A Highly Robust Encoder–Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Noise
2.2. Network Architecture
2.2.1. Residual Encoder–Decoder Architecture
2.2.2. Multi-Scale Feature Enhancement Block (MSFEB)
2.2.3. Attention Gate
2.3. Loss Function
2.4. Quantitative Evaluation
3. Results
3.1. Dataset
3.2. Mixed Noise Generation
3.3. Experiment Settings
3.4. Analysis of Results
3.4.1. Facial Image Dataset
3.4.2. CT Scan Dataset
3.4.3. NWPU-RESISC45 Dataset
3.4.4. Statistical Evaluation of HREDN’s Generalization Across Domains
3.5. Ablation Studies
- ED: A basic encoder–decoder architecture with a skip connection.
- ED + Attention: A basic encoder–decoder architecture with a skip connection enhanced by an attention gate.
- ED + Attention + MSFEB: A basic encoder–decoder architecture with a skip connection enhanced by an attention gate and a multi-scale feature enhancement block.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HREDN | Highly Robust Encoder–Decoder Network |
CNN | Convolutional Neural Network |
CT | Computed Tomography |
MSE | Mean Squared Error |
PSNR | Peak Signal-to-Noise Ratio |
SSIM | Structural Similarity Index Measure |
IEF | Image Enhancement Framework |
G | Gaussian |
RSP | Random Salt-and-Pepper |
MSFEB | Multi-Scale Feature Enhancement Block |
FER2013 | Facial Expression Recognition 2013 |
CKPLUS-48 | Cohn-Kanade Plus Dataset, 48 × 48 Resolution |
BM3D | Block-Matching and 3D Filtering |
DNCNN | Denoising Convolutional Neural Network |
FCAIDE | Fully Convolutional Pixel Adaptive Image Denoise |
ADNET | Attention-Guided CNN for Image Denoising |
BRDNET | Batch-Renormalization Denoising Network |
RDUNET | Residual Dense Neural Network |
ED | Encoder–Decoder |
ReLU | Rectified Linear Unit |
References
- Wang, M.; Zheng, S.; Li, X.; Qin, X. A New Image Denoising Method Based on Gaussian Filter. In Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 26–28 April 2014; Volume 1. [Google Scholar]
- Li, X.; Ji, J.; Li, J.; He, S.; Zhou, Q. Research on Image Denoising Based on Median Filter. In Proceedings of the IMCEC 2021—IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, China, 18–20 June 2021. [Google Scholar]
- Bhonsle, D.; Chandra, V.; Sinha, G.R. Medical Image Denoising Using Bilateral Filter. Int. J. Image Graph. Signal Process. 2012, 4, 36. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising with Block-Matching and 3D Filtering. In Proceedings of the Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, San Jose, CA, USA, 17 February 2006; Volume 6064. [Google Scholar]
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep Learning on Image Denoising: An Overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Ilesanmi, A.E.; Ilesanmi, T.O. Methods for Image Denoising Using Convolutional Neural Network: A Review. Complex. Intell. Syst. 2021, 7, 2179–2198. [Google Scholar] [CrossRef]
