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Abstract: Precise photogrammetric mapping of preharvest conditions in an apple orchard
can help determine the exact position and volume of single apple fruits. This can help
estimate upcoming yields and prevent losses through spatially precise cultivation mea-
sures. These parameters also are the basis for effective storage management decisions,
post-harvest. These spatial orchard characteristics can be determined by low-cost drone
technology with a consumer grade red-green-blue (RGB) sensor. Flights were conducted in
a specified setting to enhance the signal-to-noise ratio of the orchard imagery. Two different
altitudes of 7.5 m and 10 m were tested to estimate the optimum performance. A multi-
seasonal field campaign was conducted on an apple orchard in Brandenburg, Germany.
The test site consisted of an area of 0.5 ha with 1334 trees, including the varieties ‘Gala’ and
‘Jonaprince’. Four rows of trees were tested each season, consisting of 14 blocks with eight
trees each. Ripe apples were detected by their color and structure from a photogrammetri-
cally created three-dimensional point cloud with an automatic algorithm. The detection
included the position, number, volume and mass of apples for all blocks over the orchard.
Results show that the identification of ripe apple fruit is possible in RGB point clouds.
Model coefficients of determination ranged from 0.41 for data captured at an altitude of
7.5 m for 2018 to 0.40 and 0.53 for data from a 10 m altitude, for 2018 and 2020, respectively.
Model performance was weaker for the last captured tree rows because data coverage was
lower. The model underestimated the number of apples per block, which is reasonable, as
leaves cover some of the fruits. However, a good relationship to the yield mass per block
was found when the estimated apple volume per block was combined with a mean apple
density per variety. Overall, coefficients of determination of 0.56 (for the 7.5 m altitude
flight) and 0.76 (for the 10 m flights) were achieved. Therefore, we conclude that mapping
at an altitude of 10 m performs better than 7.5 m, in the context of low-altitude UAV flights
for the estimation of ripe apple parameters directly from 3D RGB dense point clouds.

Keywords: fruit detection; yield estimation; structure from motion (SfM); unmanned aerial
vehicle (UAV); apple trees
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1. Introduction
In commercial fruit orchards, timely information can help optimize management

decisions, potentially increasing yield quality, profits and reducing environmental impacts.
High investment costs and the need to maximize land productivity encourage the use of
technology-based production methods in fruit and vegetable production (horticultural
crops). These methods can lead to more precise and efficient management. Horticultural
products are highly perishable, of high value and varying quality, and often require indi-
vidual treatment of the plants in order to manage this variability effectively [1]. However,
high-resolution spatial information capable of resolving individual trees is crucial to de-
rive accurate management decisions. Satellite images often lack this detail and manual
assessments are too labor-intensive. Unmanned aerial vehicles (UAV) have emerged as an
interesting alternative to monitor orchards over the past decade.

UAVs have been used in orchards for a variety of purposes. Typically, they have been
used to gain insights into orchard health and status. Since UAVs can be mounted with
different sensors; UAV remote sensing for orchard assessment has been investigated with
RGB cameras [2–5], multi- [6,7] and hyperspectral cameras [8,9], thermal cameras [6,10]
and LiDAR sensors [11–13]. Point clouds derived from these data, using photogrammetry
or time-of-flight information, have been used to obtain three-dimensional surface models of
the orchards. They have been used recently to delineate tree structures in orchards [14–17],
detect line crops for automatic navigation [18,19], estimate yield potentials per tree [20]
and identify pest identification [21]. Apart from UAV remote sensing, UAVs can also be
applied actively, for example, for spraying plant protection agents [22,23].

Fruit size estimation using 2D images is limited, as it requires calibration targets
or combination with distance data, increasing complexity. Three-dimensional sensing
techniques, such as LiDAR, RGB-D and multi-view stereo vision mounted on terrestrial
platforms have proven to be more effective. For example, LiDAR has been used to estimate
diameters and sizes of oranges and apples, with R2 = 0.63 and R2 = 0.67, respectively [24,25].
Structured light has shown potential in 3D analyses of grapes, with an R2 of 0.70–0.91 in
the prediction of cluster size [26]. Hacking et al. [27], used RGB-D to determine the volume
and mass in grapes. Yu et al. [28] used 3D sphere fitting to estimate the position and size
of pomegranates, achieving a root mean square error of 2.35 mm and R2 of 0.82, while
the position error was less than 5 mm. In parallel, stereoscopic vision was applied to
harvesting robots to determine bunch volumes, with errors less than 17 mm and 19 mm
in the estimation of height and maximum, respectively [29]. Furthermore, the multi-view
stereo vision and the structure-from-motion reconstruction method were used to estimate
diameters and volumes of fruits, such as apples and grapes, providing differences of about
2 mm with respect to manual measurements [30,31].

