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Abstract: Unlike adult mammalian cardiomyocytes, cardiomyocytes in teleosts display high prolifer-
ative capacity throughout adulthood. This study aimed to identify the immunohistochemical profiles
of cardiomyocytes and immune cells in the hearts of Molly fish by assessing the immunolabelling
expression of key proteins involved in cell proliferation, differentiation, and tissue protection. The
cardiac anatomy of Molly fish includes the atrium, ventricle, and bulbus arteriosus. The expression of
SOX9, NF-κB, myostatin, and S100 proteins in myocardial cells indicates the proliferative features of
the heart in Molly fish. The bulbus arteriosus is characterized by collagenous chambers and smooth
muscle cells that express Ach and iba1. The atrium of Molly fish serves as a storage unit for rodlet
cells and immune cells. Rodlet cells displayed immunoreactivity to NF-κB, iba1, Olig2, Ach, and
S100 proteins, suggesting their roles in the immune response within the heart. Furthermore, telocytes
(TCs) have emerged as a significant component of the atrium of Molly fish, expressing Ach, CD68,
S100 protein, and iba1. These expressions indicate the involvement of TCs in multiple signaling path-
ways that contribute to heart architecture. This study delineates the intricate relationship between
cardiomyocytes and innate immune cells in Molly fish.

Keywords: atrium; regeneration; rodlet cells; SOX9; TCs

Key Contribution: The study revealed that Molly fish cardiomyocytes exhibit significant proliferative
capabilities with myocardial cells in the atrium and ventricle expressing key markers like Sox9, NF-κB,
myostatin, and S100 protein. The role of rodlet cells and telocytes in the immune response and heart
structure is emphasized, highlighting their involvement in multiple signaling pathways critical for
cardiac regeneration.

1. Introduction

In all vertebrates, the heart is an essential organ that pumps blood throughout the
body to provide nutrition and oxygen to tissues while expelling waste. The distinctive
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heart structure of fish reflects their aquatic lifestyle and metabolic requirements [1]. The
fish’s heart is a comparatively simple but highly functional organ consisting of two main
chambers: the ventricle and the atrium. It functions as a single circulation loop, which is in
contrast to the more intricate four-chambered hearts observed in mammals and birds [2].
Deoxygenated blood returns to the atrium by the body, where it is forced into the ventricle
by contraction. With its strong, muscular walls, the ventricle provides the force required to
pump blood to the gills where oxygen is received [3,4]. Fish hearts have two additional
chambers in addition to the atrium and ventricle: the sinus venosus and bulbus arteriosus.
Through the sinus venosus, the collected deoxygenated blood is sent into the atrium.

The hearts of different species can differ greatly in terms of form and function, re-
flecting the ecological niches and lifestyles of these species [5]. For example, the hearts
of swift-moving, energetic fish, such as salmon (Oncorhynchus masou masou) and tuna
(Thunnus sp.), are often stronger and have a greater capacity to fulfill their increased energy
needs [6]. On the other hand, fish that live in low-oxygen habitats may have evolved
adaptations that improve their ability to absorb and use oxygen [7]. Since cardiovascular
diseases continue to be the world’s top cause of death, there is an urgent need for novel
therapeutic approaches and treatments. The heart’s capacity to repair and regenerate itself
after damage is one of the most intriguing topics in regenerative biology. Some fish species
have excellent cardiac regeneration abilities, which is in contrast to mammals that have
limited cardiac regeneration capacity [8].

