Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang–Ball Curves
Abstract
:1. Introduction
1.1. Relevant Research Objectives
1.2. Literature Survey of the Meta-Heuristic Algorithm
1.3. Paper Contribution and Organization
- The CDWB curve is defined on the basis of the concept of the DWB curve, together with a discussion of overall G1 and G2 continuity on the combined curve.
- The shape optimization models of CDWB curves are established using the energy method. In order to seek a better optimization effect, the model is solved by introducing MCSA.
- Three numerical examples are designed using CDWB curves, through which the optimization capability of MCSA is demonstrated.
2. CDWB Curves
2.1. DWB Curves
2.2. Construction of CDWB Curves
2.2.1. CDWB Curves with G1 Geometric Continuity
2.2.2. CDWB Curves with G2 Geometric Continuity
3. Shape Optimization of CDWB Curves
3.1. Modeling of CDWB Curves Shape Optimization
- (a)
- Whole G1 smooth blending:
- (b)
- Whole G2 smooth blending:
3.2. Mathematical Model of MCSA
3.2.1. Searching Stage Guided by Sinusoidal Adjustment
3.2.2. Rotation of Chameleon’s Eyes
3.2.3. Attacking Stage in Combination with FO Calculus
3.2.4. CCL Strategy
Algorithm 1: Pseudo-code of MCSA |
Input: Related parameters, such as d, N, Maxg, Pp, , , |
Output: Optimal fitness value fitbest |
1: Randomly initialize |
2: Calculate the fitness values of each chameleon’s position, record the best value |
3: while () do |
4: Define the value of , according to Equations (34) and (35) |
5: Define the inertia weight and the acceleration rate according to Equations (39) and (42) |
6: for do |
7: |
8: |
9: if () do |
10: |
11: else |
12: |
13: end if |
14: |
15: end for |
16: Compute the fitness values and update the best value |
17: Find the best position for each individual so far |
18: for do |
19: |
20: if () do |
21: |
22: end if |
23: end for |
24: |
25: end while |
3.3. Steps for Solving the Optimization Models by MCSA
3.4. Numerical Examples
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
Abbreviation | Meaning |
CDWB curves | Combined disk Wang–Ball (CDWB) curves |
MCSA | Multi-strategy ameliorated chameleon swarm algorithm |
FO calculus | Fractional-order calculus |
CCL strategy | Crossover-based comprehensive learning strategy |
SCA | Sine Cosine Algorithm |
WSO | White Shark Optimizer |
AOA | Arithmetic Optimization Algorithm |
STOA | Sooty Tern Optimization Algorithm |
GJO | Golden jackal optimization |
DE | Differential evolutionary algorithms |
GWO | Grey wolf optimizer |
MVO | Multi-verse optimizer |
References
- Ball, A.A. CONSURF, part 1: Introduction to the conic lofting title. Comput.-Aided Des. 1974, 6, 243–249. [Google Scholar] [CrossRef]
- Ball, A.A. CONSURF, part 2: Description of the algorithms. Comput.-Aided Des. 1975, 7, 237–242. [Google Scholar] [CrossRef]
- Ball, A.A. CONSURF, part 3: How the program is used. Comput.-Aided Des. 1977, 9, 9–12. [Google Scholar] [CrossRef]
- Wang, G.J. Ball curve of high degree and its geometric properties. Appl. Math. J. Chin. Univ. 1987, 2, 126–140. [Google Scholar]
- Said, H.B. Generalized ball curve and its recursive algorithm. ACM Trans. Graph. 1989, 8, 360–371. [Google Scholar] [CrossRef]
- Goodman, T.N.; Said, H.B. Properties of generalized Ball curves and surfaces. Comput.-Aided Des. 1991, 23, 554–560. [Google Scholar] [CrossRef]
- Goodman, T.N.; Said, H.B. Shape preserving properties of the generalised Ball basis. Comput. Aided Geom. Des. 1991, 8, 115–121. [Google Scholar] [CrossRef]