- Ghose, S.; Singh, N.; Singh, P. Image Denoising Using Deep Learning: Convolutional Neural Network. In Proceedings of the Confluence 2020—10th International Conference on Cloud Computing, Data Science and Engineering, Noida, India, 29–31 January 2020. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Marrakesh, Morocco, 7–11 October 2024; Volume 9351. [Google Scholar]
- Oktay, O.; Schlemper, J.; Le Folgoc, L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; Mcdonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Moon, T. Fully Convolutional Pixel Adaptive Image Denoiser. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-Guided CNN for Image Denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Xu, Y.; Zuo, W. Image Denoising Using Deep CNN with Batch Renormalization. Neural Netw. 2020, 121, 461–473. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Han, L.; Tong, Y.; Yang, K. GFF: Gated Fully Fusion for Semantic Segmentation. Proc. AAAI 2019, 34, 11418–11425. [Google Scholar] [CrossRef]
- Gurrola-Ramos, J.; Dalmau, O.; Alarcón, T.E. A Residual Dense U-Net Neural Network for Image Denoising. IEEE Access 2021, 9, 31742–31754. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, Q.; Zhao, J.; Wang, Y.; Yang, Y.; Feng, S. RatUNet: Residual U-Net Based on Attention Mechanism for Image Denoising. PeerJ Comput. Sci. 2022, 8, e970. [Google Scholar] [CrossRef] [PubMed]
- Mafi, M.; Izquierdo, W.; Martin, H.; Cabrerizo, M.; Adjouadi, M. Deep Convolutional Neural Network for Mixed Random Impulse and Gaussian Noise Reduction in Digital Images. IET Image Process 2020, 14, 3791–3801. [Google Scholar] [CrossRef]
- Khmag, A. Additive Gaussian Noise Removal Based on Generative Adversarial Network Model and Semi-Soft Thresholding Approach. Multimed. Tools Appl. 2023, 82, 7757–7777. [Google Scholar] [CrossRef]
- Dantas, C.F.; Da Costa, M.N.; Da Rocha Lopes, R. Learning Dictionaries as a Sum of Kronecker Products. IEEE Signal Process Lett. 2017, 24, 559–563. [Google Scholar] [CrossRef]
- Khmag, A.; Kamarudin, N. Natural Image Deblurring Using Recursive Deep Convolutional Neural Network (R-DbCNN) and Second-Generation Wavelets. In Proceedings of the 2019 IEEE International Conference on Signal and Image Processing Applications, ICSIPA, Kuala Lumpur, Malaysia, 17–19 September 2019. [Google Scholar]
- Hasan, M.; El-Sakka, M.R. Improved BM3D Image Denoising Using SSIM-Optimized Wiener Filter. EURASIP J. Image Video Process 2018, 2018, 25. [Google Scholar] [CrossRef] [PubMed]
- Min, C.; Wen, G.; Li, B.; Fan, F. Blind Deblurring via a Novel Recursive Deep CNN Improved by Wavelet Transform. IEEE Access 2018, 6, 69242–69252. [Google Scholar] [CrossRef]
- Xu, L.; Ren, J.S.J.; Liu, C.; Jia, J. Deep Convolutional Neural Network for Image Deconvolution. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Cheng, S.; Zhuang, Y.; Kahouadji, L.; Liu, C.; Chen, J.; Matar, O.K.; Arcucci, R. Multi-Domain Encoder–Decoder Neural Networks for Latent Data Assimilation in Dynamical Systems. Comput. Methods Appl. Mech. Eng. 2024, 430, 117201. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, S.; Arcucci, R. Multi-Fidelity Physics Constrained Neural Networks for Dynamical Systems. Comput. Methods Appl. Mech. Eng. 2024, 420, 116758. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Korhonen, J.; You, J. Peak Signal-to-Noise Ratio Revisited: Is Simple Beautiful? In Proceedings of the 2012 4th International Workshop on Quality of Multimedia Experience, Melbourne, VIC, Australia, 5–7 July 2012. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Measurement to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–613. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Goodfellow, I.J.; Erhan, D.; Luc Carrier, P.; Courville, A.; Mirza, M.; Hamner, B.; Cukierski, W.; Tang, Y.; Thaler, D.; Lee, D.H.; et al. Challenges in Representation Learning: A Report on Three Machine Learning Contests. Neural Netw. 2015, 64, 117–124. [Google Scholar] [CrossRef]
- Kanade, T.; Cohn, J.F.; Tian, Y. Comprehensive Database for Facial Expression Analysis. In Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 28–30 March 2000. [Google Scholar]
- Maftouni, M.; Law, A.C.C.; Shen, B.; Kong Grado, Z.; Zhou, Y.; Yazdi, N.A. A Robust Ensemble-Deep Learning Model for COVID-19 Diagnosis Based on an Integrated CT Scan Images Database. In Proceedings of the IISE Annual Conference and Expo 2021, Virtual, 22–25 May 2021. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Milan, Italy, 29 September–4 October 2024; Volume 13803 LNCS. [Google Scholar]
Original vs. Noisy Image | ||
---|---|---|
Noise Type | PSNR | SSIM |
Gaussian (30) | 18.59 | 0.56 |
Salt-and-Pepper (5%) | 18.45 | 0.62 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.0839 | 0.0932 | 0.1115 | 0.1389 | 0.1754 | |
Original vs. Denoised | |||||
BM3D | 0.0684 ± 0.059 | 0.0755 ± 0.060 | 0.0942 ± 0.059 | 0.1233 ± 0.054 | 0.1626 ± 0.049 |
DNCNN | 0.0031 ± 0.002 | 0.0051 ± 0.002 | 0.0111 ± 0.014 | 0.0109 ± 0.003 | 0.0187 ± 0.005 |
FCAIDE | 0.0011 ± 0.001 | 0.0031 ± 0.001 | 0.0052 ± 0.002 | 0.0073 ± 0.002 | 0.0087 ± 0.003 |
ADNET | 0.0027 ± 0.002 | 0.0041 ± 0.001 | 0.0075 ± 0.003 | 0.0095 ± 0.003 | 0.0121 ± 0.004 |
BRDNet | 0.0011 ± 0.001 | 0.0034 ± 0.001 | 0.0058 ± 0.002 | 0.0075 ± 0.003 | 0.0102 ± 0.003 |
GFF | 0.0119 ± 0.023 | 0.0110 ± 0.009 | 0.0153 ± 0.035 | 0.0163 ± 0.060 | 0.0134 ± 0.005 |
RDUNET | 0.0015 ± 0.001 | 0.0031 ± 0.001 | 0.0053 ± 0.002 | 0.0071 ± 0.002 | 0.0176 ± 0.006 |
TransUNET | 0.0012 ± 0.001 | 0.0029 ± 0.001 | 0.0054 ± 0.002 | 0.0068 ± 0.002 | 0.0090 ± 0.003 |
HREDN | 0.0009 ± 0.001 | 0.0027 ± 0.001 | 0.0047 ± 0.002 | 0.0066 ± 0.002 | 0.0085 ± 0.003 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
12.1564 | 11.2294 | 10.0542 | 8.8551 | 7.7067 | |
Original vs. Denoised | |||||
BM3D | 14.0295 ± 55.47 | 13.1275 ± 4.78 | 11.1517 ± 2.91 | 9.4634 ± 1.78 | 8.0671 ± 1.22 |
DNCNN | 26.0204 ± 2.72 | 23.1781 ± 1.54 | 20.6251 ± 2.46 | 19.7788 ± 1.14 | 17.4133 ± 1.07 |
FCAIDE | 29.8812 ± 1.96 | 5.3660 ± 1.41 | 23.0189 ± 1.41 | 21.5827 ± 1.40 | 20.8224 ± 1.45 |
ADNET | 26.7243 ± 2.94 | 24.0540 ± 11.32 | 21.5050 ± 1.46 | 20.4072 ± 1.30 | 19.3431 ± 1.26 |
BRDNet | 30.1462 ± 1.96 | 24.9166 ± 1.40 | 22.5217 ± 1.28 | 21.4418 ± 1.38 | 20.1332 ± 1.32 |