In mammals, cardiomyocyte proliferation occurs extensively during early develop-
ment and for a brief period after birth, and this proliferative capability significantly di-
minishes within a month after birth, unlike in lower vertebrates, where it persists into
adulthood. These differences in the proliferative capacity of adult cardiomyocytes between
mammals and lower vertebrates are closely attributed to ontogenetic and phylogenetic
factors [9]. Previous studies in adult zebrafish have shown that mature cardiomyocytes can
dedifferentiate, re-enter the cell cycle, and proliferate to support the repair and replacement
of injured myocardium [10]. Moreover, cardiomyocyte proliferation has been reported
as a predominant mechanism responsible for the regeneration of the cardiac apex of the
zebrafish heart following resection [11]. Furthermore, previous studies have demonstrated
the regeneration process of zebrafish following the experimental induction of ventricular
cryoinjury to simulate human myocardial infarction situations [12,13]. When a liquid
nitrogen-cooled probe is used to injure tissue, a lesion of necrotic tissue develops. This in-
duces an immediate inflammatory response that recruits different immune cell types to the
wound [14]. The subsequent remodeling and regeneration processes in zebrafish are greatly
influenced by the actions of these immune cells. In particular, macrophages and regulatory
T cells are essential for effective cell regeneration [15,16]. Activated fibroblasts in zebrafish
also provide vital signaling molecules that create a regenerative niche by encouraging
neovascularization of the wound area and the proliferation of existing cardiomyocytes in
the wound border zone [17]. Among the substances that support this signaling are nrg1
(neurogranin 1), which is released from cells originating from the epicardium, and retinoic
acid, which is mostly secreted by the endocardial compartment [18,19].

Although zebrafish have been considered a potent model for studying adult heart
regeneration [11], divergent findings from recent assessments of the capacity for heart
regeneration across several teleost fish species show that zebrafish cardiac damage re-
sponses are not typical of other teleosts. Certain fish species, such as Mexican cavefish,
apanese medaka (Oryzias latipes), and grass carp (Ctenopharyngodon idella), display persis-
tent scarring comparable to that of adult humans [20–22], although some fish species, like
goldfish (Carassius auratus), exhibit ventricular regeneration [23]. Consequently, it is critical
to describe the cellular and molecular aspects of cardiomyocyte proliferative activity in
various teleost species, including Molly fish.

Poecilia sphenops is highly adaptable and thrives in various aquatic environments
from clear to muddy waters across its native range from the southern United States to
the Yucatan Peninsula [24]. Unique for their genetic clonality, female mollies reproduce



Fishes 2024, 9, 283 3 of 17

via parthenogenesis, producing clones without paternal genetic input. This makes them
valuable in research, particularly on skin malignancies, thyroid cancer, and infectious dis-
eases [25]. Their robust adaptability and reproductive consistency make them a promising
model for various scientific studies [26–28].

The present work aims to investigate the immunohistochemical characteristics and
proliferative capacity of cardiomyocytes and immune cells in the hearts of Molly fish by
assessing the expression of essential proteins involved in cell proliferation, differentiation,
and tissue protection. By understanding these cellular interactions and expressions, this
study seeks to uncover potential insights and therapeutic avenues for heart conditions in
which cardiomyocyte loss is a major concern.

2. Materials and Methods

The current study was completed in compliance with university policies regarding
animal care and Egyptian legal requirements. All methods used in this study have been
authorized by the National Ethical Committee of the Faculty of Veterinary Medicine, Assiut
University, Egypt. The Ethical Number is 04/0015-aun/vet.

2.1. Sample Collection

The study used twenty healthy 6-month-old Molly fish specimens (Poecilia sphenops,
Valenciennes, 1846). We bought fish from an ornamental fish shop in Assiut City, Egypt.
The standard length of the specimens was 4.50 ± 5.0 cm, and their body weight was
12.00 ± 1.10 g. They were acclimated to their new environment (20 gal flowthrough aquaria
with a water temperature of 20 ± 2 ◦C and a photoperiod of 16 h light and 8 h dark).
The fish were kept in glass aquaria (60 L) capacity. About 25% of aquarium water (tap
water free from chlorine) was exchanged daily. The aquaria were supplied with continuous
aeration by air stones and fish were fed a basal diet. After 2 weeks of acclimation, the fish
were randomly selected from the aquariums and euthanized with an overdose of MS-222
(3% tricaine). Then, the hearts were extracted, flushed with PBS to clear the blood, and
processed for immunohistochemical analysis.