Although these methods provide accurate results for crop load estimation, they are
often time-consuming, labor- and cost-intensive. UAVs stand out for their flexibility, low
cost and repeatability of results [32]. The sensors they carry generate a large amount of
data, mainly through images or video [33,34]. In this context, combining images from
UAVs with deep learning techniques offers a more cost-effective solution than traditional
methods based on human labor [35]. Nevertheless, the detection of fruit on tree tops can
be difficult, especially when the fruit is obscured by other fruit or leaves. In these cases,
additional data are needed to improve accuracy, and simple contour frameworks often
fail. Apolo-Apolo et al. [36], exploited UAV images and the Faster R-CNN algorithm to
detect oranges, whereas RGB videos acquired from a UAV were used to extract grape
size, revealing an accuracy of 79.5% with the spatial embedding method and 44.6% with a
YOLACT algorithm [37]. With timely information for location and status of the ripe fruits
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in orchards available, more precise harvesting techniques that reduce fruit spoilage can be
implemented [38].

This research aims for improving the detection of ripe apple fruits with a specialized
UAV flight setting with a low flight altitude using an oblique-view camera perspective
as introduced in Hobart et al. [16]. We hope to improve the signal-to-noise ratio of the
obtained data by orientating the flight route with the tree rows, which should give an
enhanced perspective view of the depicted tree crown area, and enhance the visibility of
apple fruits. Specifically, this study explores an automated method for apple identification
and yield estimation directly from a UAV-based photogrammetrical RGB point cloud. This
approach has been rarely employed, to our knowledge. However, since three-dimensional
point clouds are becoming increasingly common for orchard analysis, using these data
for the direct estimation of orchard parameters should not remain unexploited as an
information source. This also applies to apple mass and yield prediction directly from
photogrammetrical RGB point clouds.

To explore the best flight setting for a newly developed automated apple detection
and yield estimation procedure, UAV datasets from two different flights were compared
with manually obtained reference data to test the following hypotheses.

1. Ripe apple location and size of the ‘Jonaprince’ and ‘Gala’ variety can be automatically
derived from a UAV-based, photogrammetric RGB point cloud.

2. The estimated volume of the apples found can be used to estimate harvest mass for
the orchard.

3. The flight altitude of the UAV has an influence on the quality of the harvest mass
estimation.

2. Materials and Methods
2.1. Test Site

Measurement campaigns were conducted on 4 September 2018 and 7 September 2020
in Marquardt at the Fieldlab for Digital Agriculture of the Leibniz Institute for Agricultural
Engineering and Bioeconomy (ATB), Germany (52◦27′59′′ N, 12◦57′29′′ E). The test site
consisted of 1334 apple trees over an area of 0.5 ha. As shown in Figure 1, four rows were
chosen for each UAV flight (rows 7–10 for 2018; rows 2–5 for 2020), each with 112 trees
spanning a combined area of 1200 m2. The orchard was planted with ‘Gala’ (n = 240) and
‘Jonaprince’ (n = 180) varieties, as well as pollinator trees of the varieties ‘Red Sentinel’
(n = 16) and ‘Red Idared’ (n = 12). The pollinator trees were homogeneously distributed
over the orchard. Measurements were taken shortly before harvest at 128 and 133 days as
well as at 132 and 133 days after full bloom, for ‘Gala’ and ‘Jonaprince’ trees in 2018 and
2020, respectively. In September, the ripe apples of the named varieties showed a bright
red color, which enabled later RGB based analyses. The trees were regularly pruned to
slender spindle trees. The row distance was 5 m and distance between trees was 0.75 m,
constituting a continuous fruit wall. The tree wall had a height of about 3.0 m and a width
of about 1 m. The rows were separated into 14 blocks of 8 trees each.

