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Abstract: In order to improve the network performance of multi-unmanned ground vehicle (UGV)
systems in urban environments, this article proposes a novel online autonomous motion-control
method for the relay UAV. The problem is solved by jointly considering unknown RF channel param-
eters, unknown multi-agent mobility, the impact of the environments on channel characteristics, and
the unavailable angle-of-arrival (AoA) information of the received signal, making the solution of the
problem more practical and comprehensive. The method mainly consists of two parts: wireless chan-
nel parameter estimation and optimal relay position search. Considering that in practical applications,
the radio frequency (RF) channel parameters in complex urban environments are difficult to obtain in
advance and are constantly changing, an estimation algorithm based on Gaussian process learning is
proposed for online evaluation of the wireless channel parameters near the current position of the
UAV; for the optimal relay position search problem, in order to improve the real-time performance
of the method, a line search algorithm and a general gradient-based algorithm are proposed, which
are used for point-to-point communication and multi-node communication scenarios, respectively,
reducing the two-dimensional search to a one-dimensional search, and the stability proof and conver-
gence conditions of the algorithm are given. Comparative experiments and simulation results under
different scenarios show that the proposed motion-control method can drive the UAV to reach or
track the optimal relay position and improve the network performance, while demonstrating that it
is beneficial to consider the impact of the environments on the channel characteristics.

Keywords: unmanned aerial vehicle; communication relay; channel estimation; motion control;
Gaussian process; gradient method; wireless networks

1. Introduction

Compared with a single agent, a multi-agent system can collaboratively complete tasks
more efficiently and economically. In the past few decades, systems composed of multi-
agents have shown great advantages in both military and civilian fields by collaborating
to learn and adapt in harsh and unknown environments to achieve common goals [1].
Communication and information exchange play a critical role in the success of tasks in
multi-agent systems; however, the increase in distance makes it difficult for the agent in the
system to meet these requirements [2].

Using communication relays between intelligent nodes is a possible solution [3], and
UAVs are particularly suitable for this task. Traditional base stations are not flexible
enough and have high costs. Due to their small size, low cost, and flexibility, UAVs are
showing a diversified development trend in the military field and are gradually playing
a more important role in the field of communication relay [4]. Compared with ground
and satellite relays, UAVs have better relay performance [5]. In addition, this kind of
instant communication relay without human intervention can be easily deployed; for
example, it can be quickly deployed in the event of communication link failures, and
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it has the advantages of high adaptability and strong survivability, especially in harsh
environments [6].

Dixon et al. [7] proposed an adaptive planning framework based on extremum-seeking
control to drive a UAV to a position that improves the chain capacity in point-to-point
communication. Its advantage is that even in the presence of unknown interference sources,
the performance output can be utilized to drive the UAV to the optimal relay point searched
in real time, and only the node position and the sampled objective function value need to
be obtained. Yaliniz et al. [8] focused on solving the deployment problem of using UAVs
as aerial relays to assist ground cellular networks. They derived a closed-form solution
based on a mixed-integer nonlinear optimization method and also considered the effect of
UAV altitude on relay-deployment performance when maximizing network performance.
Choi et al. [9] used energy efficiency as a metric and maximized the relay energy efficiency
through optimizing the UAV speed and load, thereby improving the communication
efficiency of a single relay UAV connecting two fixed ground units. However, in these
works, user nodes are assumed to be stationary.

Others focus on using the UAV to enhance communication among mobile nodes.
Huang et al. [10] aimed to use UAVs to assist in IoT data collection, introduced aerial
collaborative relay transmission between UAVs, and proposed an AOI-sensitive data-
collection scheme to iteratively optimize the UAV flight paths, solving the problem that
UAVs in edge areas need to fly long distances to send data to the base station. Kim et al. [11]
proposed a relay UAV motion-planning method based on NMPC and a minimum spanning
tree in a dynamic environment, aiming to enhance the communication among a fleet of
naval ships. Based on Kim’s work, Lun et al. [12] focused on using solar-powered UAVs
as communication relays to assist communication among a fleet of ships. Taking both
communication connectivity and energy absorption into consideration, they provided
the optimal relay path of the SUV, which has a longer flight endurance. Jian et al. [13]
proposed an optimization method for simultaneously designing beamforming (BF) and
flight trajectory to improve the communication performance between moving users and
ground stations using the UAV. The BF weight vectors and the heading angle of the
UAV were solved, and experimental results showed that the flight trajectory generated by
the proposed method was close to optimal. Although these works have been proven to
be suitable for supporting communication for moving users, they all adopted relatively
simple communication channel models. These models are actually over-simplified, which
will lead to a decrease in the final communication performance [14] and are difficult to
use in complex environments. Therefore, it is necessary to use more realistic wireless
communication models in research.

Chamseddine et al. [15] proposed a control law to control the UAV to fly to the
optimal point without knowing the user’s location. This method requires simultaneous
measurement of the power and AoA for each ground user. However, due to the diversity
of ground users and the different communication devices they carry, it is quite difficult to
obtain these two types of information for each ground user at the same time [16]. Hyondong
et al. [17] proposed a communication-aware motion-planning method based on NMPC
(Nonlinear Model Predictive Control). The main idea is to maintain the LOS (Line of Sight)
channel between the relay and the user according to the communication feasible area that
changes dynamically with the user’s movement. Yin et al. [18] addressed the problem of
using relays to enhance data transmission between remote mission UAVs and the ground
base station. Considering the signal-propagation characteristics, antenna characteristics,
and environmental characteristics, they proposed an algorithm that combines mixed-integer
nonlinear programming and the consensus-based bundle algorithm to solve the problem,
achieving maximum communication performance with a minimum number of relays.
Although these research works consider moving nodes and more realistic channel models,
the RF channel parameters of the task environment are still assumed known. However, it
is quite difficult to acquire the RF channel parameters of the entire task environment in
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advance, as wireless channel parameters are variable and influenced by various factors
such as user type, obstacles, weather, etc.

Wu et al. [19] proposed a least squares-based algorithm to predict the RF channel
parameters of the task environment for online autonomous motion control of relay UAVs
in unknown channels, achieving the goal of enhancing the communication quality of the
airborne multi-agent system using a single UAV. However, this work assumes that the aerial
environment in which the agent operates is single and simple, without obstacles or other
interference, making it difficult to directly apply to other relay tasks with slightly more
complex environments. Kim et al. [20] proposed a novel relay UAV-positioning method
with channel prediction to enhance the communication quality of multiple moving users in
uncertain environments and sought the optimal relay position through an optimization
method based on Social Learning Particle Swarm Optimization (SL-PSO). However, this
method is time-consuming. Ladosz et al. [21] considered that wireless channel parameters
may change during the task and suggested a neural network-based algorithm to predict
the channel parameters, and they planned the relay flight trajectory through a rolling-
horizon optimization algorithm. However, this channel-prediction method requires the
simultaneous collection of communication-strength data and angle-of-arrival information
of the signal.

