. Thermo FEI Talos F200S G2 TEM (Waltham, MA,
USA), equipped with an energy-dispersive spectrometer (EDS), was used to extract cross-
sectional information. The electronic structure was determined using Thermo ESALAB
250xi XPS (Waltham, MA, USA) with a monochromatic Al K α line as the radiation source
(photon energy of 1486.6 eV). The standard C1s nuclear energy peak (binding energy of
284.80 eV) was used as the absolute binding energy scale. The AUTINST Pione-01 TDTR
system (Shanghai, China) was used to collect thermal characteristics, which employs tita-
nium: sapphire femtosecond lines as the laser source. The laser wavelength, pulse, energy,
and frequency are 1064 nm, 80 fs, 25 nJ, and 80 MHz, respectively.

3. Results and Discussion
3.1. Surface and Interface Microstructure and Morphology Variation

XRD, AFM, and TEM were used to extract structural data, surface morphology, and
sectional information to understand the effect of annealing temperature on the microstruc-
ture evolution behavior of Ga2O3 films, as well as the fundamental mechanism involved.

Figure 1a shows the XRD patterns of Ga2O3 thin films deposited and annealed on
diamond composite substrates under different atmospheres at 900 ◦C. The Ga2O3 films
annealed in Ar and N2 atmospheres at 900 ◦C were denoted as Ar-900 and N2-900, re-
spectively. Several obvious diffraction peaks were detected. The peaks at 36.1◦, 43.92◦,
75.26◦, and 76.25◦ belong to the peaks of AlN and diamond [31,35], while other peaks
belong to the diffraction peaks of Ga2O3. The deposited Ga2O3 has poor crystallization
behavior, whereas the annealed ones are polycrystalline. Annealed Ga2O3 samples have
three diffraction peaks corresponding to the β phase: (−201), (−402), and (−603) [31]. It can
be observed that after annealing in N2 and Ar atmospheres, the detected diffraction peaks
of Ga2O3 have been enhanced. In addition, the peak enhancement is more pronounced and
the FWHM is narrower in N2, which indicates that high-temperature annealing in N2 is
more effective at improving the crystallinity of Ga2O3.

Figure 1b shows the XRD patterns of Ga2O3 thin films on diamond composite sub-
strates before and after annealing in an N2 ambient, indicating the structural evolution
as a function of annealing temperature. The Ga2O3 films annealed in N2 atmosphere at
600 ◦C, 700 ◦C, 800 ◦C, 900 ◦C, and 1000 ◦C were denoted as N2-600, N2-700, N2-800,
N2-900, and N2-1000, respectively. The β-Ga2O3 films are mostly (−201)-oriented, with
peaks increasing with annealing temperature. Furthermore, it can be observed that as
the annealing temperature increases, the FWHM slightly decreases, indicating that high
temperature favors the improvement of film crystallinity. This is mainly because high-
temperature annealing increases the kinetic energy of Ga and O atoms. Thus, the migration
of atoms in the film can be accelerated to an appropriate level [36]. Meanwhile, the stress
caused by lattice mismatch or distortion can be released, thereby promoting the preferred
orientation of the crystal and improving the crystallinity of the films.
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Figure 1. XRD patterns of Ga2O3 on diamond composite substrates at different (a) ambients and
(b) annealing temperatures.

AFM micrographs were used to observe the surface morphology evolution of Ga2O3
films during high-temperature annealing, as shown in Figure 2 and Figure S1 (Supporting
Information). The surface of deposited Ga2O3 is relatively rough (RMS of 7.43 nm) and
contains small grains, mainly due to the high temperature providing sufficient energy for
surface atoms to further migrate and condense, especially when annealed under N2, which
shows a more noticeable increase than when annealed in Ar [36].
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Figure 2. AFM images of Ga2O3 films on diamond composite substrates at different annealing
temperatures: (a) as-grown; (b) 600 ◦C; (c) 700 ◦C; (d) 800 ◦C; (e) 900 ◦C; (f) 1000 ◦C.

In addition, at elevated temperatures, evolved grain structures were observed in the
3D micrographs. The variation in surface morphology with annealing temperature is
shown in Figure 2. As the annealing temperature increases, the phenomenon of grain
aggregation becomes more pronounced, but overall three-dimensional growth dominates,
and roughness increases steadily. At low annealing temperatures (600–700 ◦C), the increase
in roughness is not minimal; however, when the temperature exceeds 800 ◦C, the roughness
increases sharply. When the temperature reached 900 ◦C and 1000 ◦C, the roughness
increased to 11.87 nm and 13.21 nm, respectively, showing an increase of 4.44 nm and
5.78 nm compared to the unannealed Ga2O3. The roughness rises with temperature. The
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increase in roughness with temperature may be due to local stress caused by crystallization
within the film. Therefore, the increase in surface roughness at higher temperatures can be
attributed to the combined effect of high temperatures and crystallization-induced stress in
the nanocrystalline Ga2O3 film [37].