2.2. UAV Measurements

Flight campaigns were conducted at fruit ripening, a few days before harvest. The
flight missions were conducted with an octocopter (CiS GmbH, Rostock, Germany) carrying
a consumer-grade RGB camera (α-6000, Sony, Tokio, Japan). The system had a takeoff
weight of less than 2 kg and was capable of flight times of up to 30 min. To reduce blurring
and obtain a fixed camera angle, a two-axis gimbal was used. The camera had the following
specifications: 24.7.5 megapixel APS-C chip with a sensor size of 23.6 mm × 15.8 mm; the
resulting pixel pitch was 3.9 µm. The focal length used for all campaigns was 16 mm, the
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ISO was kept at a constant 400 to minimize noise effects and the aperture and exposure
time were adapted to light conditions.
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For each measurement date, multiple flights were conducted at two different altitudes.
The tested altitudes were 7.5 m and 10 m for an oblique perspective on the neighboring
tree wall. For the oblique perspective, one campaign consisted of three flights [16]. One
contour flight was planned along the outer border of the tested area to give an overview
of the test site. Two detail flights were conducted at the same altitude, following the path
along the tree rows and capturing the tree crowns of the neighboring row to the left and
to the right. In this way, relevant information from the tree crowns was captured with an
unobstructed view and a small sampling distance (SD). The SD on the tree wall surface,
comparable to the ground sampling distance but calculated for the vertical tree wall surface
at a tree height of 1.5 m above ground level, is shown in Table 1 for different detail flight
altitudes along with the given camera angle.

Table 1. Captured and aligned photographs per measurement date for different flight settings and
resulting image parameters.

Date/Parameter 7.5 m 10 m

04.09.2018 407/406 342/342
07.09.2020 1802/1802 1222/1200

Velocity (m/s) 0.4 0.5
Vertical angle (◦) 53 46

Sampling dist. (mm) 1.9 2.4

The flights were conducted at different velocities (0.4 m·s−1 and 0.5 m·s−1, for 7.5 m
and 10 m, respectively) to keep the forward overlap close to 90% and 96%, for 2018 and 2020,
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respectively. The difference between the two dates derived from a technological update of
the camera storage device. That allowed a higher capturing frequency in 2020 compared
to 2018. The number of captured images from these flights is shown in Table 1. For
georeferencing and combining the several point clouds, marker plates were visibly placed
within the orchard, and the coordinates of each plate were recorded with a GNSS-RTK
system (HIPer Pro, Topcon, Tokio, Japan).

2.3. Image Data Processing
2.3.1. Point Cloud Calculation

Captured RGB images were transformed from ARW to 16-bit .tiff file format using
an open-source image processing software tool (Gábor Horváth and RawTherapee devel-
opment team, version 5.8, Budapest, Hungary). For the imagery, 3D point clouds were
calculated photogrammetrically for datasets from each flight setting using a specialized
software tool (Metashape Professional, version 1.8.4, Agisoft LLC, Sankt Petersburg, Rus-
sia). The alignment process was conducted with high accuracy and georeference plates,
GPS-RTK located in the field, were used to enhance the quality of the alignment and to
set the coordinate system to ETRS89 UTM zone 33N (EPSG 25833). To exclude matching
points with high inaccuracies and achieve an even better alignment, a gradual selection
was conducted for all the point clouds. Points from sparse clouds were excluded if they
exceeded the values of 0.1 for reprojection error, 50 for reconstruction uncertainty, 20 for
projection accuracy. After each step, a photo alignment optimization was performed, lead-
ing to higher error margins in the other categories. Therefore, the threshold of 0.1 for the
reprojection error was set a second time at the end. The selection was conducted stepwise,
and photograph alignment was optimized after each step. If photographs were excluded in
this process, the selection was conducted with higher error margins to prevent information
loss. The exact values are shown in Table A1 (Appendix A). The optimized sparse point
clouds were used as a basis to calculate separate dense clouds for the different flight settings
with high accuracy and mild depth filtering.