In addition, when conducting online autonomous motion control of the relay UAV,
if the impact of different environment types and environmental changes on the relay
communication performance can be taken into account, the communication quality of the
entire network can be further improved.

In this context, this article proposes a novel relay UAV motion-control method to drive
a single UAV to the desired position while considering the UAV’s kinematic constraints to
achieve optimal communication network performance. The main contributions are as fol-
lows: (1) Jointly consider unknown multi-user mobility, unknown RF channel parameters,
environmental complexity, and unavailable angle-of-arrival information of the received
signals. In addition, when optimizing network performance, the impact of environmental
changes on channel characteristics and relay performance is considered. (2) An algorithm
based on Gaussian process (GP) learning is proposed to estimate the unknown channel
between the UAV and the ground node. (3) To meet the real-time requirements when search-
ing for the UAV’s optimal relay position, two algorithms are proposed to reduce the search
space. Specifically, for point-to-point communication, we propose a line search algorithm,
and its effectiveness and stability are given and proved; for multi-node communication, we
propose a general gradient-based algorithm to replace the global search.

The rest of this article is organized as follows: Section 1 presents the various models
used in this article and the mathematical formulation of the UAV relay problem; Section 2
provides a detailed analysis of using the Gaussian process learning-based algorithm to
estimate the unknown channel parameters between the UAV and the ground node; Section 3
proposes low-complexity solutions searching the optimal UAV relay position under two
relay scenarios; Section 4 simulates the proposed relay motion-control algorithm in different
application scenarios and conducts various comparisons and analyses. Finally, Section 5
summarizes the work of this article.

2. System Model and Problem Formulation
2.1. Air-to-Ground Relay Scenario in Urban Environments

As illustrated in Figure 1, multiple unmanned ground vehicles (UGVs) perform tasks
(such as reconnaissance or search tasks) in area Ω ∈ R2. Due to the influence of surrounding
buildings, trees, and terrain, the communication conditions between UGVs are poor. To
improve the communication between UGVs, UAVs equipped with higher-performance
communication equipment act as relays over the city. In Figure 1, blue rectangular prisms of
different heights represent buildings in the city, red solid lines represent the communication
links between relay UAVs and UGVs, cyan solid lines represent the flight trajectories of
UAVs, and black dashed lines represent the motion trajectories of UGVs.
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Figure 1. Illustration of air-to-ground relay communication scenario in urban environments.

Due to the complex and ever-changing urban environments in which UGVs are located,
it is difficult to fully acquire the RF channel parameters of the entire task area before the
relay task is executed. Therefore, the wireless channel parameters of the environments are
unknown in advance. The UAV needs to estimate the wireless channel parameters near the
current position in real time based on the online measured information and then calculate
the optimal relay position and drive the UAV to fly to the optimal point, thereby providing
the best possible communication link quality for the UGVs that are performing tasks.

2.2. UAV Kinematic Model

Assuming that the UAV is a fixed-wing aircraft and maintains a specific cruising
altitude during the relay process, the control variables are the turning rate and acceleration.
Let pu = [xu, yu]T represent the position vector, and the velocity vector is [

.
xu,

.
yu]

T; then, its
kinematic model can be expressed as [22]

.
xu(t) = vu(t) cos ψu(t).
yu(t) = vu(t) sin ψu(t).
vu(t) = au(t)
.
ψu(t) =

vu(t)
ru(t)

= vu(t)cu(t) = ωu(t)

(1)

where ψu is the heading angle, ψu ∈ [0, 2π); vu is the flight speed, vu = ∥vu∥ =
∥∥( .

xu,
.
yu)

∥∥;
ru is the turning radius, and ru = 1

cu
; au is the acceleration; ωu is the turning rate, satis-

fying |ωu| ≤ ωu,max. Due to the limitation of the aircraft’s operating performance, the
maximum turning rate ωu,max is constrained by the maximum roll angle ψu,max, that is,
ωu,max = g tan(ψu,max)

vu
, where g is the acceleration constant under gravity.

This model assumes that the inner-loop control system of the UAV can quickly reach
the required acceleration and turning rate, thus ignoring jerk and rolling inertia, and
ignoring the influence of wind on the aircraft motion. In addition, this article assumes that
the UAV maintains a specific speed during the relay process, the acceleration is 0, and the
flight control variable is only the turning rate of the UAV.

2.3. Motion Model of the UGV

Although the Random Direction (RD) model and the Random Waypoint (RWP) model
have been widely used in previous MANET research, the smooth turning (ST) motion
model proposed by Wan et al. [23] has stronger generality and practicality, and it has begun
to be used in the latest MANET-related research. Its two-dimensional mathematical model
is as follows:
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

at(t) =
dvg
dt = 0

an(t) =
v2

g
r(Ti).

ψg(t) = −ωg(t) = − vg
r(Ti).

xg(t) = vg,x(t) = vg cos(ψg(t)).
yg(t) = vg,y(t) = vg sin(ψg(t))
τ(Ti) = Ti+1 − Ti

Ti ≤ t < Ti+1 (2)

where xg(t) and yg(t) denote the coordinates of the node in the x and y direction at time
t, respectively, i.e., pg = [xg(t), yg(t)]T; vg,x(t) and vg,y(t) respectively denote the velocity
of the node in the x and y direction, that is, vg = [vg,x(t), vg,y(t)]T; ωg(t) represents the
turning rate of the node; ψg(t) represents the heading angle; at(t) represents the vertical
acceleration; an(t) represents the horizontal acceleration; r(Ti) represents the turning radius
selected at the Ti decision time; and τ(Ti) is the interval time.

2.4. Future Position Prediction Based on Kalman Filter

Due to the inability of the UAV to obtain the location of the UGV at the future moment,
this paper uses the current position of the UGV obtained and represents the position
change of the UGV through an Auto-Regressive (AR) motion model, and it then predicts
the position of the node at the next moment based on the Kalman Filter (KF).