Figure 3 depicts the cross-sectional images and related electron diffraction patterns
used to study microscopic changes in the interface quality of Ga2O3 heterostructures on di-
amond composite substrates with annealing temperature. Figure 3a shows the unannealed
AlN/diamond interface. The presence of various crystal planes, and the deviation of the
optical axis during the measurement, results in wrinkled stripes near the interface (within
the rectangular box), which directly indicates that the crystal structure near the interface
is relatively complex. In Figure 3b, the high-precision transmission electron microscopy
(HRTEM) image of the Ga2O3/AlN heterostructure shows that the crystallinity of Ga2O3 is
poor and presents polycrystalline, while AlN is similar to a single crystal. It was also found
that there is a 3–5 nm disordered layer near the interface, and the signal superposition near
the Ga2O3-AlN interface provides additional evidence. Figure 3c demonstrates that the
horizontal lattice plane spacing in Ga2O3 is about 2.49 Å, which corresponds to the Ga2O3
(−402) plane [38].
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results of Ga2O3, Ga2O3/AlN, and AlN.
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In a comparison of the HRTEM images of AlN and diamond interfaces after annealing,
it can be found that wrinkled stripes disappear at 700 ◦C (Figure 3d). However, at 900 ◦C
(Figure 3g), an amorphous layer with a thickness of ~4 nm is visible near the interface. By
comparing the Ga2O3 and AlN interfaces after annealing, when the annealing temperature
is 700 ◦C, the disordered layer near the interface almost disappears, as shown in Figure 3e.
However, at 900 ◦C, abnormal areas appear near the interface, as shown in the yellow
dashed line in Figure 3h. When comparing the interior of Ga2O3, as shown in Figure 3f,i,
the measured interplanar spacing belongs to the β phase of Ga2O3, and the higher the
annealing, the fewer types of diffraction fringes and the better the crystallinity. Herein, the
interplanar spacings of 2.59 Å and 2.57 Å belong to the Ga2O3 (111) plane [39], while the
interplanar spacing of 2.99 Å corresponds to the Ga2O3 (400) plane [40].

Figure 4 shows a detailed analysis of the abnormal changes near the Ga2O3-AlN
interface at 900 ◦C in Figure 3h. Figure 4a–c show that the Ga2O3 heterointerface on the
diamond composite substrate under HAADF mode has a significant interface mutation
at unannealed and 700 ◦C. However, at 900 ◦C, it is evident that there are some unknown
structures densely arranged near the interface that extend into the interior of Ga2O3. For
further analysis, this section focuses on one of the small areas as shown in Figure 4d.
The elemental composition of the thin film cross-section was determined using the EDS
technique. Figure 4e depicts the mapping images of O, Ga, Al, and N elements, which
qualitatively shows the constituent elements. Figure 4e provides further quantitative
analysis of the abnormal region: the yellow region contains 11.50%, 41.00%, 23.45%, and
24.05% of Ga, O, Al, and N atoms, respectively. It can be seen that in the abnormal area,
some AlN penetrates the interior of Ga2O3 and forms a mixture with it.
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and N elements within the yellow dashed line.