2.3.2. Apple Identification and Volume Estimation

The process of apple identification from the RGB point clouds can be seen in the
flowchart in Figure 2. Tree and ground surface points were separated from each other using
the cloth simulation filter [39] in the open-source point cloud processing CloudCompare
software (version 2.12, GNU GPL). The used rigidness was set to 2 (scenes: relief), the slope
processing was turned on and the cloth resolution and max iterations were set to 0.5 and
600, respectively. Points below the ground surface were deleted manually to avoid unstable
classification results. With the geoinformation system software QGIS (version 3.34.4) [40],
polygon objects were created to select tree blocks and tree rows in the measurement
orchard. This was used to cut the created point clouds into 14 tree blocks per row with the
statistical programming language R (version 4.4.0) [41]. Using the package ‘lidR’ [42,43],
the function clip was used to cut the tree point clouds into sub clouds showing blocks of 8
trees each. Using the ‘grDevices’ package, a transformation from RGB point values to the
hue, saturation and value color space was conducted. This gave the opportunity to filter
for points with a hue value between 0.00 and 0.04 or between 0.96 and 1.00, excluding all
points except red ones. To remove the white points, further points were extracted from
the red sub cloud if they showed values (brightness) higher than 0.75 or saturation of less
than 0.25.
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To find positions of suspected apples, the sub cloud was clustered using the DBSCAN
algorithm [44] from the ‘dbscan’ package [45,46], which estimates a point density around
each cloud point and uses a maximum distance to define cluster inliers or outliers of
neighboring points, according to a maximum distance set by the user. Border points of each
cluster were considered cluster inliers in all cases. To establish the best performing model,
all combinations of parameter ranges were tested on a test block over all dense clouds.
The ranges in which the parameters were set were 6, 8 and 10 for the minimal number of
points to form a fruit cluster, the epsilon value, giving the minimal distance to separate two
clusters, of 0.01 m, 0.012 m, 0.015 m, 0.018 m and 0.02 m. Tested and set parameter values
are summarized in Table 2.

Table 2. Parameter set overview for fruit clustering and identification algorithm.

Parameter Tested Values in Optimization Set Value

Cluster distance (Epsilon) 0.010 m, 0.012 m, 0.015 m, 0.018 m,
0.020 m 0.015 m

Border points considered inlier - Yes
Minimum number of points per cluster 6, 8, 10 6

Cluster radius range - 0.018–0.058 m

Red color value range - 0.00–0.04 and
0.96–1.0

The best performing model was then used to separate the red points into apple suspect
clusters. If a cluster had an extent of more than the doubled average apple diameter, it
was split up into sub clusters using the Hartigan and Wong algorithm from the Kmeans
function algorithm [47]. All clusters were further processed using the library pyntcloud [48]
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for general data handling and pyransac3d [49] in Python (version 3.10.4, Python Software
Foundation, Beaverton, OR, USA). The latter library was used to create a three dimensional
sphere using the function ‘pyrsc.Sphere’ and fit it to each point cluster using the PGP2X
algorithm [50] from the ‘sph.fit’ function. The center, radius as well as inlier points of each
sphere were retained. In the next step, spheres outside the radius margins of 1.8 to 5.8 cm
were excluded. The remaining spheres were checked for their overlap. From the radii
and center points, apple volumes and overlap between spheres were calculated. In case of
overlaps larger than 10%, the sphere with a difference higher than r = 4.25 cm was deleted.
The remaining spheres were stored as verified apple spheres. Then, all inlier points of the
stored apple spheres were deleted from the original block cloud and the loop was started
again from the process of clustering. This process was repeated four times to find missed
apples in the remaining red points.

3. Results
In general, it was possible to delineate three-dimensional point cloud models from

data of both flight settings and for both years. The model was able to automatically identify
apples in the provided dense point cloud and estimated the volume of each. An example is
shown in Figure 3, where bounding boxes of the located apples for one block in the 10 m
altitude 2018 dense cloud are depicted. The block of eight trees was cut from the orchard
point cloud and the estimated apple bounding boxes show apple sizes in realistic areas of
seven of the eight trees. The tree on the right-hand side did not have any apples because
it was a pollinator tree. While many apples were identified, some fruits were not well
represented in the dense point cloud or not found. This can be considered to some extent
due to overlapping of leafage or to a clustering of multiple apples to which a sphere could
not be fitted. The model will therefore most likely underestimate the number of apples in
the orchard.
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3.1. Model Optimization

There are many different parameters that can influence the model performance. In
order to run the model with the best parameter set possible, the difference in the estimated
apple number of a test block and its reference was calculated for different parameter
combinations. At first, parameters were tested manually to find rough values, then, in a
second step, the parameters were adjusted, defining test ranges for all parameters. Three of
the four provided dense clouds were analyzed with every possible combination of these
parameter values (as described in Section 2.3). Excluded was the 7.5 m cloud from 2020,
which produced no results, because of multiple superimposed point clouds leading to a



Drones 2025, 9, 60 8 of 19

high level of shifted points. The parameters were kept steady for all four repetitions of
the model.