- Hu, S.M.; Wang, G.Z.; Jin, T.G. Properties of two types of generalized ball curves. Comput.-Aided Des. 1996, 28, 125–133. [Google Scholar] [CrossRef]
- Sederberg, T.W.; Farouki, R.T. Approximated by interval Bézier curves. IEEE Comput. Graph. Appl. 1992, 15, 87–95. [Google Scholar] [CrossRef]
- Tan, J.; Jiang, P. Boundary and degree reduction of the interval Ball curves. J. Comput.-Aided Des. Comput. Graph. 2006, 18, 378–384. [Google Scholar]
- Chen, F.; Yang, X.; Yang, W. Degree reduction of interval B-spline curves. J. Softw. 2002, 13, 490–500. [Google Scholar]
- Tuohy, S.T.; Maekawa, T.; Shen, G.; Patrikalakis, N.M. Approximation of measured data with interval B-splines. Comput.-Aided Des. 1997, 29, 791–799. [Google Scholar] [CrossRef]
- Chen, F.; Lou, W. Degree reduction of interval Bézier curves. Comput.-Aided Des. 2000, 32, 571–582. [Google Scholar] [CrossRef]
- Lin, Q.; Rokne, J.G. Disk bézier curves. Comput. Aided Geom. Des. 1998, 15, 721–737. [Google Scholar] [CrossRef]
- Chen, F.L.; Yang, W. Degree reduction of disk Bézier curves. Comput. Aided Geom. Des. 2004, 21, 263–280. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G. Disk Bézier approximation of equidistant curves. J. Softw. 2005, 616–624. [Google Scholar] [CrossRef]
- Seah, H.S.; Wu, Z.; Tian, F.; Xiao, X.; Xie, B. Artistic brushstroke representation and animation with disk b-spline curve. In Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, Valencia, Spain, 15–17 June 2005; pp. 88–93. [Google Scholar]
- Hu, G.; Yang, R.; Wei, G. Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang-Ball curves. Math. Comput. Simul. 2023, 206, 709–769. [Google Scholar] [CrossRef]
- Terzopoulos, D.; Platt, J.; Barr, A.; Fleischer, K. Elastically deformable models. Comput. Graph. 1987, 21, 205–214. [Google Scholar] [CrossRef]
- Juhász, I.; Róth, Á. Adjusting the energies of curves defined by control points. Comput.-Aided Des. 2019, 107, 77–88. [Google Scholar] [CrossRef]
- Hu, G.; Li, M.; Wang, X.; Wei, G.; Chang, C.-T. An enhanced manta ray foraging optimization algorithm for shape optimization of complex CCG-Ball curves. Knowl.-Based Syst. 2022, 240, 108071. [Google Scholar] [CrossRef]
- Hu, G.; Li, M.; Zhong, J. Combined cubic generalized Ball surfaces: Construction and shape optimization using an enhanced JS algorithm. Adv. Eng. Softw. 2022, 176, 103404. [Google Scholar] [CrossRef]
- Rajeev, S.; Krishnamoorthy, C.S. Discrete optimization of structures using genetic algorithms. J. Struct. Eng. 1992, 118, 1233–1250. [Google Scholar] [CrossRef]
- Sowmya, R.; Premkumar, M.; Jangir, P. Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems. Eng. Appl. Artif. Intell. 2024, 128, 107532. [Google Scholar] [CrossRef]
- Hu, G.; Du, B.; Wang, X.; Wei, G. An enhanced black widow optimization algorithm for feature selection. Knowl.-Based Syst. 2022, 235, 107638. [Google Scholar] [CrossRef]
- Khatab, M.; El-Gamel, M.; Saleh, A.I.; El-Shenawy, A.; Rabie, A.H. Coyote and Badger Optimization (CBO): A natural inspired meta-heuristic algorithm based on cooperative hunting. Commun. Nonlinear Sci. Numer. Simul. 2025, 140, 108333. [Google Scholar] [CrossRef]
- Tian, Z.; Gai, M. Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization. Expert Syst. Appl. 2024, 245, 123088. [Google Scholar] [CrossRef]
- Hu, G.; Zhu, X.; Wang, X.; Wei, G. Multi-strategy boosted marine predators algorithm for optimizing approximate developable surface. Knowl.-Based Syst. 2022, 254, 109615. [Google Scholar] [CrossRef]