GFF | 20.9552 ± 3.03 | 20.1160 ± 1.95 | 19.3942 ± 2.39 | 19.1173 ± 2.08 | 18.9849 ± 1.48 |
RDUNET | 28.4322 ± 1.22 | 25.2940 ± 1.51 | 23.0055 ± 1.43 | 21.7566 ± 1.47 | 17.7947 ± 1.41 |
TransUNET | 29.6051 ± 1.93 | 25.5655 ± 1.48 | 22.8748 ± 1.35 | 21.9385 ± 1.43 | 20.6780 ± 1.38 |
HREDN | 30.6853 ± 1.92 | 25.8967 ± 1.52 | 23.5542 ± 1.48 | 22.0414 ± 1.53 | 20.9744 ± 1.50 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.3554 | 0.2895 | 0.2253 | 0.1746 | 0.1364 | |
Original vs. Denoised | |||||
BM3D | 0.4253 ± 0.22 | 0.3717 ± 0.20 | 0.2503 ± 0.11 | 0.1746 ± 0.07 | 0.1308 ± 0.06 |
DNCNN | 0.8763 ± 0.07 | 0.7800 ± 0.07 | 0.7202 ± 0.06 | 0.6540 ± 0.06 | 0.4632 ± 0.07 |
FCAIDE | 0.9581 ± 0.02 | 0.8833 ± 0.03 | 0.8128 ± 0.04 | 0.7589 ± 0.05 | 0.7123 ± 0.06 |
ADNET | 0.9060 ± 0.05 | 0.8282 ± 0.04 | 0.7323 ± 0.07 | 0.6827 ± 0.05 | 0.6134 ± 0.05 |
BRDNet | 0.9585 ± 0.02 | 0.8681 ± 0.03 | 0.7892 ± 0.04 | 0.7392 ± 0.05 | 0.6778 ± 0.05 |
GFF | 0.7303 ± 0.10 | 0.7169 ± 0.06 | 0.6828 ± 0.07 | 0.6468 ± 0.08 | 0.6323 ± 0.07 |
RDUNET | 0.9334 ± 0.02 | 0.8860 ± 0.03 | 0.8159 ± 0.04 | 0.7692 ± 0.05 | 0.5760 ± 0.06 |
TransUNET | 0.9394 ± 0.02 | 0.8483 ± 0.05 | 0.7318 ± 0.06 | 0.7099 ± 0.07 | 0.6337 ± 0.08 |
HREDN | 0.9632 ± 0.01 | 0.8951 ± 0.03 | 0.8330 ± 0.04 | 0.7759 ± 0.06 | 0.7336 ± 0.06 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Denoised | |||||
BM3D | 11.0443 ± 661.91 | 3.2545 ± 105.03 | 1.3066 ± 0.38 | 1.1426 ± 0.08 | 1.0856 ± 0.03 |
DNCNN | 26.8849 ± 10.07 | 17.0285 ± 7.02 | 14.1173 ± 7.83 | 12.8376 ± 4.02 | 9.5817 ± 2.13 |
FCAIDE | 72.3963 ± 43.81 | 30.2600 ± 17.76 | 21.8154 ± 11.78 | 19.8386 ± 9.01 | 21.7623 ± 9.25 |
ADNET | 31.0252 ± 10.78 | 22.6659 ± 13.47 | 15.7620 ± 8.18 | 15.1775 ± 5.85 | 15.2315 ± 4.75 |
BRDNet | 76.4292 ± 45.00 | 26.9473 ± 15.02 | 19.4890 ± 9.62 | 19.2113 ± 7.75 | 19.2113 ± 7.75 |
GFF | 9.9257 ± 6.65 | 9.1453 ± 5.26 | 9.5543 ± 4.19 | 11.5889 ± 4.92 | 14.2739 ± 5.36 |
RDUNET | 53.2546 ± 32.30 | 29.6204 ± 17.28 | 21.7541 ± 10.68 | 20.7435 ± 8.76 | 10.6554 ± 3.19 |
TransUNET | 67.4204 ± 39.47 | 32.1680 ± 0.20 | 21.1724 ± 10.72 | 21.5955 ± 8.76 | 21.0163 ± 8.26 |
HREDN | 88.6590 ± 58.44 | 34.6337 ± 21.51 | 25.0132 ± 14.07 | 22.5668 ± 18.92 | 22.7099 ± 13.77 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.0927 | 0.0992 | 0.1177 | 0.1422 | 0.1822 | |
Original vs. Denoised | |||||
BM3D | 0.0781 ± 0.067 | 0.0829 ± 0.064 | 0.1016 ± 0.061 | 0.1283 ± 0.056 | 0.1699 ± 0.051 |
DNCNN | 0.0034 ± 0.003 | 0.0051 ± 0.002 | 0.0121 ± 0.014 | 0.0113 ± 0.002 | 0.0197 ± 0.004 |
FCAIDE | 0.0011 ± 0.001 | 0.0030 ± 0.001 | 0.0053 ± 0.001 | 0.0073 ± 0.002 | 0.0090 ± 0.002 |
ADNET | 0.0027 ± 0.002 | 0.0044 ± 0.001 | 0.0080 ± 0.002 | 0.0104 ± 0.003 | 0.0141 ± 0.003 |
BRDNet | 0.0011 ± 0.001 | 0.0034 ± 0.001 | 0.0060 ± 0.001 | 0.0079 ± 0.002 | 0.0108 ± 0.003 |
GFF | 0.0104 ± 0.009 | 0.0113 ± 0.004 | 0.0790 ± 0.230 | 0.0139 ± 0.008 | 0.0143 ± 0.004 |
RDUNET | 0.0014 ± 0.000 | 0.0030 ± 0.001 | 0.0050 ± 0.001 | 0.0066 ± 0.002 | 0.0166 ± 0.006 |