In Figure 4, a comparison between model estimations and the reference apple number
for one test block of the orchard for all point clouds is shown over changing parameter
sets. Optimally, the difference with the reference would be zero. Results show that for this
one block, the general performance is highly dependent on the flight setting. This seems
realistic because of the difference in point density leading to a different cluster distribution.
The point clouds from a 10 m altitude flight had smaller errors for all the parameter sets.
In 2018, this point cloud underestimated and in 2020, the same setting overestimated, the
apple number in the tested block. From one 7.5 m flight, a highly overestimated apple
number was found. After the created apple identification model was trained on one block
for each year, the mean performance of all dense clouds showed the best performance for a
minimal six points per cluster and a cluster separating distance of epsilon = 1.5 cm.
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The model output included the number of found apples, the position, as well as the
radius of the fitted sphere of the apple. To calculate the yield mass per block, the mean
density for both apple cultivars was calculated based on >100 ripe samples per cultivar,
as shown in Figure 5. In this way, a density factor per breed was estimated, which was
1459.73 kg/m3 and 1465.39 kg/m3 for ‘Gala’ and ‘Jonaprince’, respectively. This factor was
later multiplied by the calculated sphere volumes.

In Figure 6, located apples are depicted superimposed on the ortho image of the test
site. Some blocks in 2020 were empty because they were already harvested, with almost
no apples left on the trees. When analyzing the 7.5 m point cloud, the model found more
apples compared to the point cloud generated from the 10 m altitude. However, these
apple localizations showed a higher dispersion in position across the tree rows, which gives
the impression of a less accurate point cloud.

Apple estimations were, in addition, worse for both years and flight settings were
worse along the last flown tree row, as shown in Figures 7 and 8. Row 10 in 2018 showed
coefficients of determination (R2) of 0.00 and 0.03 for the 7.5 m and 10 m altitude flights,
respectively. In comparison, the mean R2 of models fitted on the basis of the other three
individual rows was higher, with 0.52 for 7.5 m altitude data and 0.54 for 10 m altitude data.
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The same applies to Row 5 in 2020, which had an R2 of 0.06 for the 10 m altitude
dataset. Compared to the mean coefficient of determination of 0.5 for the other three rows,
this value is worse as well. This effect was found for the last flown tree row for both
years and is explained by the fact that the outer canopy site is captured on fewer images.
Therefore, the data basis for the delineation process is diminished. This effect was found to
be only one-sided, which was probably caused by a minor offset in flight coordinates to
the east. For that reason, these rows were excluded from further steps of the analysis, and
models were fitted on the basis of the remaining apple tree rows.
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3.2. Apple Identification

For the remaining tree rows, block-wise apple count models were fitted. At an altitude
of 7.5 m, a model fit with an R2 of around 0.41 was achieved. For the datasets recorded
from an altitude of 10 m, fits with an R2 of 0.40 and 0.53 were achieved for the ‘Gala’ and
‘Jonaprince’ blocks, respectively, as shown in Figure 9.

Drones 2025, 9, x FOR PEER REVIEW 12 of 20 
 

 

Figure 9. Overall model (blue or red line) performance and confidence interval (blue or red area) on 
three remaining apple rows for estimated apple identification from both altitudes for tree blocks of 
the Gala (blue) and Jona (red) variety. 

3.3. Yield Estimation 

As with the apple identification models, model adjustments were made for the ex-
pected apple harvest mass. For this purpose, the estimated volume of all apples in a block 
was multiplied by the average apple density of the corresponding variety. The adjust-
ments show R2 of around 0.56 and 0.76 for the data from the 7.5 m and 10 m flight altitudes, 
respectively, as shown in Figure 10. Thus, a very high proportion of the measured vari-
ance can be represented by the adjusted models using the derived apple volumes in con-
junction with a mean apple density per breed. 