3.2. Surface Vacancy Defects Analysis

The chemical composition and elemental state of Ga2O3 thin films before and after
annealing were determined using XPS. To eliminate the charge effect, the C1s peak at
284.80 eV was used to calibrate the binding energy [35,41,42]. Figure 5a–c show the surface
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chemical composition of Ga2O3 before and after annealing, as well as the fine spectra of O
1s and Ga 3d. It can be seen that the elements detected on the surface are mainly composed
of Ga, O, and C.
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Figure 5d–i show that the O 1s core level of all samples was deconvoluted into OL
(centered at 530.8 eV) and OV (centered at 532.1 eV), with the former corresponding to Ga-O
bonds, and the latter related to oxygen vacancies [43]. Comparing the oxygen vacancy
defects’ dependence on the annealing ambients, Figure S2 (Supporting Information) shows
that the proportion of OV defects significantly decreased after annealing, with the lowest
concentration of vacancy defects obtained by annealing in the N2 ambient. This is mainly
due to N atoms occupying some oxygen vacancy defects. Further, Figure 5d–i also show
the proportion of oxygen vacancy (OV/(OL + OV)), which decreases as the N2 annealing
temperature increases. This can be partially explained by the fact that N atoms occupy
some oxygen vacancies at a high temperature by forming Ga-N bonds, as verified by the
slight shift of Ga 3d spectra toward a low-energy direction, and thus reduce the proportion
of oxygen vacancies [44]. However, in such a severely oxygen-deficient atmosphere, the
huge reduction from 20.6% to 9.9% is not reasonable. A non-pure N2 annealing atmosphere
can be responsible for the results. Before annealing, the air inside the furnace tube might
be not completely expelled, resulting in an air and N2 mixture annealing atmosphere. A
high temperature allows oxygen atoms to obtain sufficient energy to participate in the
formation of Ga2O3 [42]. As the temperature increases, the remaining oxygen atoms are
nearly exhausted, and then a slight reduction of VO is contributed by a small amount of N
atoms doped into Ga2O3. This work has not continuously tracked the root cause of this
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result. In the future, comparative experiments will be designed and will strictly control the
mixing ratio of air and N2 to reveal the physical influence mechanism.

3.3. Thermal Properties Measurements

After preliminary analysis of the microstructure and defects after annealing in dif-
ferent environments, it was discovered that the quality of Ga2O3 after N2 annealing is
improved. Time-domain thermal reflectance (TDTR) measurements were conducted to
investigate the thermal conductivity characteristics of Ga2O3 heterostructures on diamond
composite substrates before and after annealing. TDTR is a high-precision and high tem-
poral resolution measurement technique, widely used to study the thermal properties of
various materials, including the thermal conductivity (κ) and heat capacity of single-layer
and multi-layer films, and liquid materials, as well as the thermal boundary conductance
(TBC) at solid–solid, solid–liquid, and microstructural interfaces [45]. In this study, the
AUTINST Pioneer-01 time-domain thermal reflectance (TDTR) system was employed to
quantify the κ of Ga2O3, as well as the TBC of Ga2O3/AlN and AlN/diamond interfaces.
A schematic representation of a typical TDTR setup is depicted in Figure 6. Specifically, the
sample is rapidly heated by irradiating its surface with a stronger laser pulse (pump pulse).
Subsequently, weaker pulses (probe pulses) are applied to the same location at varying
time delays, and the intensity of the reflected probe pulses is measured. By analyzing both
the amplitude and phase shift of these reflected pulses, the temperature decay is tracked,
thus determining the material’s reflectivity changes. Through further analysis of the re-
flectance variation and fitting the data to a thermal model, key parameters such as thermal
conductivity, specific heat capacity, and TBC are extracted. Additionally, by minimizing
the discrepancy between the TDTR signal and a heat transfer model, the required thermal
performance metrics can be accurately estimated [46,47].
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Figure 6. Schematic of the typical TDTR setup. The acronyms EOM and PBS stand for electro-optic
modulator and polarizing beam splitter, respectively.

Before measuring, aluminum films were first deposited onto the surface of samples
to act as a transducer layer. The data fitting starts from the liner region, and to accu-
rately fit, the relevant thermophysical parameters were taken from the literature [48–50].
Figure S3 (Supporting Information) gives the TDTR experimental data for each sam-
ple. The thermal conductivity of Ga2O3 (κGaO) and thermal boundary conductance of
Ga2O3/diamond (TBCGaO-dia) without annealing were determined through numerical
fitting to be 7.80 W/(m·K) and 31.34 MW/(m2·K), respectively. In contrast, after annealing
in N2, the values were 11.09 W/(m·K) and 62.69 MW/(m2·K), respectively. After annealing
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in Ar, the values were 9.04 W/(m·K) and 59.43 MW/(m2·K), respectively. The thermal con-
ductivity change of Ga2O3 corresponds to changes in crystallinity and defect concentration.
Annealing at high temperatures in N2 improves both κGaO and TBCGaO-dia.

Characterizing and analyzing the physical and chemical properties of Ga2O3 on
diamond composite substrates under the influence of N2 annealing temperature leads to
the conclusion that the higher the annealing temperature, the better the quality of Ga2O3.
On the one hand, the introduction of vacancies results in a mass disorder relative to β-
Ga2O3 with the perfect unit cell, due to the missing O atom at the vacancy site. This
contributes to a change in the effective reduced mass [51], while atomic-level defects
result in the scattering of phonons due to differences in mass or the generation of strain
fields. The scattering cross-sections follow Rayleigh scattering in different phonon modes.
Furthermore, the existence of vacancy sites has been observed to increase phonon scattering,
suppress the intensity of vibrational modes, and reduce the phonon mean free paths, which
ultimately leads to a reduction in thermal conductivity.