TransUNET | 0.0012 ± 0.001 | 0.0028 ± 0.001 | 0.0057 ± 0.001 | 0.0065 ± 0.002 | 0.0091 ± 0.002 |
HREDN | 0.0009 ± 0.000 | 0.0026 ± 0.001 | 0.0044 ± 0.001 | 0.0063 ± 0.002 | 0.0083 ± 0.002 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
11.7807 | 11.0194 | 9.8346 | 8.7665 | 7.5486 | |
Original vs. Denoised | |||||
BM3D | 13.4348 ± 5.43 | 12.7514 ± 4.88 | 10.7952 ± 2.88 | 9.3025 ± 1.82 | 7.8825 ± 1.25 |
DNCNN | 25.7057 ± 2.96 | 23.1300 ± 1.47 | 20.1699 ± 2.40 | 19.5756 ± 0.89 | 17.1669 ± 0.97 |
FCAIDE | 29.8132 ± 1.70 | 25.4079 ± 1.13 | 22.9416 ± 1.16 | 21.4770 ± 1.08 | 20.6398 ± 1.20 |
ADNET | 26.6098 ± 2.86 | 23.7323 ± 1.04 | 21.1195 ± 1.11 | 19.9613 ± 1.13 | 18.6523 ± 1.09 |
BRDNet | 30.0759 ± 1.77 | 24.8131 ± 1.15 | 22.3180 ± 1.01 | 21.1683 ± 1.11 | 19.8075 ± 1.12 |
GFF | 20.5565 ± 2.32 | 19.7845 ± 1.65 | 17.1302 ± 5.55 | 18.8690 ± 1.50 | 18.6391 ± 1.34 |
RDUNET | 28.5416 ± 1.03 | 25.3700 ± 1.31 | 23.1461 ± 1.14 | 21.9464 ± 1.12 | 18.0431 ± 1.38 |
TransUNET | 29.6529 ± 1.68 | 25.6144 ± 1.16 | 22.5530 ± 1.08 | 21.9911 ± 1.14 | 20.5479 ± 1.10 |
HREDN | 30.8059 ± 1.57 | 25.9801 ± 1.19 | 23.7090 ± 1.16 | 22.1735 ± 1.17 | 20.9619 ± 0.04 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.3960 | 0.3429 | 0.2750 | 0.2225 | 0.1734 | |
Original vs. Denoised | |||||
BM3D | 0.4626 ± 0.21 | 0.4194 ± 0.19 | 0.3038 ± 0.11 | 0.2268 ± 0.08 | 0.1706 ± 0.06 |
DNCNN | 0.8979 ± 0.05 | 0.8367 ± 0.05 | 0.7740 ± 0.05 | 0.7253 ± 0.05 | 0.5403 ± 0.05 |
FCAIDE | 0.9707 ± 0.01 | 0.9201 ± 0.02 | 0.8702 ± 0.03 | 0.8258 ± 0.04 | 0.7870 ± 0.04 |
ADNET | 0.9260 ± 0.03 | 0.8651 ± 0.03 | 0.7932 ± 0.06 | 0.7417 ± 0.04 | 0.6602 ± 0.04 |
BRDNet | 0.9707 ± 0.01 | 0.9048 ± 0.02 | 0.8401 ± 0.03 | 0.8013 ± 0.04 | 0.7392 ± 0.04 |
GFF | 0.7716 ± 0.07 | 0.7603 ± 0.04 | 0.6769 ± 0.16 | 0.7098 ± 0.05 | 0.7019 ± 0.05 |
RDUNET | 0.9534 ± 0.01 | 0.9246 ± 0.02 | 0.8784 ± 0.03 | 0.8468 ± 0.03 | 0.6893 ± 0.05 |
TransUNET | 0.9610 ± 0.01 | 0.9047 ± 0.03 | 0.8087 ± 0.05 | 0.8116 ± 0.05 | 0.7482 ± 0.05 |
HREDN | 0.9752 ± 0.01 | 0.9310 ± 0.02 | 0.8910 ± 0.02 | 0.8502 ± 0.03 | 0.8136 ± 0.04 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Denoised | |||||
BM3D | 1.5722 ± 0.70 | 1.6895 ± 1.12 | 1.2670 ± 0.24 | 1.1334 ± 0.07 | 1.0803 ± 0.03 |
DNCNN | 26.3715 ± 7.83 | 17.5795 ± 6.45 | 13.1186 ± 6.13 | 12.4262 ± 3.15 | 9.2680 ± 1.42 |
FCAIDE | 74.0230 ± 34.27 | 31.1236 ± 14.53 | 21.6118 ± 7.07 | 19.2882 ± 5.00 | 20.8350 ± 4.53 |
ADNET | 32.5192 ± 10.02 | 21.3975 ± 10.23 | 14.7096 ± 6.10 | 13.8772 ± 4.18 | 13.1702 ± 2.75 |
BRDNet | 77.9218 ± 35.03 | 26.9789 ± 12.25 | 18.8929 ± 6.69 | 17.9399 ± 4.58 | 17.1437 ± 3.39 |
GFF | 9.2810 ± 5.02 | 8.6178 ± 4.14 | 7.6207 ± 4.22 | 10.7420 ± 3.26 | 13.2688 ± 3.44 |
RDUNET | 58.6180 ± 32.03 | 30.2517 ± 12.97 | 22.6860 ± 7.58 | 21.4818 ± 5.51 | 11.5312 ± 2.72 |
TransUNET | 71.4136 ± 33.13 | 32.6235 ± 15.19 | 19.8365 ± 6.78 | 21.7372 ± 5.72 | 20.4034 ± 4.44 |
HREDN | 94.2450 ± 45.88 | 35.4397 ± 16.27 | 25.9209 ± 8.92 | 22.7043 ± 6.09 | 22.4347 ± 4.80 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.0344 | 0.0426 | 0.0618 | 0.0886 | 0.1258 | |