2.2. Immunohistochemical Analysis

Sections of the hearts were prepared for immunohistochemistry (IHC) using a Pierce
Peroxidase Detection Kit (36000, Thermo Fisher Scientific, Waltham, MA, USA). The pri-
mary antibodies selected for IHC investigations are well documented for their roles in
cell proliferation, differentiation, and tissue protection. The sections underwent a process
of xylene deparaffinization, graded ethanol rehydration, and distilled water washing. To
enhance epitope exposure, the sections were microwave-heated for 15 min in a sodium
citrate buffer (0.01 M, pH 6.0). After 30 min of room temperature cooling, the sections
were cleaned using wash buffer (Tris-buffered saline with 0.05% Tween-20 detergent), and
after that, to stop the body’s endogenous peroxidase activity, they were incubated for
30 min in a peroxidase suppressor. The tissues were blocked using Universal BlockerTM
blocking buffer in TBS for 30 min at room temperature after being rinsed twice for three
minutes each time using a wash buffer. The sections were then incubated overnight at
4 ◦C with diluted (1:100) primary antibodies against a rabbit polyclonal interleukin 1 beta
(IL-1β, sc-7884, Santa Cruz Biotechnology, Heidelberg Germany), rabbit polyclonal nuclear
factor kappa B (NF-κB, 10745-1-AP, Proteintech, Rosemont, IL, USA), rabbit polyclonal
nuclear factor erythroid 2-related factor 2 (Nrf2, sc-722, Santa Cruz Biotechnology, Hei-
delberg, Germany), rabbit polyclonal myostatin (AB3239, Sigma-Aldrich, Madrid, Spain),
rabbit polyclonal SRY-Box transcription factor 9 (Sox9, AB5535, Sigma-Aldrich, Madrid,
Spain), mouse monoclonal anti-CD68 (sc-17832, Santa Cruz Biotechnology, Heidelberg,
Germany), mouse monoclonal anti-Olig2 (sc-515947, Santa Cruz Biotechnology, Heidelberg,
Germany), mouse monoclonal Ionized calcium binding adaptor molecule (Iba-1, sc-32725,
Santa Cruz Biotechnology, Heidelberg, Germany, diluted 1:200), rabbit polyclonal Nicotinic
Acetylcholine R alpha 7 NACHRA7 (Ach, A7844, ABclonal, Woburn, MA, USA), and rabbit
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polyclonal S100 protein (Z0311, Dako, Glostrup, Denmark). In parallel, tissue specimens,
in which the S100 protein, Nrf2, and SOX9 primary antibodies were omitted and replaced
with buffer, served as negative controls (Figure S1). The slides were washed two times
for 3 min with wash buffer and were incubated with diluted (1:1000) goat anti-rabbit IgG
(65-6140, Invitrogen, Waltham, MA, USA) and diluted (1:100) goat anti-mouse IgG (31800,
Invitrogen, Waltham, MA, USA) secondary antibodies for 30 min at room temperature.
Following that, the slides were washed three times for 3 min each with a wash buffer,
and the tissues were incubated with the diluted (1:500) Avidin-HRP (43-4423, Invitrogen,
Waltham, MA, USA) in a universal blocker blocking buffer for 30 min. The slides were
then washed three times for 3 min each with a wash buffer. The tissues were treated for
5 to 15 minutes, or until the required staining was obtained, with a 1× metal-enhanced
3,3′ diaminobenzidine (DAB) substrate working solution, which was made by adding
stable peroxide buffer to the 10× DAB/Metal Concentrate. The sections were then counter-
stained with hematoxylin, which was changed twice by Harris, for three minutes each, and
mounted using mounting medium.

In IHC, target antigens are detected directly through chromogenic means, in which
antibodies are conjugated to horseradish peroxidase enzyme (HRP). Following incubation
with DAB substrate, the enzyme activity led to the precipitation of insoluble, which were
colored precipitates at the antigen localization site. Using light microscopy, the IHC
expression can be detected by visualizing these colored precipitates. The absence of these
precipitates indicates the negative IHC expression.

3. Results
3.1. General structure of Molly Fish’s Heart

Like many teleost species, the heart of Molly fish consists of atria, ventricles, and
bulbus arteriosus (Figure 1A). The bulbus arteriosus was pear in shape and characterized
by a thick wall structure extending between the single ventricle and ventral aorta. A valve
was observed between the ventricle and the bulbus. The inner surface was composed
of longitudinal unbranched ridges. It consisted of the endocardium, middle layer, and
external layer. The endocardium was a thin layer of endothelium. The middle layer was
formed of layers of smooth muscle fibers, which was separated by bundles of collagenous
fibers. The external layer was composed of wavy collagenous bundles and fibroblast-like
cells (Figure 1A). The middle layer of the bulbus expressed iba1 (Figure 1B), whereas the
external layer expressed Ach (Figure 1C).