- Chen, D.; Ge, Y.; Wan, Y.; Deng, Y.; Chen, Y.; Zou, F. Poplar optimization algorithm: A new meta-heuristic optimization technique for numerical optimization and image segmentation. Expert Syst. Appl. 2022, 200, 117118. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, N.; Wang, X.; Li, M. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning. Expert Syst. Appl. 2023, 215, 119327. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]
- Hu, G.; Dou, W.; Wang, X.; Abbas, M. An enhanced chimp optimization algorithm for optimal degree reduction of Said-Ball curves. Math. Comput. Simul. 2022, 197, 207–252. [Google Scholar] [CrossRef]
- Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
- Wang, J.; Lv, M.; Li, Z.; Zeng, B. Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective chameleon swarm algorithm. Expert Syst. Appl. 2023, 214, 119129. [Google Scholar] [CrossRef]
- Rajesh, C.; Sadam, R.; Kumar, S. An evolutionary Chameleon Swarm Algorithm based network for 3D medical image segmentation. Expert Syst. Appl. 2024, 239, 122509. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Z. Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China. Renew. Energy 2023, 202, 1110–1137. [Google Scholar] [CrossRef]
- Dinh, P.-H. Combining spectral total variation with dynamic threshold neural P systems for medical image fusion. Biomed. Signal Process. Control 2023, 80 Pt 2, 104343. [Google Scholar] [CrossRef]
- Mostafa, R.R.; Ewees, A.A.; Ghoniem, R.M.; Abualigah, L.; Hashim, F.A. Boosting chameleon swarm algorithm with consumption AEO operator for global optimization and feature selection. Knowl.-Based Syst. 2022, 246, 108743. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E.; Snášel, V. A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem. Energy 2022, 254 Pt C, 124340. [Google Scholar] [CrossRef]
- Hu, G.; Yang, R.; Qin, X.; Wei, G. MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm for engineering applications. Comput. Meth. Appl. Mech. Eng. 2023, 403 Pt A, 115676. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Meth. Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 2019, 82, 148–174. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
Method | Parameters | Optimal Parameter Variables | Energy | ||
---|---|---|---|---|---|
j = 2 | j = 3 | j = 4 | |||
GWO | α1 | 3.496598 | 0.500000 | 0.500000 | 86.520164 |
α2 | 0.170125 | 19.996942 | 1.119740 | ||
MVO | α1 | 3.487348 | 0.500000 | 0.500000 | 86.528426 |
α2 | 0.171274 | 17.372159 | 1.968351 | ||
AOA | α1 | 3.533888 | 0.500000 | 0.500000 | 86.547738 |
α2 | 0.272004 | 20.000000 | 0.636630 | ||
SCA | α1 | 3.172702 | 0.500000 | 0.500000 | 86.585730 |
α2 | 0.206337 | 19.371612 | 0.347748 | ||
STOA | α1 | 3.484280 | 0.5 | 0.5 | 86.523149 |
α2 | 0.162019 | 20 | 1.449695 | ||
DE | α1 | 3.344544 | 0.501062 | 0.500148 | 86.558621 |
α2 | 0.179524 | 15.355944 | 1.056753 | ||
WSO | α1 | 2.921853 | 0.990801 | 0.504853 | 88.799267 |
α2 | 3.801809 | 8.450565 | 2.576418 | ||
MCSA | α1 | 3.502395 | 0.5 | 0.5 | 86.519192 |
α2 | 0.171143 | 19.893545 | 0.583494 |
Method | Parameters | Optimal Parameter Variables | Energy | |||
---|---|---|---|---|---|---|
j = 2 | j = 3 | j = 4 | j = 5 | |||
MVO | α1 | 2.163511 | 0.571052 | 0.277113 | 1.601873 | 15.737175 |
α2 | 4.916315 | 2.564152 | 3.260973 | 4.702275 | ||
β1 | −2.446877 | −2.949739 | −1.829195 | 2.964973 | ||
β2 | −0.958170 | 2.242326 | −3.011651 | −4.966703 | ||
AOA | α1 | 1.843930 | 0.884693 | 0.932293 | 1.759613 | 19.728070 |
α2 | 1.050236 | 5 | 3.014100 | 4.938082 | ||
β1 | 0.003230 | 2.4879 × 10−9 | −0.001769 | −0.001434 | ||
β2 | 0.000912 | −0.001478 | 0.000915 | −0.000947 | ||