Let xi(k) = [xi,k,
.
xi,k,

..
xi,k, yi,k,

.
yi,k,

..
yi,k]

T represent the state of the UGV ni at time k. xi,k,
.
xi,k,

..
xi,k and yi,k,

.
yi,k,

..
yi,k respectively represent the coordinates, velocity, and acceleration of

the UGV ni in the corresponding direction. Then, the state-transition equation of the UGV
from time k to time k + 1 can be expressed as follows:

xi(k + 1) = Fxi(k) + ηi(k) (3)

F =



1 Ts q1 0 0 0
0 1 q2 0 0 0
0 0 e−αTs 0 0 0
0 0 0 1 Ts q1
0 0 0 0 1 q2
0 0 0 0 0 e−αTs

 (4)

q1 = (e−αTs + αTs − 1)/α2 (5)

q2 = (1 − e−αTs)/α (6)

where F denotes the transition matrix, and ηi(k) denotes the process noise, represented by
a Gaussian variable with a mean of 0 and a covariance matrix Qi(k) = σ2

ηI6, where I6 is a
6 × 6 unit matrix; Ts is the time interval from time k to time k + 1; and α is a parameter
used to simulate different types of maneuvering targets. When the speed is slow, α is small,
and when the speed is fast, α is large. The noisy observation of the position of the UGV ni
at time k is [24]

pi(k) = Hxi(k) + vi(k) (7)

H =

(
1 0 0 0 0 0
0 0 0 1 0 0

)
(8)

where pi(k) is the coordinate position of the UGV ni observed at time k; H denotes the
observation matrix; and vi(k) denotes the observation noise, represented by a Gaussian
variable with a mean of 0 and a covariance matrix Ri(k) = σ2

v I2, where I2 denotes a 2 × 2
unit matrix. Therefore, the position filtering and prediction process of the UGV ni can be
given as x̂i,k|k−1 = Fx̂i,k−1 and Li,k|k−1 = FLi,k−1FT + Qi,k−1, where subscript i represents
the i-th ground node; x̂i,k−1 is the estimated state value of ground node i at time k − 1;
x̂i,k|k−1 is the estimated state value of ground node i at time k based on the state value at
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time k − 1. Kalman gain can be expressed as Ki,k = Li,k|k−1TT(TLi,k|k−1TT + Ri,k)
−1. State

measurement and covariance matrix can be given as x̂i,k = x̂i,k|k−1 + Ki,k(pi,k − Tx̂i,k|k−1)
and Li,k = (I4 − Ki,kT)Li,k|k−1. The corresponding derivation process can be found in [24].

2.5. Problem Formulation of Optimal Relay Position Search

This article drives the UAV to the desired relay position by controlling its motion,
in order to achieve optimal network performance. Let N = {n1 , n2, . . ., nN} be the set
of UGVs, where N is the number of UGVs. Let pi = [xi, yi], i = 1, 2, . . ., N represent the
position of UGV ni, and, assuming that the flight altitude and speed of the UAV remain
constant (which is reasonable for many UAV relay tasks), then the flight control variable
of the UAV is only the turning rate

.
ψu. The goal of relay motion control is to optimize

the objective function by finding the optimal value for the turning rate of the UAV. The
problem model is established as follows:

.
ψ
∗
u = argmaxJ(

.
ψu)

|
.
ψu|≤ωu,max

(9)

where J(
.
ψu) represents the performance index function.

This article develops a decision system by determining the optimal UAV location,
then uses the guidance law to drive the UAV to this location. We focus our research on the
former issue and formulate it as follows:

p∗
u = argmaxJ(pu)

pu∈Ω

(10)

where p∗
u denotes the optimal relay position.

2.6. Motion Control Framework for Relay UAV

This article aims to solve the issue of online autonomous motion control of relay UAVs
in the case of supporting moving nodes, unknown RF channel parameters, and only RSS
information. To solve the issue of inaccurate position and predicted positions of moving
nodes, a method based on Kalman Filtering is established. To cope with the situation
where RF channel parameters are unknown and only RSS and node position information
are available, a channel parameter estimation method based on online collectible data is
established, and a novel simplified optimal UAV position-calculation method is proposed.
Finally, the optimal position is input to the UAV guidance flight module, which outputs the
required turning rate to drive the UAV to fly to the optimal relay point, thereby optimizing
the network performance. The corresponding method framework of this article is shown in
Figure 2.
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3. Online Estimation of Wireless Channel Parameters

In the air-to-ground relay system, the UGVs perform tasks (such as reconnaissance
or search) in the environmental area, while the UAV dynamically adjusts its positions
according to the movements of the UGVs and changes in the RF signal environment, so as
to continuously provide the best possible communication performance for the UGVs.

This problem mainly involves two aspects, namely, communication and motion control,
which are closely related and coupled with each other because the quality of communication
determines the UAV’s motion direction and position of the next moment, and the motion
of nodes will influence the communication performance of the entire network.

3.1. Model of the Received Signal

Previous studies on UAV relay communication have mostly adopted relatively simple
channel models, resulting in reduced communication performance. This paper studies the
air-to-ground relay system under urban environments, where the RF signal environment is
more complex. Therefore, it is necessary to adopt a more realistic communication model.

Assume that the UAV u and N UGVs ni ∈ N = {n1, n2, . . ., nN} in the task area Ω
are equipped with omnidirectional antennas. As shown in Figure 3, air-to-ground signal
propagation is divided into two parts: free space and low-altitude environment. In the
low-altitude environment, due to the existence of buildings, trees, and other obstacles, the
signal undergoes shadowing and scattering phenomena, thereby introducing extra loss in
the air-to-ground transmission link. The channel fading between the relay UAV and the
UGV can be modeled as [25,26]

Pr,i = Pt,i − Li − Ψi (11)

Li = 10λ log10(
4π fcdi

c
) (12)
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Figure 3. Schematic diagram of air-to-ground signal propagation.

In Equation (16), Pr,i represents the power received by the UAV u from the i-th UGV ni,
in dBm; Pt,i represents the signal transmission power of ni, in dBm; Li represents the path
fading loss between u and ni, in dB; and Ψi represents the shadow fading loss between u
and ni, in dB.

In Equation (17), di represents the distance between u and ni; fc represents the carrier
frequency of the radio wave; c represents the speed of the light wave; and λ represents the
path attenuation factor, generally ranging from 2 to 6.

In air-to-ground communication, the density of buildings has a great influence on
the channel characteristics. This is because their distribution characteristics affect the
probability of the LoS (Line of Sight) component. Due to the movement of UGVs, this
probability is prone to sudden changes, such as if the LoS between the UGV and the relay
UAV is suddenly blocked by a high building. Obviously, the simple distance channel model
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(DCM) [27] and the statistical distribution-based probabilistic channel model (SDPCM) [28]
cannot reflect the impact of the above factors. In addition, the flight altitude of the UAV
affects the elevation angle of the LoS between the UGV and the UAV, which in turn affects
the LoS probability. The DCM and the SDPCM are also difficult to reflect the impact of
altitude on channel characteristics.