On the other hand, vacancy defects can intensify the scattering effect between phonons
and defects, expand the phonon dispersion curve of the material (Figure 7), and abbreviate
the phonon relaxation time while impeding the participation rate of phonon vibration
modes, thereby reducing the thermal conductivity [51].
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Figure 7. TDTR signal intensity versus delay time at different annealing temperatures: (a) as-grown;
(b) 600 ◦C; (c) 700 ◦C; (d) 800 ◦C; (e) 900 ◦C; (f) 1000 ◦C. (g) The variation in thermal characteristics
parameters of Ga2O3 on diamond composite substrates versus annealing temperature. (h) Summary
of κGaO versus (κGaO × TBCGaO-dia) reported in the literature [16,35,52–54].
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However, the changes near the heterostructure interface are not linearly related to the
annealing temperature. To investigate the effect of annealing on the thermal conductivity of
heterostructures, Figure 7a–f show the TDTR measurement data along with fitting curves.
Figure 7g shows the thermal conductivity of Ga2O3 on diamond composite substrates and
the variation in Ga2O3 diamond interface thermal conductivity as functions of annealing
temperature. The thermal conductivity (κGaO) of Ga2O3 monotonically increases with
annealing temperature, indicating a positive correlation between the quality of Ga2O3 and
the annealing temperature. However, as the annealing temperature increases, the interfacial
thermal conductance reaches a critical point. Specifically, when the temperature increases
from room temperature to 700 ◦C, the TBCGaO-dia increases until it reaches its maximum
value. However, when the temperature exceeds 800 ◦C, TBCGaO-dia begins to decrease
monotonically, indicating that the higher the temperature, the harder the interfacial thermal
transfer. According to the above interface microstructure analysis, at lower temperatures,
the microstructure near the interface undergoes a positive transformation, with the inter-
face atoms gradually becoming more ordered. However, at high annealing temperatures,
negative changes occur near the interface, such as the formation of an amorphous layer
and irregular mixture, which results in enhanced phonon boundary scattering and thus
hinders interface heat transfer. The high temperature helps to improve the thermal char-
acteristics of heterostructures, but an excessive temperature can have adverse effects on
heterostructures. In this study, the optimal process parameter for high thermal conductivity
and interface heat conduction is 700 ◦C. Furthermore, to facilitate comparison, we defined
(κGaO × TBCGaO-dia) as a dimensionless parameter. Figure 7h shows that, when compared
to the literature [16,35,52–54], this study has the highest value for this parameter at 300 K.

4. Conclusions

This study investigates how annealing temperature influences the thermal properties
of Ga2O3 thin films on diamond composite substrates. As the temperature increases,
the crystallinity of Ga2O3 thin films on diamond composite substrates improves, and
more N atoms are incorporated, effectively suppressing oxygen vacancy defects. The
quality of Ga2O3 films is positively correlated with annealing temperature, reaching a
maximum value of 12.25 W/(m·K) at 1000 ◦C. The thermal boundary conductance of
Ga2O3/diamond heterojunction fluctuates greatly under the influence of high temperatures,
with TBCGaO-dia showing significant enhancement in the range of 600–700 ◦C. However,
at high temperatures (>800 ◦C), the interfacial thermal transport between Ga2O3 and
diamond is hindered by the amorphous layers and the irregular mixtures, resulting in a
decreasing trend in TBCGaO-dia. In summary, a compromise was achieved at 700 ◦C with a
relatively high κGaO of 10.36 W/(m·K) and a maximum TBCGaO-dia of 127.06 MW/(m2·K),
making it an optimal process parameter. These findings represent a promising method to
enhance interfacial thermal transport across Ga2O3-diamond, deepen our understanding
of how interface microstructure influences interfacial heat transfer, and provide guidance
for designing and optimizing thermal management of Ga2O3 and other materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/c10030080/s1, Figure S1: AFM images of Ga2O3 films
on diamond composite substrates at different annealing atmospheres: (a) as-grown; (b) Ar; (c) N2.
Figure S2: (a) XPS survey, (b) O 1s, and (c) Ga 3d of Ga2O3 films on diamond composite substrates
at different annealing atmospheres. (d–i) O 1s peak fitting. Figure S3. TDTR signal intensity versus
delay time at different annealing atmospheres: (a) as-grown; (b) N2; (c) Ar.
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