Original vs. Denoised | |||||
BM3D | 0.0240 ± 0.038 | 0.0266 ± 0.038 | 0.0402 ± 0.040 | 0.0695 ± 0.038 | 0.1103 ± 0.038 |
DNCNN | 0.0119 ± 0.036 | 0.0031 ± 0.002 | 0.0140 ± 0.051 | 0.1205 ± 0.696 | 0.0113 ± 0.006 |
FCAIDE | 0.0007 ± 0.001 | 0.0014 ± 0.001 | 0.0021 ± 0.001 | 0.0033 ± 0.002 | 0.0037 ± 0.002 |
ADNET | 0.0020 ± 0.002 | 0.0045 ± 0.002 | 0.0070 ± 0.009 | 0.0064 ± 0.003 | 0.0098 ± 0.004 |
BRDNet | 0.0008 ± 0.001 | 0.0016 ± 0.001 | 0.0033 ± 0.002 | 0.0039 ± 0.002 | 0.0037 ± 0.002 |
GFF | 0.0104 ± 0.113 | 0.0220 ± 0.053 | 0.0066 ± 0.009 | 0.0079 ± 0.015 | 0.0105 ± 0.012 |
RDUNET | 0.0012 ± 0.001 | 0.0062 ± 0.001 | 0.0022 ± 0.001 | 0.0028 ± 0.002 | 0.0046 ± 0.002 |
SwinUNET | 0.0010 ± 0.001 | 0.0017 ± 0.001 | 0.0027 ± 0.002 | 0.0036 ± 0.002 | 0.0041 ± 0.003 |
HREDN | 0.0006 ± 0.001 | 0.0012 ± 0.001 | 0.0020 ± 0.001 | 0.0024 ± 0.001 | 0.0031 ± 0.002 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
16.5459 | 14.6544 | 12.5505 | 10.7434 | 9.1307 | |
Original vs. Denoised | |||||
BM3D | 19.729 ± 5.60 | 18.690 ± 5.17 | 15.141 ± 2.88 | 11.958 ± 1.62 | 9.7560 ± 1.16 |
DNCNN | 24.2760 ± 5.23 | 25.4330 ± 1.58 | 22.1402 ± 3.44 | 20.2527 ± 5.42 | 19.8496 ± 1.67 |
FCAIDE | 32.6582 ± 2.36 | 29.0439 ± 1.83 | 27.2311 ± 1.88 | 25.2667 ± 1.84 | 24.7140 ± 1.69 |
ADNET | 27.6839 ± 2.29 | 23.7655 ± 1.58 | 23.0164 ± 2.83 | 22.2420 ± 1.51 | 20.3353 ± 1.34 |
BRDNet | 31.7221 ± 2.38 | 28.4166 ± 1.92 | 25.1626 ± 1.58 | 24.5054 ± 1.78 | 24.6908 ± 1.69 |
GFF | 25.1290 ± 3.41 | 22.2717 ± 5.41 | 23.6673 ± 3.25 | 23.0447 ± 3.22 | 21.1637 ± 2.93 |
RDUNET | 29.4405 ± 1.39 | 22.1498 ± 0.68 | 27.1482 ± 1.84 | 25.9761 ± 1.84 | 23.7356 ± 1.62 |
SwinUNET | 30.7141 ± 2.25 | 28.3595 ± 1.95 | 26.2044 ± 1.94 | 25.0414 ± 1.98 | 24.3525 ± 1.91 |
HREDN | 33.0712 ± 2.44 | 29.8158 ± 2.04 | 27.5033 ± 1.83 | 26.6562 ± 1.83 | 25.5341 ± 1.73 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.4942 | 0.3082 | 0.2031 | 0.1423 | 0.1019 | |
Original vs. Denoised | |||||
BM3D | 0.5756 ± 0.17 | 0.5143 ± 0.15 | 0.2883 ± 0.06 | 0.1431 ± 0.04 | 0.0940 ± 0.03 |
DNCNN | 0.7776 ± 0.09 | 0.8144 ± 0.04 | 0.6974 ± 0.06 | 0.5203 ± 0.08 | 0.5188 ± 0.04 |
FCAIDE | 0.9543 ± 0.02 | 0.9103 ± 0.04 | 0.8795 ± 0.04 | 0.8348 ± 0.05 | 0.8178 ± 0.05 |
ADNET | 0.8856 ± 0.03 | 0.6902 ± 0.07 | 0.7736 ± 0.12 | 0.5641 ± 0.08 | 0.5052 ± 0.06 |
BRDNet | 0.9433 ± 0.03 | 0.8933 ± 0.04 | 0.8130 ± 0.04 | 0.8018 ± 0.05 | 0.8186 ± 0.05 |
GFF | 0.8232 ± 0.08 | 0.6994 ± 0.19 | 0.8033 ± 0.09 | 0.7797 ± 0.07 | 0.7112 ± 0.11 |
RDUNET | 0.8750 ± 0.02 | 0.6031 ± 0.05 | 0.8740 ± 0.04 | 0.8477 ± 0.05 | 0.7920 ± 0.05 |
SwinUNET | 0.8958 ± 0.04 | 0.8326 ± 0.05 | 0.7731 ± 0.06 | 0.7337 ± 0.07 | 0.7115 ± 0.07 |
HREDN | 0.9592 ± 0.02 | 0.9176 ± 0.03 | 0.8855 ± 0.04 | 0.8689 ± 0.04 | 0.8387 ± 0.05 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Denoised | |||||
BM3D | 2.2878 ± 1.07 | 3.2563 ± 2.88 | 1.8942 ± 0.67 | 1.3306 ± 0.16 | 1.1563 ± 0.06 |
DNCNN | 6.6344 ± 2.77 | 12.9500 ± 5.82 | 10.2342 ± 3.03 | 11.5061 ± 4.18 | 12.1719 ± 3.12 |