To calculate the expected value of shadow fading between the relay UAV and the UGV
with an elevation angle of θ, the following equation can be applied to obtain [25,26]:

Ψi = ∑
ε

ηεP(ε, θ) (13)

where P(ε, θ) is the probability of the ε-th signal propagation group with an elevation angle
of θ, and ηε denotes the shadow fading loss value of the ε-th propagation group. This
study follows the assumption of two propagation groups, strictly corresponding to the LoS
propagation condition and the NLoS (None Line of Sight) propagation condition, that is,
when ε ∈ {LoS, NLoS}, then [29]

Ψ = P(LoS, θ)ηLoS + (1 − P(LoS, θ))ηNLoS (14)

where ηLoS and ηNLoS denote the additional path loss of the LoS link and the NLoS
link, respectively.

The LoS probability is affected by the environment and is a function of the transmitting
antenna height hTX and the receiving antenna height hRX. It is also related to the statistical
parameters of the environment. According to the recommendations document of the
International Telecommunication Union, it can be formulated as follows [30]:

P(LoS) =

m
∏

n=0


1 − exp


−

hTX −
(n +

1
2
)(hTX − hRX)

m + 1


2

2γ2




(15)

m = floor(r
√

αβ − 1) (16)

where α represents the percentage of the building land to the total land; β represents the
number of buildings per square kilometer; γ is the proportional parameter describing the
building height distribution; and r denotes the ground distance between the transmitting
antenna and the receiving antenna, as illustrated in Figure 3. Since the receiving antenna
height hRX is much lower than the height of the building and the relay UAV, it can be
ignored. Therefore, the ground distance r between the relay UAV and the UGV is calculated
as follows:

r =
h

tan(θ)
(17)

where h denotes the UAV’s altitude. By fitting the channel attenuation of Equation (20) in
different environments, it can be found that Equation (20) can be expressed by the Sigmoid
function (S-Curve), as follows [25]:

P(LoS, θ) =
1

1 + a exp(−b(θ − a))
(18)

θ =
180
π

× arctan
(

h
r

)
(19)
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where a and b are S-Curve parameters, and θ denotes the elevation angle, as shown in
Figure 3.

Since the communication model used in this article takes into account the impact of
the environment on the LoS signal component, that is, simultaneously considering the
probability of the occurrence of LoS channels and NLoS channels, it will be referred to as
the average gain-based probability channel model (AGPCM) in the following.

3.2. Channel Estimation Based on Gaussian Process

In practical application, it is difficult or even impractical to acquire the RF channel
parameters of the entire task area before the relay task due to the dynamics of the network,
the differences in the nodes, the changes in the RF distribution in the task area, etc. Gaussian
process (GP) is mainly utilized to infer or predict the function value on finite test points
based on observed data. Therefore, this article proposes a GP-based learning algorithm
that utilizes online collected RSS data to learn the impact of shadow fading and combines
it with the known parts of the communication model.

From Equation (16), it can be seen that the received power Pr,i is related to the signal
transmission power Pt,i, path fading Li, and shadow fading Ψ. Since Pt,i is a constant, and
the path fading Li is caused by the continuous consumption of the transmitted signal as the
propagation distance increases, and from Equation (17), it can be seen that Li is constant at
a specific location, so only the shadow fading Ψ needs to be estimated.

Shadow fading Ψ is caused by obstacles between the transmitter and receiver. When
modeling shadow fading in an environment with incomplete information, it is generally
assumed that the channel gain follows a Gaussian distribution with variance σ2, that is [31],

Ψ ∼ N(µ, σ2) (20)

where µ represents the fading mean, and σ2 represents the fading variance.
GP is a random process defined on a continuous domain. For this article, the contin-

uous domain is a small spatial domain around the current position of the UAV, denoted
as δ. Let tk denote the decision moment; in a given environment, the wireless channel is
sparsely sampled at the node positions Pi =

{
p1

i , p2
i , . . ., pκ

i
}
⊂ Ω, i = 1, 2,...,N during

time [tk−1, tk), where κ is the number of samples. Those channel measurements can be
performed by the UAV along its trajectory Pu =

{
p1

u , p2
u, . . ., pκ

u} ⊂ Ω. Since the UAV
maintains a constant altitude when performing the relay task, any position p in the con-
tinuous domain δ can be regarded as a two-dimensional vector. For the convenience of
the subsequent process, p is re-recorded as x ∈ R2, then the κ input features constitute
X = [x1, x2, . . ., xκ ]T, X ∈ Rκ×2, and the corresponding target value y = [y1, y2, . . ., yκ ]T,
y ∈ Rκ×1, y represents the vector of received signal power measurement, so the training set
can be formulated as D = {(X , y)}. Considering that the actual output contains noise, the
Gaussian process regression is modeled as follows:{

yi = f (xi) + ε i = 1, 2, . . . , κ

ε ∼ N(0, σ2
n)

(21)

where ε is Gaussian white noise with a mean of 0 and a variance of σ2
n, and f (·) represents

an implicit function independent of the noise. Assuming that the function value f (x1),
f (x2), . . ., f (xκ) forms a joint Gaussian distribution after the input feature is mapped by
function f , since the noise ε and the implicit function f are independent of each other, the
output yi also obeys a Gaussian distribution, and the set of its finite observations’ joint
distributions can form a GP, that is [31],

y ∼ GP(m(x), k(x′, x)) (22)

m(x) = E[ f (x)] (23)

k(x′, x) = E[( f (x)− m(x))( f (x′)− m(x′))] (24)
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where m(x) denotes the mean function of the implicit function f (x), and k(x′, x) denotes the
covariance function of the implicit function f (x). Since the space of the urban environment
where the UAV performs the relay task is irregular, the radial basis function (RBF) can realize
nonlinear mapping, and the hyperparameters required for training are greatly reduced
compared to the polynomial kernel function, RBF is used in this paper to characterize the
covariance function [32]:

k(x′, x) = σ2
f exp

[
−1

2
(x − x′)TMD(x − x′)

]
(25)

where MD = diag(l2) is a symmetric matrix about the hyperparameter l, where l is the
horizontal factor parameter; the hyperparameter σ2

f is the vertical scale factor that regulates
the variation of the covariance function. Then, define the mean function as:

m(x) = c (26)

where c denotes the hyperparameter to be optimized. Let θ = [l, σ2
f , c] be the hyperparame-

ter set, and the optimal value needs to be obtained through training and learning. Under
the condition that the channel fading in each sampling satisfies independence, the fitness of
the GP model to the training set D can be evaluated by the following marginal likelihood
conditioned on the hyperparameter set θ:

L(θ) = log(y|X, θ) = − 1
2 yT(KXX + σ2

nI)−1y
− 1

2 log
∣∣KXX + σ2

nI
∣∣− κ

2 log(2π)
(27)

Therefore, the hyperparameter set θ of the GP model can be obtained through maxi-
mizing the marginal likelihood L(θ), that is [33],

θ∗ = argmax
θ

(L(θ)) (28)

