Impact on Body Composition and Physical Fitness of an Exercise Program Based on Immersive Virtual Reality: A Case Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Study Variables
2.3. Physical Exercise Program
2.4. Sessions
2.5. Instruments
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; McAuley, P.A.; Church, T.S.; Milani, R.V.; Blair, S.N. Obesity and cardiovascular diseases: Implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. Coll. Cardiol. 2014, 63, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vizcaíno, V.; Sánchez-López, M. Relación entre actividad física y condición física en niños y adolescentes. Rev. Esp. Cardiol. 2008, 61, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Pierson, R.N.; Heymsfield, S.B. The five-level model: A new approach to organizing body-composition research. Am. J. Clin. Nutr. 1992, 56, 19–28. [Google Scholar] [CrossRef] [PubMed]
- González-Jiménez, E. Composición corporal: Estudio y utilidad clínica. Endocrinol. Nutr. 2013, 60, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kutac, P.; Bunc, V.; Buzga, M.; Krajcigr, M.; Sigmund, M. The effect of regular running on body weight and fat tissue of individuals aged 18 to 65. J. Physiol. Anthropol. 2023, 42, 28. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Izquierdo, D.; Torres-Martos, Á.; Baig, A.T.; Aguilera, C.M.; Ruiz-Ojeda, F.J. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022, 10, 126. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- Gonzalez-Gil, A.M.; Elizondo-Montemayor, L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020, 12, 1899. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines on Physical Activity and Sedentary Behaviour: At a Glance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Qian, J.; McDonough, D.J.; Gao, Z. The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4133. [Google Scholar] [CrossRef]
- Méndez-Giménez, A.; Fernández-Río, J.; Estrada, J.A.C.; de Mesa, C.G.G. Motivational profiles and their outcomes in physical education. A complementary study on 2 × 2 achievement goals and self-determination. Rev. Psicol. Deporte 2013, 22, 29–38. [Google Scholar]
- Merellano-Navarro, E.; Bustamante-Ara, N.; Russell-Guzmán, J.; Lagos-Hernández, R.; Uribe, N.; Godoy-Cumillaf, A. Association between Sleep Quality and Physical Activity in Physical Education Students in Chile in the Pandemic Context: A Cross-Sectional Study. Healthcare 2022, 10, 1930. [Google Scholar] [CrossRef]
- Bustamante-Ara, N.; Russell, J.; Godoy-Cumillaf, A.; Merellano-Navarro, E.; Uribe, N. Rendimiento académico, actividad física, sueño y género en universitarios durante la pandemia-2020. Cult. Cienc. Deporte 2020, 17, 109–131. [Google Scholar] [CrossRef]
- Denche-Zamorano, Á.; Franco-García, J.M.; Carlos-Vivas, J.; Mendoza-Muñoz, M.; Pereira-Payo, D.; Pastor-Cisneros, R.; Merellano-Navarro, E.; Adsuar, J.C. Increased Risks of Mental Disorders: Youth with Inactive Physical Activity. Healthcare 2022, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- JUNAEB. Informe Mapa Nutricional 2021; Lira, Mariana, Ministerio de Educación: Santiago, Chile, 2022. [Google Scholar]
- Gao, Z.; Zeng, N.; Pope, Z.C.; Wang, R.; Yu, F. Effects of Exergaming on Motor Skill Competence, Perceived Competence, and Physical Activity in Preschool Children. J. Sport Health Sci. 2019, 8, 106–113. [Google Scholar] [CrossRef]
- Burin, D.; Kilteni, K.; Rabuffetti, M.; Slater, M.; Pia, L. Body ownership increases the interference between observed and executed movements. PLoS ONE 2019, 14, e0209899. [Google Scholar] [CrossRef] [PubMed]