FCAIDE | 51.4136 ± 38.61 | 30.6735 ± 16.86 | 31.0313 ± 11.23 | 29.6048 ± 8.98 | 37.9663 ± 11.76 |
ADNET | 14.5153 ± 6.13 | 8.7725 ± 3.72 | 11.7021 ± 3.35 | 14.3738 ± 2.70 | 13.5151 ± 3.01 |
BRDNet | 39.8532 ± 26.14 | 26.2605 ± 13.43 | 18.9899 ± 5.89 | 24.6910 ± 6.73 | 37.6310 ± 11.10 |
GFF | 9.9782 ± 6.98 | 7.2333 ± 3.28 | 14.1050 ± 4.56 | 19.3547 ± 8.08 | 17.6712 ± 7.24 |
RDUNET | 24.9305 ± 17.65 | 6.9188 ± 5.29 | 30.5303 ± 11.70 | 35.2578 ± 12.59 | 30.2938 ± 9.68 |
SwinUNET | 32.0464 ± 22.72 | 26.4815 ± 15.78 | 24.8669 ± 10.91 | 28.4843 ± 10.36 | 35.3092 ± 12.43 |
HREDN | 56.4491 ± 42.18 | 36.9480 ± 21.78 | 33.4629 ± 14.28 | 41.1711 ± 14.35 | 46.1834 ± 15.93 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.0463 | 0.0549 | 0.0732 | 0.1001 | 0.1379 | |
Original vs. Denoised | |||||
BM3D | 0.0310 ± 0.048 | 0.0352 ± 0.049 | 0.0517 ± 0.049 | 0.0825 ± 0.046 | 0.1232 ± 0.046 |
DNCNN | 0.0025 ± 0.002 | 0.0049 ± 0.013 | 0.0143 ± 0.093 | 0.0619 ± 0.332 | 0.0089 ± 0.005 |
FCAIDE | 0.0009 ± 0.001 | 0.0017 ± 0.002 | 0.0026 ± 0.002 | 0.0034 ± 0.003 | 0.0044 ± 0.004 |
ADNET | 0.0024 ± 0.001 | 0.0037 ± 0.004 | 0.0034 ± 0.003 | 0.0060 ± 0.004 | 0.0064 ± 0.005 |
BRDNet | 0.0015 ± 0.001 | 0.0020 ± 0.002 | 0.0286 ± 0.024 | 0.0038 ± 0.003 | 0.0059 ± 0.005 |
GFF | 0.0031 ± 0.004 | 0.0623 ± 0.158 | 0.1029 ± 0.522 | 2.5468 ± 16.767 | 0.0182 ± 0.031 |
RDUNET | 0.0007 ± 0.001 | 0.0017 ± 0.002 | 0.0026 ± 0.003 | 0.0315 ± 0.006 | 0.0493 ± 0.009 |
SwinUNET | 0.0008 ± 0.001 | 0.0018 ± 0.002 | 0.0028 ± 0.003 | 0.0035 ± 0.004 | 0.0043 ± 0.005 |
HREDN | 0.0007 ± 0.001 | 0.0016 ± 0.001 | 0.0025 ± 0.002 | 0.0033 ± 0.003 | 0.0039 ± 0.004 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
15.3335 | 13.7215 | 11.9126 | 10.2763 | 8.7689 | |
Original vs. Denoised | |||||
BM3D | 19.3923 ± 6.50 | 18.2901 ± 6.22 | 14.2067 ± 3.23 | 11.2872 ± 1.82 | 9.3137 ± 1.29 |
DNCNN | 26.9817 ± 2.87 | 25.0395 ± 3.34 | 23.6504 ± 3.79 | 21.3229 ± 5.54 | 21.0595 ± 1.96 |
FCAIDE | 31.4057 ± 2.60 | 28.8960 ± 3.14 | 26.9885 ± 3.05 | 26.0518 ± 3.18 | 24.8383 ± 3.14 |
ADNET | 26.8334 ± 2.09 | 25.1769 ± 2.48 | 25.7991 ± 2.80 | 22.8546 ± 2.11 | 22.6764 ± 2.26 |
BRDNet | 28.9446 ± 2.31 | 28.2385 ± 3.00 | 16.2222 ± 2.30 | 25.4023 ± 2.92 | 23.2963 ± 2.65 |
GFF | 27.4096 ± 4.27 | 22.0400 ± 8.49 | 20.2756 ± 6.74 | 21.8686 ± 10.31 | 20.6686 ± 4.54 |
RDUNET | 32.7698 ± 3.25 | 28.9744 ± 3.25 | 27.2181 ± 3.30 | 15.0838 ± 0.79 | 13.1487 ± 0.81 |
SwinUNET | 32.4972 ± 3.14 | 28.5223 ± 2.94 | 26.7357 ± 3.08 | 26.0650 ± 3.42 | 25.3101 ± 3.67 |
HREDN | 32.7986 ± 3.16 | 29.2580 ± 3.26 | 27.3235 ± 3.30 | 26.1450 ± 3.28 | 25.5101 ± 3.33 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Noisy | |||||
0.2836 | 0.1915 | 0.1265 | 0.0882 | 0.0634 | |
Original vs. Denoised | |||||
BM3D | 0.4762 ± 0.24 | 0.3739 ± 0.22 | 0.1334 ± 0.09 | 0.0705 ± 0.06 | 0.0475 ± 0.05 |
DNCNN | 0.7976 ± 0.07 | 0.7575 ± 0.08 | 0.6770 ± 0.09 | 0.6245 ± 0.10 | 0.5376 ± 0.07 |
FCAIDE | 0.9126 ± 0.03 | 0.8566 ± 0.07 | 0.8087 ± 0.07 | 0.7798 ± 0.08 | 0.7565 ± 0.10 |
ADNET | 0.8510 ± 0.05 | 0.7604 ± 0.07 | 0.7707 ± 0.08 | 0.6472 ± 0.06 | 0.5696 ± 0.07 |