3.2. Architecture of the Atrium and Atrioventricular Regions

The single atrium consisted of a thin myocardium and a network of thin trabeculae
(Figure 2A,B). The atrioventricular (AV) region is formed by a ring of myocardium, which
supports the AV valves (Figure 2A). Typically, two leaflets with a dense core composed of
many cells and a substantial quantity of connective tissue create the AV valves. This connec-
tive tissue core contained macrophages and lymphocytes that expressed Ach (Figure 2C)
and dendritic cells that expressed iba1 (Figure 2D).

3.3. Immunohistochemical Properties of the Atrial Immune Cells

The atrium showed a large proportion of immune cells, including dendritic-like
cells that expressed Ach (Figure 3A), macrophages that expressed Ach (Figure 3B), CD68
(Figure 3C), and iba1 (Figure 3D). Moreover, granulocytes could be identified by S100
protein (Figure 3E). We can identify various immune cells according to their morphology.
Dendritic cells were characterized by a high nuclear-to-cytoplasmic ratio and the presence
of dendrite-like processes. Macrophages were characterized by eccentric nuclei and pseu-
dopodia. On the other hand, the granulocytes were observed near RBCs with pleomorphic
nuclei and some pseudopodia.
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Figure 1. General view of the heart of Molly fish stained by Ach and iba1. (A) The heart of atrium 
(A), ventricle (V), and bulbus arteriosus (BA). The bulbous consisted of the endocardium (E), middle 
(M), and external layers (EX). Note the presence of the atrioventricular valve (AV) and aorta (AO) 
and the valve (arrowhead) between the ventricle and the bulbous. (B) The middle layer bulbous 
arteriosus expressed iba1 (arrowheads). (C) The external layer of the bulbus expressed Ach 
(arrowheads). 

3.2. Architecture of the Atrium and Atrioventricular Regions 
The single atrium consisted of a thin myocardium and a network of thin trabeculae 
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many cells and a substantial quantity of connective tissue create the AV valves. This 
connective tissue core contained macrophages and lymphocytes that expressed Ach 
(Figure 2C) and dendritic cells that expressed iba1 (Figure 2D). 

Figure 1. General view of the heart of Molly fish stained by Ach and iba1. (A) The heart of atrium (A),
ventricle (V), and bulbus arteriosus (BA). The bulbous consisted of the endocardium (E), middle (M),
and external layers (EX). Note the presence of the atrioventricular valve (AV) and aorta (AO) and the
valve (arrowhead) between the ventricle and the bulbous. (B) The middle layer bulbous arteriosus
expressed iba1 (arrowheads). (C) The external layer of the bulbus expressed Ach (arrowheads).

Rodlet cells are immune cells scattered throughout the atrium. They were rounded
to polyhedral cells surrounded by a capsule and contained an eccentric nucleus. These
cells exhibited a wide range of immunoreactivity to various antibodies. The cytoplasm of
these cells expressed Ach (Figure 4A), NF-κB (Figure 4C), and iba1 (Figure 4E,F), while
their capsule expressed S100 protein (Figure 4B) and Olig-2 (Figure 4D).