- Vieira, G.; de Araujo, D.; Leite, M.; Orsini, M.; Correa, C.L. Realidade virtual na reabilitação física de pacientes com doença de Parkinson. J. Hum. Growth Dev. 2014, 24, 31–41. [Google Scholar] [CrossRef]
- Chen, J.; Or, C.K.; Chen, T. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients With Stroke: Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Med. Internet Res. 2022, 24, e24111. [Google Scholar] [CrossRef] [PubMed]
- Brandín-De la Cruz, N.; Secorro, N.; Calvo, S.; Benyoucef, Y.; Herrero, P.; Bellosta-López, P. Immersive virtual reality and antigravity treadmill training for gait rehabilitation in Parkinson’s disease: A pilot and feasibility study. Rev. Neurol. 2020, 71, 447–454. [Google Scholar] [PubMed]
- Rutkowski, S.; Rutkowska, A.; Kiper, P.; Jastrzebski, D.; Racheniuk, H.; Turolla, A.; Szczegielniak, J.; Casaburi, R. Virtual Reality Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 117–124. [Google Scholar] [CrossRef]
- Rodriguez-Fuentes, G.; Campo-Prieto, P.; Souto, X.C.; Cancela Carral, J.M. Realidad virtual inmersiva y su influencia en parámetros fisiológicos de personas sanas (Immersive virtual reality and its influence on physiological parameters in healthy people). Retos 2024, 51, 615–625. [Google Scholar] [CrossRef]
- McDonough, D.J.; Pope, Z.C.; Zeng, N.; Liu, W.; Gao, Z. Comparison of College Students’ Blood Pres-sure, Perceived Exertion, and Psychosocial Outcomes During Virtual Reality, Exergaming, and Traditional Exer-cise: An Exploratory Study. Games Health J. 2020, 9, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Alsina-Rey, B.; Rodríguez-Fuentes, G. Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. J. Clin. Med. 2022, 11, 3911. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Feasibility and Effects of an Immersive Virtual Reality Exergame Program on Physical Functions in Institutionalized Older Adults: A Randomized Clinical Trial. Sensors 2022, 22, 6742. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela-Carral, J.M. Immersive Virtual Reality Exergame Promotes the Practice of Physical Activity in Older People: An Opportunity during COVID-19. Multimodal Technol. Interact. 2021, 5, 52. [Google Scholar] [CrossRef]
- Polechoński, J.; Szczechowicz, B.; Ryśnik, J.; Tomik, R. Recreational cycling provides greater satisfaction and flow in an immersive virtual environment than in real life. BMC Sports Sci. Med. Rehabil. 2024, 16, 31. [Google Scholar] [CrossRef]
- Giakoni-Ramírez, F.; Godoy-Cumillaf, A.; Espoz-Lazo, S.; Duclos-Bastias, D.; Del Val Martín, P. Physical Activity in Immersive Virtual Reality: A Scoping Review. Healthcare 2023, 11, 1553. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.; Naugle, K.E.; Kaleth, A.S.; Arnold, B.; Naugle, K.M. Physical Activity Intensity, Perceived Exertion, and Enjoyment During Head-Mounted Display Virtual Reality Games. Games Health J. 2021, 10, 314–320. [Google Scholar] [CrossRef]
- Giakoni-Ramírez, F.; Godoy-Cumillaf, A.; Fuentes-Merino, P.; Farías-Valenzuela, C.; Duclos-Bastías, D.; Bruneau-Chávez, J.; Merellano-Navarro, E.; Velásquez-Olavarría, R. Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality. Healthcare 2023, 11, 2399. [Google Scholar] [CrossRef] [PubMed]
- Dębska, M.; Polechoński, J.; Mynarski, A.; Polechoński, P. Enjoyment and Intensity of Physical Activity in Immersive Virtual Reality Performed on Innovative Training Devices in Compliance with Recommendations for Health. Int. J. Environ. Res. Public Health 2019, 16, 3673. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint, J.S. The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef]