 

Figure 10. Overall model (blue line) performance and confidence interval (blue area) on three re-
maining apple rows for apple mass estimation from both years for separate flight altitudes. 

When the model was applied to the tested seasons, a map of the estimated yield mass 
per block could be calculated. These estimated yield maps are shown in Figure 11 for the 
7.5 m dataset in 2018, Figure 12 for the 10 m dataset of the same year and in Figure 13 for 
the 10 m dataset from 2020. In 2018, the same trees were surveyed on the same day with 
flights at altitudes of 7.5 m and 10 m. However, the scale for the estimated yield based on 
the 7.5 m point cloud analysis was about 20 kg higher at a minimum and 40 kg higher at 
a maximum compared to the 10 m flight-based findings. The same patterns can be found 
by comparing both model results. This underlines the idea of a more dispersed point 
cloud dataset from the 7.5 m altitude flight. 

Figure 9. Overall model (blue or red line) performance and confidence interval (blue or red area) on
three remaining apple rows for estimated apple identification from both altitudes for tree blocks of
the Gala (blue) and Jona (red) variety.

3.3. Yield Estimation

As with the apple identification models, model adjustments were made for the ex-
pected apple harvest mass. For this purpose, the estimated volume of all apples in a block
was multiplied by the average apple density of the corresponding variety. The adjustments
show R2 of around 0.56 and 0.76 for the data from the 7.5 m and 10 m flight altitudes,
respectively, as shown in Figure 10. Thus, a very high proportion of the measured variance
can be represented by the adjusted models using the derived apple volumes in conjunction
with a mean apple density per breed.
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remaining apple rows for apple mass estimation from both years for separate flight altitudes.

When the model was applied to the tested seasons, a map of the estimated yield mass
per block could be calculated. These estimated yield maps are shown in Figure 11 for the
7.5 m dataset in 2018, Figure 12 for the 10 m dataset of the same year and in Figure 13 for
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the 10 m dataset from 2020. In 2018, the same trees were surveyed on the same day with
flights at altitudes of 7.5 m and 10 m. However, the scale for the estimated yield based on
the 7.5 m point cloud analysis was about 20 kg higher at a minimum and 40 kg higher at a
maximum compared to the 10 m flight-based findings. The same patterns can be found by
comparing both model results. This underlines the idea of a more dispersed point cloud
dataset from the 7.5 m altitude flight.
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Figure 13. Apple yield estimation per block in 2020 for 10 m point cloud.

The 10 m point cloud from 2020 showed a much wider range in the yield mass
distribution compared to the 2018 dataset. Small yield estimations are reasonable coming
from the partially harvested field before data were captured, leaving some blocks empty
of apples. For the higher yield estimations, the range shows about tripled estimated yield
values compared to the block estimations from 2018. This finding is reasonable, because
reference yield values for 2020 were higher and ranged from 35 kg to 125 kg per block for
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2018 compared to 63 kg to 168 kg per block for 2020. However, the estimations for 2020
were still too high, and two blocks showed estimated yields above 255 kg.

4. Discussion
For modern apple orchard management, it is appealing to rely on remote sensing

technologies for yield estimation and fruit identification. Given the large volumes of data
generated, automated analysis methods become essential to extract parameters for site-
specific decision-making. However, most existing approaches use two-dimensional data to
delineate yield and fruit locations.

When it comes to fruit detection and localization, Zhou et al. [51] described a method
before machine learning became a popular approach in precision horticulture. They used
pixel-based thresholds of spectral indices using decision trees applied to a ground-based
two-dimensional image dataset. The used color information for an apple fruit recognition
system gave insights into an estimated yield shortly before harvest and early in the year.
The fruit-counting model, when compared to manually taken apple counts, reached R2

values from 0.8 to 0.85 close before harvest, and for yield estimation, from 0.57 to 0.71. In
comparison, R2 values presented in this study were much weaker for apple counts, at 0.4 to
0.5. We argue that a UAV-based image dataset provides less spatial resolution and a weaker
angle to gain information in the tree canopy compared to ground-based image datasets.
However, for the apple yield estimation, R2 values ranged from 0.56 to 0.76, which is highly
comparable with the findings from Zhou et al. [51] and shows that a yield estimation in an
apple orchard can be derived from UAV 3D point clouds.