3.4. Immunohistochemical Characterization of the Telocytes

Furthermore, telocytes (TCs) have emerged as a significant component of the atrium.
These unique interstitial cells were characterized by a cell body containing an oval nucleus
and long cell processes called telopodes. TCs and their telopodes expressed Ach (Figure 5A),
S100 protein (Figure 5B), CD68 (Figure 5C,D), and iba1 (Figure 5E,F).
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immunostained against Ach. (C) The connective tissue core of AV valves immunostained against 
Ach showed an expression of macrophages and lymphocytes (arrowhead and boxed area). (D) The 
AV connective tissue core of the valves immunostained against iba1 showed dendritic cells 
(arrowhead and boxed area). 
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Figure 2. Morphology of atrium and AV valves. (A) The atrioventricular valve (AV) is located
between the atrium (A) and ventricle (V), immunostained against Ach. (B) Higher magnification
of the single that consisted of a thin myocardium and a network of thin trabeculae (arrowhead),
immunostained against Ach. (C) The connective tissue core of AV valves immunostained against Ach
showed an expression of macrophages and lymphocytes (arrowhead and boxed area). (D) The AV
connective tissue core of the valves immunostained against iba1 showed dendritic cells (arrowhead
and boxed area).
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Figure 3. Immunohistochemistry of immune cells in the atrium. (A) Dendritic cells (arrowhead)
expressed Ach. (B) Macrophages (arrowheads) expressed Ach. (C,D) Macrophages (arrowheads)
expressed CD68 and iba1, respectively. (E) Granulocytes (arrowheads) expressed S100 Protein.
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Figure 4. Immunohistochemistry of rodlet cells in the atrium. (A) Rodlet cells (arrowheads) 
expressed Ach. (B) Rodlet cells (arrowheads) expressed S100 Protein. (C) Rodlet cells (arrowheads) 
expressed NF-κB. (D) Rodlet cells (arrowheads) expressed Olig-2. (E,F) Rodlet cells (arrowheads) 
expressed iba1. 
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Figure 4. Immunohistochemistry of rodlet cells in the atrium. (A) Rodlet cells (arrowheads) expressed
Ach. (B) Rodlet cells (arrowheads) expressed S100 Protein. (C) Rodlet cells (arrowheads) expressed
NF-κB. (D) Rodlet cells (arrowheads) expressed Olig-2. (E,F) Rodlet cells (arrowheads) expressed iba1.

3.5. Immunohistochemical Features of the Cardiomyocytes

The ventricle consists of cardiac muscle fibers oriented in many directions. Prolif-
erative features were notably observed in the cardiac muscles of the atria and ventricles.
The myocardial cells exhibited an expression of myostatin (Figure 6A), Sox9 (Figure 6B),
Nrf2 (Figure 6C), S100 protein (Figure 6D), Ach (Figure 6E), and IL-1β (Figure 6F). The
relationship between cardiomyocytes and immune cells, particularly macrophages, is illus-
trated in Figure 7. This figure shows staining with Iba1 (Figure 7A,B), Ach (Figure 7C), and
S100 protein (Figure 7D). Numerous processes of these immune cells are observed in direct
contact with cardiac cells.
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(E,F) TCs (arrowheads) expressed iba1.
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Figure 6. Immunohistochemistry of cardiac muscle fibers. (A) Cardiac muscles (arrowheads) ex-
pressed myostatin. (B) Cardiac muscles (arrowheads) expressed SOX9. (C) Cardiac muscles (ar-
rowheads) expressed Nrf2. (D) Cardiac muscles (arrowheads) expressed S100 protein. (E) Cardiac
muscles (arrowheads) expressed Ach. (F) Cardiac muscles (arrowheads) expressed IL-1β.
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(macrophages, arrowheads). (A,B) Stained with Iba1. (C) Stained with Ach. (D) Stained with
s100 protein.

4. Discussion

The heart of modern teleosts is traditionally described as consisting of four segments
arranged in series: the sinus venosus, atrium, ventricle, and bulbus arteriosus. However,
other studies have indicated that in addition to the four chambers, all teleosts also possess
a conus arteriosus “situated between the ventricle and the bulbus arteriosus” [29,30] and
a distinct atrioventricular segment [31]. The bulbus arteriosus is an elastic chamber that
expands during ventricular ejection to store a significant portion of the cardiac stroke
volume. In addition, its gradual elastic recovery ensures a steady flow of blood toward the
gills to protect the delicate gill vasculature from damage [1].

Interestingly, previous studies have shown that the structure of the bulbus arteriosus
is nearly species-specific [32–34]. In all studied teleosts, the atrioventricular region is identi-
fiable as a distinct morphological segment situated between the atrium and the ventricle,
and the morphological characteristics of this region appear to be species-specific [31]. The
atrioventricular region of Molly fish consists of a compact myocardium ring encircled
by a connective tissue ring. The myocardium contains vessels in most species with fully
trabeculated ventricles [31].