According to the Bayesian principle, the GP model establishes a priori function in the
training set D and converts it into a posterior distribution on the test data x∗. Therefore, the
prediction result y∗ obtained from the test data input forms a joint Gaussian distribution
with the target value y of the training set data, that is,[

y
y∗

]
∼ N

([
µ(X)
µ(x∗)

]
,
[

KXX + σ2
nI KXx∗

Kx∗X Kx∗x∗

])
(29)

where KXX represents the autocovariance matrix of the input features of the training set;
Kx∗x∗ represents the autocovariance matrix of the input features of the test set; and KXx∗

represents the covariance matrix between the input features of the training set data and the
test set data. For x∗, the prediction result based on the GP model is as follows:

y∗|X, y ∼ N(µ f |X,y(x
∗), σ2

f |X,y(x
∗)) (30)

µ(x∗) = Kx∗X(KXX + σ2
nI)

−1
(y − µ(X)) + µ(x∗) (31)

σ2(x∗) = Kx∗x∗ − Kx∗X(KXX + σ2
nI)

−1
Kx∗X (32)

where µ(x∗) denotes the mean of y∗, and σ2(x∗) denotes the variance of y∗. The optimal
value of the hyperparameters of the GP model is solved by Equation (33), and then, the
mean and variance of the predicted output results are obtained using Equations (36) and
(37), which are the mean and variance of the shadow fading at any position x∗ ∈ δ near the
current position of the UAV.

It should be pointed out that since both the UAV and the UGVs are moving, the
RF distribution characteristics are actually changing dynamically. Therefore, the wireless
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channel parameter-estimation method proposed in this article can only estimate the channel
characteristics near the UAV and cannot estimate the channel characteristics of the entire
task area.

4. Searching for the Optimal Relay Position

This section presents and analyzes the adaptive optimal relay position search algo-
rithm, which aims to give the optimal relay point, including point-to-point communication
and multi-node communication.

4.1. Point-to-Point Communication

In point-to-point communication, UAVs play the role of forwarding information
between two nodes that cannot communicate directly (such as a control station and a
remote task node), thereby realizing indirect information exchange between the two. Due
to the weaker communication capability of the ground node compared to the relay UAV,
the performance bottleneck of the link lies in the uplink channel from the ground node
to the relay UAV. Therefore, in point-to-point communication, the optimization of UAV
position can be transformed into the following form:

p∗
u = argmax

pu∈Ω
min

{
Sp1,pu

, Sp2,pu

}
, p1, p2 ∈ N (33)

where Spi ,pu
represents the strength of the wireless signal sent by the node ni at position pi

and received by the relay UAV u at position pu, and J = min
{

Sp1,pu
, Sp2,pu

}
represents the

communication index function under point-to-point communication, which is constrained
by the link with the worst power. Moreover, the larger the value of J, the better the
network performance.

The necessary condition for the objective function J = min
{

Sp1,pu
, Sp2,pu

}
in Equation (38)

to achieve the maximum value is that p∗
u satisfies the following equation:

∇J(p∗
u) =

∂J
∂pu

∣∣pu=p∗u = 0 (34)

In Equation (38), min(·) indicates that the objective function J is non-smooth and
needs segmented differentiation according to the values of Sp1,pu

and Sp2,pu
, as follows:

∇J =


∇Sp1,pu

, if Sp1,pu
< Sp2,pu

∇Sp2,pu
, if Sp1,pu

> Sp2,pu
Other, if Sp1,pu

= Sp2,pu

(35)

Theorem 1. Solving p∗
u is equivalent to finding pu that satisfies both of the following conditions

simultaneously: (1) Sp1,pu
= Sp2,pu

; (2) pu = p1 + α (p2 − p1), where 0 < α < 1.

Proof. Condition (2) indicates that the optimal relay position p∗
u must be on the line

segment [p1, p2] bounded by the two point-to-point node positions p1 and p2. The proof
process is divided into two aspects. □

The sufficiency proof of the theorem states that if p = p∗, then S1(p) = S2(p) and
p = p1 + α (p2 − p1).

First, we assume that S1(p) > S2(p). From Equation (40), we know that ∇J = ∇S2(p),
then ∇S2(p) = 0, the condition for ∇S2(p) = 0 is d2 = 0 (d2 represents the Euclidean
distance between p2 and p). However, Si(p) is inversely proportional to the distance di,
that is, S1(p) > S2(p) means that the distance d1 < d2, so d1 < 0, which obviously does not
conform to the actual situation, and the assumption is not valid. Similarly, S1(p)
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Similarly, 1( )S p < 2( )S p . Therefore, 1( )S p = 2 ( )S p . 

Next, we assume u
∗p ∉ 1 2[ , ]p p . Obviously, there is a point 'p ∈ 1 2[ , ]p p  that satis-

fies 
1, 'Sp p = 2 , 'Sp p  , while 'p   is not the optimal relay point. Therefore, 

1,Sp p = 2 ,Sp p ≥

1, 'Sp p = 2 , 'Sp p , so 
1,dp p ≤

1, 'dp p  and 
2 ,dp p ≤

2, 'dp p , and then 
1,dp p +

2 ,dp p ≤
1, 'dp p +

2 , 'dp p . 

According to the triangle’s characteristic that the sum of the lengths of two sides must be 
greater than the length of the third side, this does not conform to the actual situation, that 
is, the assumption is not valid. Therefore, there must be u
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1 u,Sp p = 2 u,Sp p  and up ∈ 1 2[ , ]p p , then up = u

∗p . 

We assume that there is a point 'p  that satisfies 
1, 'Sp p = 2, 'Sp p  and 'p ∈ 1 2[ , ]p p , 

but 'p  is not the optimal UAV point. Because u
∗p  is the optimal UAV point, 

1 u,
S ∗p p =

2 u,
S ∗p p >

1, 'Sp p = 2 , 'Sp p , and therefore, 
1 u,

d ∗p p <
1, 'dp p . Also, the value of 

1 2,dp p  is constant, 

2 u,
d ∗p p >

2 , 'dp p , resulting in 
2 u,

S ∗p p <
2 , 'Sp p . This is contrary to the assumption that 

2 u,
S ∗p p

>
2, 'Sp p   has been derived. Therefore, the assumption does not hold, that is, 'p = u

∗p  

must be true, and the proof of Theorem 1 ends. 
In Theorem 1, u

∗p  is only related to α . Therefore, the line search algorithm is able 
to be used to reduce the search space required to find the optimal UAV point under point-
to-point communication. 