Fruit detection nowadays is mainly researched from two-dimensional RGB [52–54]
or RGB-D [38,55–57] data. A common and successful approach works with artificial
intelligence (AI)-supported object-based image analysis. Often, apple detection models
were developed with the focus on automatic harvesting from robotic systems. They were
optimized to work accurately and fast on two-dimensional, ground-based image data input.
These approaches reach very high accuracies and fast processing speeds. However, they
require a fully automated orchard or laborious manual data collection. A bit different is
the setting in the publication from Apolo-Apolo et al. [58], in which a region-convolutional
neural network was trained to detect apples in an orthomosaic of a whole orchard from
UAV-based RGB imagery. The data were captured at an altitude of 10 m, and analyses led
to an R2 value of 0.80 comparing the estimated number of apples per tree to in situ reference
counts. Another approach to orchard-scale yield estimation uses indirect correlations to
yield mass, with certain parameters derived from UAV imagery, e.g., spectral index [59] or
tree structural parameters in combination with breed and management differences [60].

The study presented here explores a method of automating apple identification and
yield estimation directly from an orchard-wide photogrammetrical RGB point cloud. Zine
et al. [61] also directly used three-dimensional RGB-point clouds for apple identification.
From ground-based, manually collected imagery close to the 32 researched trees, apples
were detected, counted, and assigned to the individual trees in a dense apple orchard.
Similarly to our study, apple detection was accomplished with a color-based threshold
after an HSV transformation of the RGB data. The remaining points were converted to
volumetric form and stored with its bounding box as well as center position. The center
point was considered as the apple location. The apple detection showed a recall rate of
74–90%, which is better than in our study. We argue that the apple identification provided
here is worse due to the UAV-based data acquisition method. The reduced resolution due
to the distance and the more unstable photo setting leads to less accurate point clouds,
which cannot provide the same results as those based on ground-based images directly next
to the trees. In the work of Tsoulias, Saha and Zude-Sasse [12] a ground-based LiDAR point
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cloud was used to estimate the number of fruits and their sizes from 12 apple trees. Fruit
point clusters were separated from the tree cloud using a curvature value and the response
intensity of the LiDAR signal. As the point cloud quality of the test trees was high, fruit
number and fruit size estimations showed a superior R2 of 0.99 and R2 of 0.98 compared
to the study provided here. Due to the more expensive sensor and the ground-based data
recording approach, the comparability with the practical approach, as shown in the study
presented here, is low. However, the idea of direct fruit positions and structure extraction
from a three-dimensional point cloud is the same.

As was shown in comparison to Zine et al. [61] and Tsoulias, Saha and Zude-Sasse [12],
the approach relies on the quality of the provided point cloud model. That is influenced by
the UAV flight settings for image collection. To enhance the resolution, two low altitude
flight settings for the image capture process were tested in the provided study. In this way,
highly detailed, most accurate point cloud models should be provided for the analysis
procedure. From apple identification results with the test block, shown in Figure 4, the
findings indicate higher errors for the model based on the 7.5 m flight setting. As shown
in Figure 9, the 7.5 m point cloud led to results of similar quality but increased estimates
of apples found compared to point cloud results generated from 10 m altitude imagery.
These findings show a stronger dispersion in the position across the tree rows, as shown
in Figure 6, giving the impression of a less accurate point cloud. This would also explain
the additional apples found, when apples are depicted with a higher dispersion leading
to false positives or larger clusters that are split up in the model processing. The idea of
a less accurate point cloud basis for the 7.5 m dataset is further supported by Table A1
(Appendix A), which shows a necessity for higher reprojection error margins compared
to the 10 m point cloud creation process. In addition, as shown in Figure 10, apple mass
estimation led to weaker model results for the whole orchard when the 7.5 m point cloud (R2

of 0.56) was compared to findings from the 10 m point cloud data (R2 of 0.76). In summary,
it can be stated that according to the results presented here, a point cloud generated from
10 m altitude imagery leads to less dispersed results in apple fruit position and better apple
mass estimation compared to that generated from the 7.5 m point cloud.