- Simón-Vicente, L.; Rodríguez-Cano, S.; Delgado-Benito, V.; Ausín-Villaverde, V.; Delgado, E.C. Cybersickness. A systematic literature review of adverse effects related to virtual reality. Neurología 2024, 39, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, B.; Valero, L. Efectos secundarios tras el uso de realidad virtual inmersiva en un videojuego. Int. J. Psychol. Psychol. Ther. 2013, 13, 163–178. [Google Scholar]
- Riley, D.S.; Barber, M.S.; Kienle, G.S.; Aronson, J.K.; von Schoen-Angerer, T.; Tugwell, P.; Kiene, H.; Helfand, M.; Altman, D.G.; Sox, H.; et al. CARE guidelines for case reports: Explanation and elaboration document. J. Clin. Epidemiol. 2017, 89, 218–235. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Romero, V.E.; Piñero, J.C.; Artero, E.G.; Ortega, F.B.; García, M.C.; Pavón, D.J.; Chillón, P.; Rejón MJ, G.; Mora, J.; et al. Batería ALPHA-Fitness: Test de campo para la evaluación de la condición física relacionada con la salud en niños y adolescentes. Nutr. Hosp. 2011, 26, 1210–1214. [Google Scholar] [CrossRef]
- España-Romero, V.; Ortega, F.B.; Vicente-Rodríguez, G.; Artero, E.G.; Rey, J.P.; Ruiz, J.R. Elbow position affects handgrip strength in adolescents: Validity and reliability of Jamar, DynEx, and TKK dynamometers. J. Strength Cond. Res. 2010, 24, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, M.; Stewart, A.; de Ridder, J. International Standards for Anthropometric Assessment; International Society for the Advancement of Kineanthrometry: Potchefstroom, South Africa, 2012. [Google Scholar]
- Ochi, G.; Kuwamizu, R.; Fujimoto, T.; Ikarashi, K.; Yamashiro, K.; Sato, D. The Effects of Acute Virtual Reality Exergaming on Mood and Executive Function: Exploratory Crossover Trial. JMIR Serious Games 2022, 10, e38200. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liang, H.N.; Baghaei, N.; Ma, X.; Yu, K.; Meng, X.; Wen, S. Effects of an Immersive Virtual Reality Exergame on University Students’ Anxiety, Depression, and Perceived Stress: Pilot Feasibility and Usability Study. JMIR Serious Games 2021, 9, e29330. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.; Al-Ansari, S.; Biddle, S.; Borodulin, K.; Buman, M.; Cardon, G.; Carty, C.; Chaput, J.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Santos-Lozano, A.; Santín-Medeiros, F.; Cardon, G.; Torres-Luque, G.; Bailón, R.; Bergmeir, C.; Ruiz, J.R.; Lucia, A.; Garatachea, N. Actigraph GT3X: Validation and determination of physical activity intensity cut points. Int. J. Sports Med. 2013, 34, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the computer science and applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef]
- Arias-Palencia, N.M.; Solera-Martínez, M.; Gracia-Marco, L.; Silva, P.; Martínez-Vizcaíno, V.; Cañete-García-Prieto, J.; Sánchez-López, M. Levels and Patterns of Objectively Assessed Physical Activity and Compliance with Different Public Health Guidelines in University Students. PLoS ONE 2015, 10, e0141977. [Google Scholar] [CrossRef]
- Graf, D.L.; Pratt, L.V.; Hester, C.N.; Short, K.R. Playing active video games increases energy expenditure in children. Pediatrics 2009, 124, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.C.; Chiang, C.H.; Wu, P.T.; Wu, W.L.; Chu, I.H. Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 2565. [Google Scholar] [CrossRef]
- Maillot, P.; Perrot, A.; Hartley, A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol. Aging 2012, 27, 589–600. [Google Scholar] [CrossRef]
- Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N. Wii-based exercise program to improve physical fitness, motor proficiency and functional mobility in adults with Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A. Microsoft HoloLens 2 in medical and healthcare context: State of the art and future prospects. Sensors 2022, 22, 7709. [Google Scholar] [CrossRef] [PubMed]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef]