Considering the possible situation, the relay UAV may still be unable to track 
changes in the optimal relay position point over time. Therefore, it is necessary to study 
the convergence conditions of this method: 

S2(p).
Therefore, S1(p) = S2(p).
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Next, we assume p∗
u /∈ [p1, p2]. Obviously, there is a point p′ ∈ [p1, p2] that satisfies

Sp1,p′ = Sp2,p′ , while p′ is not the optimal relay point. Therefore, Sp1,p = Sp2,p ≥ Sp1,p′ = Sp2,p′ ,
so dp1,p ≤ dp1,p′ and dp2,p ≤ dp2,p′ , and then dp1,p + dp2,p ≤ dp1,p′ + dp2,p′ . According to the
triangle’s characteristic that the sum of the lengths of two sides must be greater than the
length of the third side, this does not conform to the actual situation, that is, the assumption
is not valid. Therefore, there must be p∗

u ∈ [p1, p2].
In summary, the sufficiency of the theorem has been proven. The next step is to prove

the necessity of the theorem, that is, if Sp1,pu
= Sp2,pu

and pu ∈ [p1, p2], then pu = p∗
u.

We assume that there is a point p′ that satisfies Sp1,p′ = Sp2,p′ and p′ ∈ [p1, p2], but p′ is not
the optimal UAV point. Because p∗u is the optimal UAV point, Sp1,p∗u = Sp2,p∗u > Sp1,p′ = Sp2,p′ ,
and therefore, dp1,p∗u < dp1,p′ . Also, the value of dp1,p2

is constant, dp2,p∗u > dp2,p′ , resulting
in Sp2,p∗u < Sp2,p′ . This is contrary to the assumption that Sp2,p∗u > Sp2,p′ has been derived.
Therefore, the assumption does not hold, that is, p′ = p∗

u must be true, and the proof of
Theorem 1 ends.

In Theorem 1, p∗
u is only related to α. Therefore, the line search algorithm is able to be

used to reduce the search space required to find the optimal UAV point under point-to-point
communication.

Considering the possible situation, the relay UAV may still be unable to track changes
in the optimal relay position point over time. Therefore, it is necessary to study the
convergence conditions of this method:

Theorem 2. When the speed of the UAV is greater than the maximum speed of the UGV, that
is, vu > max(v1, v2), it can ensure that the UAV will converge to the optimal relay point.

Proof. Let the changing speed of the optimal relay position point be v∗p. If the UAV
can converge to p∗, the constraint v > v∗p must be met. According to the conclusion
p∗ = p1 + α (p2 − p1) in Theorem 1, taking the derivative yields v∗ = v1 + α (v2 − v1),

where α ∈ (0, 1), and obviously v =
∥∥∥ .

p∗
∥∥∥ < max ( ∥v1∥, ∥v2∥ ), if v > max (v1, v2), then

there must be v > ∥v∗∥, ∥v∗∥ is
∥∥∥ .

p∗
∥∥∥, and Theorem 2 is proved. □

Theorem 2 reveals that as long as the UAV’s speed is greater than the maximum speed
of the UGV, the relay task can be guaranteed to be feasible.

4.2. Multi-Node Communication

For relay to support multi-node communication, each node in the ground system
may need to utilize the relay-forwarding capability of the UAV to exchange information
with other nodes, so the communication performance between all node pairs needs to be
considered. The communication performance between nodes is usually limited by the
uplink from the ground node to the relay, which contains multiple uplink channels with
different transmission capabilities. Therefore, the objective function of the min(·) form in
Section 3.1 is no longer suitable as a metric to evaluate the communication performance of a
multi-node relay network. This article uses the following objective function to characterize
the network performance of multi-node communication [34]:

p∗
u = arg min

pu∈Ω

1
N

N

∑
i=1

1
Spi ,pu

, ni ∈ N (36)

where
1
J
=

1
N

N
∑

i=1

1
Spi ,pu

, the network performance J represents the average power of all

channels, and the larger the value of J, the better the network performance.
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First, we discuss a special case where the attenuation factors of each channel satisfy
the condition λ1 = λ2 = · · · = λN = 2. By solving Equation (39) and (41), we can obtain
the following:

x∗u =
∑

1
Gi

xi

∑
1
Gi

, y∗u =
∑

1
Gi

yi

∑
1
Gi

(37)

where x∗u and y∗u are the coordinates of the optimal relay point, that is, p∗
u = (x∗u, y∗u), and

Gi denotes the communication channel gain between the relay UAV u and the UGV ni.
However, in many practical applications, due to the diversity of nodes, the dynamics

of the system, and changes in the environment, channel parameters do not meet the above
conditions, that is, the assumption λ1 = λ2 = · · · = λN = 2 is not satisfied. Solving
Equation (41) is a very challenging issue, and this paper proposes a new gradient-based
method to solve this issue, and it has a relatively small computational cost.

For each node ni, i = 1, 2, . . ., N in the ground multi-vehicle system, the power Sp̂i ,p′u(β)

emitted by the UGV ni at p̂i and received by the relay UAV u at p′
u(β) = pu + [R cos β,

R sin β ]T, 0 ≤ β < 2π can be estimated using the wireless channel estimation model in
Section 2.2 (Equations (25)~(37)), where p̂i denotes the predicted position of the UGV
ni by the Kalman Filter, pu represents the UAV’s current position, and R represents a
constant distance from pu. Therefore, the objective function J of the network performance
in Equation (41) is updated as follows:

1
J(β)

=
1
N

N

∑
i=1

1
Sp̂i ,p′u(β)

, 0 ≤ β < 2π (38)

The positive gradient direction β∗ is the direction in which the objective function rises
fastest. Therefore, according to Equation (43), β∗ can be calculated by maximizing the
objective function J(β), that is,

β∗ = arg max
β∈[0,2π)

J(β) (39)

After calculating the positive gradient direction β∗ near the current position of the
relay UAV, the unit direction vector of the optimal target position of the UAV at the next
moment can be formulated as follows:

µtk = (cos β∗, sin β∗) (40)

According to the basic principle of the gradient climbing method, the optimal target
position for the next moment can be calculated from the current position pu and the optimal
unit direction vector µtk , as follows:

p∗
u,tk

= pu + γ · µtk (41)

where γ is a predefined dimensionless quantity.

5. Simulation Results and Analysis

This section uses simulation experiments to verify and analyze the feasibility of the
proposed online autonomous motion control method for relay UAV supporting UGVs’
communication in urban environments, as well as to compare algorithm performance. This
experiment considers the scenario of UAV supporting point-to-point communication and
multi-node communication for UGVs, and gradually shifts from discussing supporting
stationary nodes to moving nodes and then to moving nodes in unknown channels.