Telocytes (TCs) represent a significant component of the atrium of Molly fish. They
are specialized interstitial cells that interact with various cell types and play crucial roles
in numerous biological processes across different tissues and organs [35]. Furthermore,
they deliver microvesicles and macromolecules, such as RNAs and proteins, to other cells
by secreting various types of extracellular vesicles, including exosomes, ectosomes, and
multivesicular vesicles [36,37]. TCs have been detected in the gonads, gills, and liver of
fish [38]. In silver carp, they establish a network in the dermis of the upper lip and extend to
the epidermal cells through connection with fibroblasts [39]. Recently, the communication
of TCs with stem cells, myoblasts, and skeletal muscles has been reported in common
carp [40]. The expression of the various studied markers suggests that TCs are involved in
multiple signaling pathways that contribute to the architecture of the heart.
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The results of the present study revealed that Iba1 expression was observed in
macrophages, rodlet cells, TCs, and their telopodes of the atrium. Iba1 expression has been
detected in the brain and ovaries of Molly fish [41,42]. Iba1, an actin-cross-linking protein,
stands out as a recently unveiled EF-hand protein that is exclusively present in cells of
monocytic lineages, notably microglia. Its expression extends to macrophages and plays a
crucial role in inducing membrane ruffling mediated by the macrophage colony-stimulating
factor [43–46]. Furthermore, researchers have suggested that Iba1 participates in calcium
signaling pathways, boosting its status as a pivotal molecule in the mechanisms governing
membrane ruffling and phagocytosis within macrophages [44].

The external layer of the bulbus arteriosus, macrophages, lymphocytes of the AV
valves, and dendritic-like cells of the atrium express Ach. Moreover, Ach expression was
detected in the rodlet cells, TCs, and their telopodes in the atrium, in addition to the my-
ocardial cells of the ventricle. Recently, Ach expression has been observed in the ovaries of
Molly fish [42]. It serves as a key receptor in the cholinergic anti-inflammatory pathway and
is widely distributed among diverse non-neuronal cells including macrophages, endothelial
cells, and dendritic cells [47–50]. It is well-established that acetylcholine, released from
efferent fibers of the vagus nerve, suppresses the secretion of various pro-inflammatory
cytokines by engaging with Ach present in diverse immune cells and macrophages. The
activation of Ach has been extensively documented to mitigate inflammatory reactions in
peripheral tissues and rejuvenate compromised immune cell function [51–53]. Furthermore,
the inability of the activated cholinergic system to attenuate inflammatory responses has
been observed in mice lacking Ach [54].

Interestingly, CD68 expression was observed in atrial macrophages, TCs, and their
telopodes. CD68 is a myeloid-specific surface marker extensively expressed in cells of the
mononuclear phagocyte lineage, including macrophages and myeloid dendritic cells [55].
Its primary association lies within the endosomal/lysosomal compartment [56], where
CD68′s preferential localization within late endosomes suggests its involvement in pep-
tide transport and antigen processing [57]. Moreover, macrophages expressing CD68 are
acknowledged as essential components of the foreign body reaction [58].

The present study showed that the atrial granulocytes, rodlet cell capsule, TCs, and
their telopodes, in addition to the myocardial cells of the ventricle, expressed S100 proteins.
The S100 protein is a crucial player in defense mechanisms across various species, exhibiting
both extracellular and intracellular functions. S100 protein expression has been detected in
various Molly fish tissues [41,42,59,60], where it plays a fundamental role in pro-inflammatory
stimulation and cytoskeleton rearrangement, and it acts as a scavenger for free radicals [61].
Furthermore, S100 proteins are implicated in diverse regulatory mechanisms that govern
cellular functions. These processes include cell proliferation and differentiation, apoptosis,
invasion, enzyme activation, and energy metabolism [61–63]. In Zebrafish, three S100 proteins
have been described: S100S, S100T, and S100Z. The expression of S100T has been observed in
non-sensory tissues, including the heart [64].

NF-κB and Olig-2 expressions have been observed in the atrial rodlet cells cytoplasm
and capsules, respectively. NF-κB is a responsive element to inflammatory and immune
stimuli, orchestrating a wide array of cellular processes including proliferation, adhesion,
invasion, apoptosis, and angiogenesis across multiple cell types [65]. Its expression has
been demonstrated in many tissues of Molly fish, including the spleen, pseudobranch, liver,
pancreas, ovary, intestinal bulb, and gills [42,59,60,66–69]. NF-κB signaling within epithelial
cells is particularly vital for preserving immune homeostasis in barrier tissues [70]. As a
critical transcription factor in the innate immune response, NF-κB regulates the produc-
tion of numerous pro-inflammatory cytokines and participates in a myriad of signaling
pathways [71,72]. Olig-2 is a crucial transcription factor necessary for the specification
and differentiation of oligodendrocytes, astrocytes, and neurons during development [73].
Furthermore, the upregulation of Olig-2 in oligodendrocyte progenitor cells enhances their
migration and differentiation, resulting in precocious myelination in prenatal mice [74]. In
zebrafish, Olig2 is essential for the development of primary motor neurons and oligoden-
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drocytes [75]. In addition, Olig-2 has been identified as an upstream regulator of SOX10,
which is another key transcription factor involved in oligodendrocyte development [76].