- Castillo-Garzón, M.; Ruiz, J.R.; Ortega, F.B.; Gutiérrez-Sainz, Á. A Mediterranean Diet Is Not Enough for Health: Physical Fitness Is an Important Additional Contributor to Health for the Adults of Tomorrow. World Rev. Nutr. Diet. 2007, 97, 114–138. [Google Scholar] [PubMed]
- Comeras-Chueca, C.; Villalba-Heredia, L.; Perez-Lasierra, J.L.; Marín-Puyalto, J.; Lozano-Berges, G.; Matute-Llorente, Á.; Vicente-Rodríguez, G.; Gonzalez-Agüero, A.; Casajús, J.A. Active Video Games Improve Muscular Fitness and Motor Skills in Children with Overweight or Obesity. Int. J. Environ. Res. Public Health 2022, 19, 2642. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.; Stanley, J. Experimental and Quasi-Experimental Designs for Research; Houghton Mifflin Company: Boston, MA, USA, 1963. [Google Scholar]
Anthropometric Variables | Pre-Intervention | Post-Intervention |
---|---|---|
Body mass (kg) | 72.4 | 70.4 |
height (cm) | 174 | 174 |
Sitting height (cm) | 89.5 | 89.5 |
Breadths | ||
Biacromiale (cm) | 41.2 | 41.2 |
Transverse chest (cm) | 28.5 | 28.5 |
Antero-post chest (cm) | 19.9 | 19.9 |
Bi-cristale (cm) | 28.7 | 28.7 |
Humerus (cm) | 7.4 | 7.4 |
Femur (cm) | 10.7 | 10.7 |
Girths | ||
Head (cm) | 57.2 | 57.2 |
Arm, relaxed (cm) | 31.4 | 30.3 |
Arm flexed (cm) | 33.9 | 33.5 |
Forearm (cm) | 27.1 | 27.2 |
Chest (cm) | 95.1 | 93.5 |
Waist (cm) | 78.8 | 77.5 |
Hip (cm) | 94.5 | 94.2 |
Upper thigh (cm) | 55.5 | 55.3 |
Mid-thigh (cm) | 52.1 | 51.3 |
Calf (cm) | 36 | 35.2 |
Skinfolds | ||
Triceps (mm) | 8.8 | 7.8 |
Subscapulare (mm) | 10.8 | 10 |
Supraspinale (mm) | 7.8 | 7 |
Abdominale (mm) | 16.6 | 13 |
Thigh (mm) | 13 | 12.4 |
Calf (mm) | 6.8 | 7.4 |
Pre | Post | % Change | |
---|---|---|---|
Physical fitness | |||
Right hand grip strength (kg) | 44.2 | 43.3 | −2 |
Left hand grip strength (kg) | 40.7 | 37.6 | −7.6 |
Speed-agility (s) | 10.58 | 10.12 | −4.3 |
Cardiorespiratory fitness (min) | 9.35 | 11.25 | 20.3 |
VO2 (mL/kg/min) | 47.6 | 53.6 | 12% |
Body Composition | |||
Fat (%) | 23.73 | 23.12 | −2.6 |
Fat (kg) | 19.45 | 16.73 | −14 |
Muscle (%) | 46.72 | 46.77 | 0.1 |
Muscle (kg) | 33.82 | 33.85 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godoy-Cumillaf, A.; Fuentes-Merino, P.; Giakoni-Ramírez, F.; Maldonado-Sandoval, M.; Bruneau-Chávez, J.; Merellano-Navarro, E. Impact on Body Composition and Physical Fitness of an Exercise Program Based on Immersive Virtual Reality: A Case Report. J. Funct. Morphol. Kinesiol. 2025, 10, 56. https://doi.org/10.3390/jfmk10010056
Godoy-Cumillaf A, Fuentes-Merino P, Giakoni-Ramírez F, Maldonado-Sandoval M, Bruneau-Chávez J, Merellano-Navarro E. Impact on Body Composition and Physical Fitness of an Exercise Program Based on Immersive Virtual Reality: A Case Report. Journal of Functional Morphology and Kinesiology. 2025; 10(1):56. https://doi.org/10.3390/jfmk10010056
Chicago/Turabian StyleGodoy-Cumillaf, Andrés, Paola Fuentes-Merino, Frano Giakoni-Ramírez, Marcelo Maldonado-Sandoval, José Bruneau-Chávez, and Eugenio Merellano-Navarro. 2025. "Impact on Body Composition and Physical Fitness of an Exercise Program Based on Immersive Virtual Reality: A Case Report" Journal of Functional Morphology and Kinesiology 10, no. 1: 56. https://doi.org/10.3390/jfmk10010056
APA StyleGodoy-Cumillaf, A., Fuentes-Merino, P., Giakoni-Ramírez, F., Maldonado-Sandoval, M., Bruneau-Chávez, J., & Merellano-Navarro, E. (2025). Impact on Body Composition and Physical Fitness of an Exercise Program Based on Immersive Virtual Reality: A Case Report. Journal of Functional Morphology and Kinesiology, 10(1), 56. https://doi.org/10.3390/jfmk10010056