This article compares with other methods found in the literature, and the literature
used for comparison mainly includes two parts, namely, literature related to relay motion
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control based on different channel models and literature related to relay motion control
based on different channel-prediction methods. First, this article compares the literature
based on different channel models, namely, literature 26 and literature 27. The channel
model used in literature 26 only considers the distance factor, without considering the
transmission power and channel attenuation, while the channel model used in literature
27 simultaneously considers the effects of distance, transmission power, and channel
attenuation. On the basis of considering these three influencing factors, this article further
considers the influence of building height and distribution density in different urban
areas on signal propagation. Therefore, the methods of literature 26 and 27 are selected
for comparison. The difference in the relay implementation effect will be more obvious,
thus reflecting the difference in the effects achieved by the relay motion-control methods
based on different channel models. Then, this article compares relevant literature based on
different channel-prediction methods, namely, literature 35 and literature 21, because they
consider relay application scenarios similar to this article, namely, UAV relay in complex
urban environments. At the same time, since different channel-prediction methods have
requirements for their own application scenarios and may not be applicable to other relay
scenarios, literature 35 and literature 21 are selected.

5.1. Simulation Parameters Setting

In the simulation, the motion of the UGV follows the smooth turning model [23].
The UAV is a fixed-wing aircraft and has kinematic constraints. The UAV can obtain the
position information of the UGV but cannot obtain the instantaneous velocity (including
size and direction) information of the UGV, nor can it obtain the future position information
of the UGV. However, the Kalman Filter algorithm described in Section 2.4 is used for
estimation. In the last experiment, the UAV does not know the wireless channel parameters
in advance, but estimates them based on the channel-estimation model based on Gaussian
process learning given in Section 2.2.

The environmental area is divided into four types [25], and the channel model param-
eters corresponding to each type of area are shown in Table 1, with the coverage range
shown in Table 2.

Table 1. Wireless channel parameters for various types of areas.

Channel Parameter Suburban Urban DenseUrban HighRiseUrban

α 0.1 0.3 0.5 0.5
β 750 500 300 300
γ 8 5 20 50
a 5.0188 9.6101 11.9480 27.1562
b 0.3511 0.1592 0.1359 0.1228

ηLoS(dB) 0.1 1.0 1.6 2.3
ηNLoS(dB) 21 22 23 34

Table 2. Coverage of various types of areas.

Environmental Areas
Coverage Center

Coverage Radius (m)
X(m) Y(m)

Suburban 6000 7000 9000
Urban 6490 4480 3600

DenseUrban 7000 3150 2000
HighRiseUrban 7340 2300 600

In order to examine the impact of the environments on channel characteristics and
the performance of motion-control algorithms based on different models, comparative
experiments are conducted, including two scenarios where the UAV supports point-to-
point communication and multi-node communication. The comparative algorithms include
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an algorithm based on a simple distance channel model (DCM) [27], an algorithm based
on a statistical distribution probability channel model (SDPCM) [28], and an algorithm
based on an average gain probability channel model (AGPCM). In addition, in the final
simulation under unknown channel parameters, the method proposed in this article is
also compared with the least square estimation (LSE)-based algorithm [35] and the neural
network estimation (NNE)-based algorithm [21].

5.2. Stationary Nodes

Using the UAV to support stationary node communication is a simple and common
scenario. In the first simulation, the point-to-point relay communication between two
stationary UGVs is verified. The initial positions, transmission power, and channel attenu-
ation factors of the ground nodes and the relay UAV are shown in Table 3. It is assumed
that the channel parameters of the UGVs are known to the UAV in advance, and the signal
frequency is fc = 2 GHz. The speed of the UAV is 40 m/s, the desired flying radius is
200 m, and the maximum roll angle is 40◦. The simulation time is 300 s.

Table 3. Parameters for the UGVs and the relay UAV (stationary nodes).

Item X Coordinate Y Coordinate Transmission Power Attenuation Factor

UGV 1 370 m 2348 m 200 mW 2.2
UGV 2 7701 m 2194 m 100 mW 2.4

Relay UAV 3210 m 6626 m \ \

Figure 4 shows the simulation results, where circles of different colors represent the
boundaries of different types of environmental areas, and curves of different colors repre-
sent the UAV relay flight trajectories obtained using different methods; the corresponding
communication performance change curves are shown in Figure 5.
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Figure 4. Flight trajectories of the UAV that supports communication for two stationary UGVs.

The simulation results show that the DCM (distance channel model)-based motion
control algorithm drives the UAV to fly around the center of the two UGVs, while the
SDPCM (statistical distribution probability channel model)-based motion control algo-
rithm drives the UAV to fly closer to the UGV 2 with smaller transmission power, and the
AGPCM(average gain probability channel model)-based motion control algorithm simulta-
neously takes into account that the UGV 2 has a smaller transmission power and is located
in the HighRiseUrban area, where the signal attenuation rate is much greater than that of
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the Suburban area where the UGV 1 is located. Therefore, it adjusts the UAV to fly closer
to the UGV 2. This is also the reason why the initial positions of UGV 1 and UGV 2 are
selected in Suburban and DenseUrban, respectively, when selecting simulation parameters.
This is because only by making such a selection can the impact of the environment on the
channel characteristics be reflected, and then the difference in the implementation effects of
motion-control methods based on different channel models can be shown.
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stationary UGVs.

Obviously, this result is more in line with the actual situation, which verifies that it is
valuable to consider the influence of environmental characteristics on the channel when
designing the relay UAV motion-control algorithm. It also shows that it is more reasonable
to measure the communication performance of the network based on AGPCM. Figure 5
verifies that the communication performance brought by AGPCM-based motion control
method is better than the other two methods.

The second simulation experiment is to verify the use of the UAV to support com-
munication for multiple stationary UGVs. There are 5 stationary UGVs in the task area,
with positions of (1500, 1700), (3500, 8000), (2400, 5600), (8000, 4000) and (6000, 3000),
respectively, in meters, as illustrated by the blue squares in Figure 6. The transmission
power is randomly generated between 100∼200 mW. The initial position of the relay UAV
is (3195, 6704), in meters, as shown by the black square in Figure 6. It is also assumed
that the UAV has known the channel parameters, and other parameters are set the same
as the previous experiment. The simulation results are shown in Figure 6 and Figure 7,
respectively. The former gives the flight trajectories of the UAV based on different channel
models, and the latter gives the corresponding communication performance change curves.

From Figure 6, it can be observed that the UGV 4 is located in the HighRiseUrban area.
Due to the high-density and high-altitude buildings, the wireless information transmission
in this area has a low probability of LoS occurrence, resulting in extremely poor communi-
cation conditions for the UGVs in this area. By comparing the three different colored relay
paths, it can be found that the AGPCM-based motion control algorithm can drive the UAV
to a better target position than the DCM-based and SDPCM-based motion control algo-
rithms. In addition, the communication performance change curves in Figure 7 also verify
this point because the communication performance curve obtained by the AGPCM-based
algorithm is always at the highest position among the three, with the best communication
performance, the best relay communication effect, and stable performance.
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5.3. Moving Nodes

This section discusses the scenario of using relay UAV to support communication for
moving UGVs with known parameters.