BRDNet | 0.8530 ± 0.04 | 0.8455 ± 0.06 | 0.2623 ± 0.08 | 0.7576 ± 0.08 | 0.6801 ± 0.09 |
GFF | 0.8238 ± 0.09 | 0.6437 ± 0.27 | 0.6921 ± 0.18 | 0.6995 ± 0.20 | 0.6936 ± 0.15 |
RDUNET | 0.9321 ± 0.04 | 0.8547 ± 0.07 | 0.8114 ± 0.08 | 0.2280 ± 0.08 | 0.1620 ± 0.07 |
SwinUNET | 0.8557 ± 0.07 | 0.7271 ± 0.11 | 0.6499 ± 0.11 | 0.6040 ± 0.11 | 0.5704 ± 0.13 |
HREDN | 0.9328 ± 0.04 | 0.8652 ± 0.06 | 0.8158 ± 0.08 | 0.7889 ± 0.09 | 0.7631 ± 0.10 |
Methods | G:10 + RSP | G:30 + RSP | G:50 + RSP | G:70 + RSP | G:90 + RSP |
---|---|---|---|---|---|
Original vs. Denoised | |||||
BM3D | 3.0925 ± 2.28 | 4.2752 ± 5.17 | 1.7778 ± 0.57 | 1.2686 ± 0.13 | 1.1348 ± 0.05 |
DNCNN | 16.1654 ± 6.99 | 14.5267 ± 4.57 | 17.6271 ± 7.52 | 17.0917 ± 7.45 | 18.1111 ± 6.86 |
FCAIDE | 55.2539 ± 0.03 | 43.7731 ± 42.69 | 39.1788 ± 29.14 | 45.7072 ± 30.07 | 47.6427 ± 26.99 |
ADNET | 16.4873 ± 9.09 | 16.8464 ± 11.29 | 29.5449 ± 21.09 | 20.0266 ± 9.96 | 26.5407 ± 9.55 |
BRDNet | 27.7074 ± 16.54 | 34.1582 ± 22.46 | 2.7167 ± 0.32 | 37.4862 ± 19.71 | 31.3183 ± 12.30 |
GFF | 23.9413 ± 21.58 | 22.7844 ± 27.40 | 11.9775 ± 8.65 | 30.5923 ± 23.35 | 20.0421 ± 11.57 |
RDUNET | 83.3028 ± 93.30 | 45.8627 ± 49.66 | 42.8922 ± 35.81 | 3.2826 ± 1.61 | 2.8931 ± 1.15 |
SwinUNET | 76.9846 ± 85.22 | 41.7133 ± 52.54 | 38.3050 ± 33.11 | 47.4897 ± 34.78 | 58.0151 ± 43.56 |
HREDN | 84.3325 ± 96.60 | 49.3666 ± 55.75 | 43.3928 ± 33.26 | 47.8326 ± 34.86 | 58.0657 ± 37.55 |
Metric | ANOVA p-Value | Levene’s p-Value |
---|---|---|
MSE | 0.0963 | 0.0756 |
PSNR | 0.1585 | 0.8916 |
SSIM | 0.3641 | 0.4112 |
IEF | 0.3520 | 0.7268 |
Methods | Average MSE | Average PSNR | Average SSIM | Average IEF |
---|---|---|---|---|
ED | 0.0028 ± 0.00 | 25.7280 ± 1.52 | 0.8919 ± 0.03 | 33.3376 ± 20.67 |
ED + Attention | 0.0028 ± 0.00 | 25.7320 ± 1.55 | 0.8943 ± 0.03 | 33.2194 ± 20.42 |
ED + Attention + MSFEB | 0.0027 ± 0.00 | 25.8967 ± 1.52 | 0.8951 ± 0.03 | 34.6337 ± 21.51 |
Methods | Training Time (Minutes) | Number of Parameters (Millions) | Inference Time (Seconds) |
---|---|---|---|
ED | 39 | 38.38 | 20 |
ED + Attention | 27 | 41.53 | 19 |
ED + Attention + MSFEB | 63 | 60.68 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, M.; Kongprawechnon, W.; Kondo, T. A Highly Robust Encoder–Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images. J. Imaging 2025, 11, 51. https://doi.org/10.3390/jimaging11020051
Tripathi M, Kongprawechnon W, Kondo T. A Highly Robust Encoder–Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images. Journal of Imaging. 2025; 11(2):51. https://doi.org/10.3390/jimaging11020051
Chicago/Turabian StyleTripathi, Milan, Waree Kongprawechnon, and Toshiaki Kondo. 2025. "A Highly Robust Encoder–Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images" Journal of Imaging 11, no. 2: 51. https://doi.org/10.3390/jimaging11020051
APA StyleTripathi, M., Kongprawechnon, W., & Kondo, T. (2025). A Highly Robust Encoder–Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images. Journal of Imaging, 11(2), 51. https://doi.org/10.3390/jimaging11020051