The myocardial cells of the ventricle exhibited an expression of myostatin and Sox9.
Myostatin, a member of the TGF-β superfamily, was initially identified as a potent negative
regulator of skeletal muscle growth [77]. Moreover, Sox9, a member of the SOX family,
plays a crucial role in regulating cell proliferation and cell fate during embryogenesis with
mutations leading to abnormal cell growth [78]. The SOX family as a whole has critical
functions in stem cell maintenance, embryonic development, and lineage commitment.
Specifically, Sox9 governs stem and progenitor cells in adult tissues [79,80]. Interestingly,
myostatin and Sox9 expressions have been extensively observed in various Molly fish
tissues [41,42,59,60,66–69]. A previous study reported the expression of sox9b, one of the
two mammalian Sox9 homologs, in the developing zebrafish heart ventricle, where its
signaling is essential for epicardium formation. Additionally, zebrafish lacking Sox9b
exhibited an elongated heart and pericardial edema, and they failed to form valve cushions
and leaflets [81].

The myocardial cells of the ventricle exhibited the expression of Nrf2 and IL-1β. Nrf2
has been reported to play a role in antioxidation, immunopotentiation, and osmoregulation
in fish under salinity stress in addition to its established functions in toxicity and oxidative
stress [82,83]. It plays a fundamental role in the regulation of cell inflammatory responses
and lipid metabolism [84]. Furthermore, many Nrf2-regulated enzymes play a crucial
role in the pathogenesis of cardiovascular diseases [85]. Additionally, Nrf2 can prolong
graft survival and modulate both innate and adaptive immune responses following heart
transplantation [86]. Nrf2 knockout has been reported in mice to induce structural and
functional cardiac alterations [84,87]. IL-1β is secreted by activated endothelial cells,
tissue macrophages, blood monocytes, activated T lymphocytes, granulocytes, and other
cell types [88], where it plays a major role in initiating local and systemic responses to
stimuli through the activation of T and B lymphocytes, macrophages, and natural killer
cells [89,90]. Previous studies have shown that the expression patterns of IL-1β vary
across different organs in various organisms under normal conditions. For example, in sea
bream, a lower expression of IL-1β mRNA has been detected in the kidney, gill, spleen,
and intestine, while its expression was absent in the liver, heart, and muscles [91,92]. In
Molly fish, the expressions of Nrf2 and IL-1β have been detected in most of the studied
tissues [41,42,59,60,66,67,69].

The relationship between cardiomyocytes and immune cells has been detected in
Molly fish. Previous studies have described the relationship between immune cells and
cardiac remodeling and regeneration in zebrafish, in which the activation of immune
cells, in particular macrophages and T cells, is essential for successful regeneration [15,16].
Furthermore, a recent study reported that the ablation of macrophage in zebrafish larvae
blocks cardiomyocyte proliferation following cardiac injury [93]. In this study, macrophages
were detected to synapse with epicardial cells and induce their proliferation.

5. Conclusions

This study investigated the immunohistochemical characteristics and proliferative
capacity of cardiomyocytes and immune cells in the hearts of Molly fish. The findings
revealed the expression of various studied immunohistochemical markers in myocardial
cells and various cardiac cells such as telocytes, rodlet cells, and immune cells. The data
presented in this study suggest that telocytes have a potential role in cellular therapies.
However, further studies are required to substantiate this hypothesis and explore their
therapeutic applications more comprehensively. Furthermore, the study highlights the
relationship between cardiomyocytes and innate immune cells in Molly fish, providing
insights into potential cardiac regeneration processes. Nevertheless, future studies should
be performed to investigate the regenerative capacity of the cardiomyocytes of Molly fish
using cell culture.
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