In the third simulation, there are two moving UGVs, namely, relay for point-to-point
communication. The transmission power of the two UGVs is 100 mW and 200 mW,
respectively. The motion trajectory is randomly given according to the smooth turning
model, with a speed of 10 m/s. The blue square points in Figure 8 give their initial positions,
and the connected blue solid lines are the motion trajectories of the UGVs. The UAV flies at
a speed of 40 m/s, with a maximum roll angle of 40

◦
and a desired flying radius of 200 m,

and its initial position is shown by the black square points in Figure 8. The simulation time
is 720 s.

Figure 8 shows the flight trajectories of the UAV based on different channel models,
and the corresponding communication performance changes are shown in Figure 9. In
order to reflect the impact of the environment on channel characteristics, especially the
high altitude and high-density buildings in the HighRiseUrban environment, which lead to
extremely poor communication conditions and sudden changes in network performance,
we specifically let the trajectory of UGV1 pass through the HighRiseUrban area during
the simulation. From Figure 9, it can be observed that there is a sudden change in the
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communication performance, which is due to the UGV 1 moving to the HighRiseUrban
area, resulting in extremely poor channel quality. The results of the three algorithms
responding to this sudden change show that the AGPCM-based motion-control algorithm
has the best performance, and in other non-sudden situations, the results of this algorithm
can also provide the same or better performance as other algorithms.
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Figure 9. Changes in communication performance when the UAV supports point-to-point communi-
cation for two moving UGVs.

The fourth simulation is used to verify the scenario of using UAV to support com-
munication for multiple moving UGVs. There are 6 UGVs, and the blue square points in
Figure 10 represent their starting position. The blue solid line starting from these points
represent the motion trajectories of the unmanned vehicles, which are randomly generated
under the smooth turning model [21]. The motion speed is 10 m/s, and the transmission
power is randomly generated between 100∼250 mW. Other parameters are the same as the
third simulation. The simulation results are shown in Figures 10 and 11.
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As can be seen from Figure 11, there is also a sudden change in communication
performance. This is because the UGV 5 entered the HighRiseUrban area within the
time period of 391~504 s, causing the channel quality to become very poor. There are six
unmanned ground vehicles, and the motion control algorithm based on AGPCM achieves
the best relay communication performance, especially in the case of sudden changes in the
communication environment.

The results of simulations 3 and 4 show that the online autonomous motion-control
algorithm for the relay UAV proposed in this paper can effectively support the commu-
nication for moving UGVs and achieve good communication performance. In addition,
considering the impact of the environments on the channel characteristics in the algorithm
can bring better communication performance.

5.4. Moving Nodes with Unknown Channel Parameters

This section further discusses the simulation of adaptive online autonomous motion
control of the relay UAV supporting communication of moving UGVs under unknown
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channels. This scenario is also common and most complex in practical applications, re-
quiring the UAV to estimate the wireless channel parameters and the power distribution
in the environmental area based on limited sampling. The parameter settings are the
same as those in Section 5.3, with the difference being that in this simulation, the channel
parameters between the UAV and the UGVs are unknown in advance but are estimated by
the Gaussian process learning algorithm in Section 2.2.

Figures 12 and 13 show the UAV flight trajectories and communication performance
change curves, respectively. In Figures 12 and 13, by comparing the red curve and the
cyan curve, we can see the performance gap between the proposed method in known
channels and unknown channels. By comparing the cyan curve and the black curve, we
can see the difference in the implementation effects of the proposed GP-based channel
estimation method and the LSE(least square estimation)-based channel estimation method.
By comparing the green curve and the pink curve, we can see the difference in the imple-
mentation effects of the NNE(neural network estimation)-based channel estimation method
and the GP-based channel estimation method proposed in this paper. By comparing the
cyan curve and the green curve, we can see the difference in the implementation effects
of the methods based on different channel models. From the two figures, it can be seen
that (1) although the performance of the UAV relay motion-control algorithm under un-
known channel parameters proposed in this paper has not reached the theoretical optimal
value under known channels, it has already approached the latter; (2) the air-to-ground
channel parameter-estimation algorithm based on Gaussian process learning and AGPCM
proposed in this paper can effectively estimate the air-to-ground channel parameters; and
(3) the results based on the AGPCM algorithm are better than those based on the SDPCM
algorithm, especially when the environmental characteristics of the UGVs change. (4) The
communication performance obtained by the channel estimation algorithm based on Gaus-
sian process learning is superior to that of the channel estimation algorithms based on LSE
and NNE.
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Figure 12. Flight trajectories of the UAV that supports point-to-point communication for two moving
UGVs with unknown channel parameters.

Similarly, simulation is conducted on relay for multiple moving UGVs with unknown
channel parameters, and the results are shown in Figures 14 and 15. By comparing the
flight trajectories in Figure 14 and the communication performance changes in Figure 15,
the same conclusion can be drawn.
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nication for two moving UGVs with unknown channel parameters.
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Figure 14. Flight trajectories of the UAV that supports multi-node communication for multiple
moving UGVs with unknown channel parameters.
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6. Conclusions

This article solves the problem of using the UAV as an aerial node to support multi-
UGV communication in urban environments by jointly considering unknown radio fre-
quency (RF) channel parameters, unknown multi-agent mobility, the impact of the environ-
ments on channel characteristics, and the unavailable angle of arrival (AoA) information of
the received signals. The problem mainly includes two aspects: channel estimation and
optimal relay position search. For the former, a Gaussian process (GP) learning method is
proposed to estimate the unknown channel between the UAV and the UGV. It only needs to
collect RSS data online, and the prediction effect of this method is better than that of the LSE
and CE algorithms. For the latter, a line search algorithm for point-to-point communication
and a gradient-based algorithm for multi-node communication are proposed, respectively.
Both algorithms only need one-dimensional search, and the convergence conditions and
stability proofs of the algorithms are given. Finally, the comparative experimental results
under different conditions show that the online autonomous motion-control method of the
relay UAV proposed in this article can effectively drive the UAV to reach or track changes
in the optimal relay positions, and it is demonstrated that considering the impact of the en-
vironments on channel characteristics can bring better relay communication performance.

Future research directions could be (1) extending single-UAV relay to multi-UAV
relay; (2) considering the motion control of relay UAVs with obstacle and threat avoidance;
(3) considering the impact of UAV height on relay performance, that is, the motion control
of relay UAVs in a three-dimensional environment; and (4) considering the optimization of
other communication indicators, such as latency, bit error rate, etc.
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