GJO | α1 | 2.106624 | 0.673132 | 0.734160 | 1.152351 | 15.532742 |
α2 | 3.677985 | 2.439312 | 5 | 2.120650 | ||
β1 | −0.005596 | −5 | −0.018117 | 1.689690 | ||
β2 | −2.094051 | −0.396819 | −0.166906 | 1.782403 | ||
STOA | α1 | 0.668488 | 1.255721 | 1.661235 | 1.445426 | 17.143764 |
α2 | 4.179706 | 4.003217 | 4.989004 | 4.621070 | ||
β1 | 4.589853 | 3.480160 | −1.228904 | 0.148168 | ||
β2 | −3.804298 | 0.227467 | −2.098405 | 2.097861 | ||
SCA | α1 | 2.249720 | 0.717536 | 1.495918 | 1.359881 | 16.718694 |
α2 | 5 | 2.814102 | 4.266499 | 1.688930 | ||
β1 | 0.034051 | −4.179311 | −3.063586 | 2.014430 | ||
β2 | 0.539825 | −0.071023 | 4.231954 | 0.781479 | ||
DE | α1 | 2.974248 | 0.602219 | 0.997978 | 1.465989 | 15.881302 |
α2 | 1.861221 | 3.402069 | 3.447110 | 4.248911 | ||
β1 | 4.584556 | −4.903025 | −4.159690 | −2.807080 | ||
β2 | 0.830291 | 3.095553 | 1.177691 | 0.287207 | ||
WSO | α1 | 2.270619 | 0.628542 | 0.674676 | 1.874187 | 15.749756 |
α2 | 1.162429 | 3.628808 | 3.926450 | 3.904971 | ||
β1 | −0.265529 | −4.413978 | −2.020885 | −4.086349 | ||
β2 | 1.983865 | 0.776000 | −4.637694 | 1.392620 | ||
MCSA | α1 | 2.773397 | 0.577761 | 0.484472 | 1.505580 | 14.751305 |
α2 | 3.628415 | 2.362079 | 4.986970 | 1.668446 | ||
β1 | 3.687531 | −4.998785 | −2.516266 | 0.302868 | ||
β2 | 4.481423 | −0.939683 | 2.034803 | 2.515662 |
Method | Parameters | Optimal Parameter Variables | Energy | ||||||
---|---|---|---|---|---|---|---|---|---|
j = 2 | j = 3 | j = 4 | j = 5 | j = 6 | j = 7 | j = 8 | |||
SCA | α1 | 1.46618 | 0.75032 | 5 | 1.27254 | 0.5 | 1.36416 | 0.47092 | 333.74615 |
α2 | 0.64864 | 3.96702 | 4.85923 | 5 | 5 | 1.88832 | 1.16434 | ||
DE | α1 | 0.74481 | 1.17040 | 3.07958 | 1.45533 | 0.72109 | 1.27545 | 0.50809 | 333.90498 |
α2 | 2.11867 | 4.54145 | 3.97695 | 1.80938 | 1.99623 | 3.09109 | 0.73686 | ||
GJO | α1 | 0.5 | 1.05597 | 4.01045 | 1.33108 | 0.50665 | 1.25972 | 0.46537 | 333.51432 |
α2 | 0.01622 | 5 | 4.72647 | 4.98566 | 3.46001 | 5 | 0.56538 | ||
MVO | α1 | 0.5 | 1.06594 | 4.04700 | 1.29314 | 0.5 | 1.28461 | 0.46425 | 333.55311 |
α2 | 0.18562 | 4.99617 | 3.41395 | 2.71411 | 3.54735 | 3.47489 | 4.68993 | ||
AOA | α1 | 0.86792 | 0.90599 | 5 | 0.86462 | 0.5 | 1.25635 | 0.45000 | 333.79635 |
α2 | 1.82486 | 2.88047 | 1.66113 | 3.60377 | 4.46127 | 4.10775 | 4.10775 | ||
STOA | α1 | 0.57543 | 1.07952 | 3.91110 | 1.22169 | 0.50803 | 1.27179 | 0.47016 | 333.53220 |
α2 | 0.01143 | 4.98317 | 4.16030 | 5 | 3.39809 | 3.90083 | 1.16007 | ||
WSO | α1 | 1.23403 | 1.05216 | 4.40504 | 1.54213 | 0.55872 | 1.51185 | 0.51448 | 333.89544 |
α2 | 1.83582 | 2.72107 | 1.74940 | 2.00836 | 3.47465 | 1.26459 | 1.17947 | ||
MCSA | α1 | 0.500001 | 1.06141 | 4.10563 | 1.30932 | 0.50666 | 1.28952 | 0.46536 | 333.51118 |
α2 | 2.05082 | 5.00000 | 4.99999 | 4.99997 | 4.31717 | 4.99939 | 4.81926 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Yang, R.; Hu, X.; Hu, G. Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang–Ball Curves. Biomimetics 2025, 10, 3. https://doi.org/10.3390/biomimetics10010003
Liang Y, Yang R, Hu X, Hu G. Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang–Ball Curves. Biomimetics. 2025; 10(1):3. https://doi.org/10.3390/biomimetics10010003
Chicago/Turabian StyleLiang, Yan, Rui Yang, Xianzhi Hu, and Gang Hu. 2025. "Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang–Ball Curves" Biomimetics 10, no. 1: 3. https://doi.org/10.3390/biomimetics10010003
APA StyleLiang, Y., Yang, R., Hu, X., & Hu, G. (2025). Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang–Ball Curves. Biomimetics, 10(1), 3. https://doi.org/10.3390/biomimetics10010003