Analyses of photogrammetrical point clouds of whole orchards for fruit mass or yield
prediction, to our knowledge, have also been rarely researched. Torres-Sanchez et al. [62]
used UAV-based photogrammetrical point clouds and color analysis from imagery taken
from oblique flights at altitudes of 10 m and 15 m for the detection of grape clusters. In
an unsupervised and automated workflow in red grapevine varieties, an algorithm was
developed that models the harvest weight from the projected area of the points classified as
grapes on vines. The model achieved R2 values higher than 0.75 when leaves were removed
from both sides of the plant row, to better capture the grapes in the image dataset. In their
discussion, the occlusion by leaves, which hides fruits and hinders detection, was presented
as a major problem. Also, Géne-Mola et al. [30] researched the influence of occlusion on
ground-based RGB structures from motion point clouds. From these, apple fruit locations
and diameters were estimated depending on the degree of occlusion. It was shown that
diameter estimations for a least squares sphere fitting approach, similar to the algorithm
presented here, show smaller RMSE and better R2 values with higher visibility of the fruit.
It is reasonable that leaf occlusion also lowered our apple estimation results, as it applies
also to apple fruits and grapevine fruit clusters. In the case of an orchard with very dense
apple fruit walls, this could affect the functionality of the algorithm. However, we tried
to limit this problem by using a low-altitude, oblique view perspective rather than using
nadir perspective from the UAV platform.

One more limiting factor for fruit detection in orchards based on RGB data is the light
condition during data capture. This was, e.g., described by Sengupta and Lee [63], who
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developed an approach to automatically identify citrus fruits. According to them, RGB
imagery of fruits in orchards face difficulties, e.g., with different illuminations, partial
occlusion, the presence of highly saturated regions, different orientations, very diverse
backgrounds, and the presence of shadow regions. They emphasize that illumination has
a strong influence on automatic fruit identification. These influences also play a role in
the creation of the point clouds on which the approach shown here is based. Although
the influence of ambient light was not investigated here, it should be addressed in subse-
quent studies. This is the only way to ensure stable RGB data-based fruit detection from
photogrammetric point clouds.

5. Conclusions
In this study, a model for automatic apple fruit detection with dense 3D point clouds

derived from UAV-based low-budget RGB imagery at different flight altitudes was de-
veloped. The algorithm was tested in a field study in an apple orchard in Brandenburg,
Germany, with data captured in two seasons. The automated algorithm showed its best
performance for the input parameters with a minimum of six points per fruit cluster and
a separation distance of 1.5 cm between two clusters (epsilon). It was able to detect and
locate apple fruits in three of the four provided point clouds. The fourth dataset, obtained
from a flight at the 7.5 m altitude in 2020, caused the algorithm to show empty results, as
the provided dense clouds contained multiple, superimposed point clouds that caused
shifted points, which appear as a high level of noise. The completely automated algorithm
was able to split the three-dimensional orchard point cloud into zones of interest along
a provided polygon vector, extracted points of ripe apples according to their hue value
after RGB to HSV transformation, clustered the fruits, and sub-clustered groups of fruits.
Furthermore, the algorithm fitted a sphere into each suspected apple fruit and checked
for reasonable radius values before the location and volume were stored. The developed
analytical procedure was therefore capable of automatically delineating the location and
volume of ripe apple fruits of the ‘Jonaprince’ and ‘Gala’ varieties from the point clouds.

Yield estimations showed R2 values of 0.71 and 0.56 for the 10 m and 7.5 m flight alti-
tudes, respectively, in comparison to yield masses calculated from orchard block harvesting.
Delineated apple fruit numbers and yield masses were shown as maps in a site-specific
distribution for the test orchard for both years. In this way, the provided method is capable
of estimating apple fruit volumes, which can be used to delineate site-specific yield mass
estimations for the orchard. The approach was tested for two low-altitude flight settings
for the image data capture process. It was shown that point clouds generated from a 10 m
altitude image basis lead to less dispersed results in apple fruit position and better apple
mass estimation compared to those from the 7.5 m point cloud basis.

Thanks to advances in UAV technology, the use of three-dimensional point clouds
is becoming increasingly popular in modern orchard management. Thus, these datasets
should be further explored to delineate important tree-structural and growth parameters
and thus lead to improved orchard management. In future research, neural networks could
be trained with labeled fruits from the algorithm presented here or manually assigned
labels in a 3D point cloud environment. These neural networks could enhance accuracy
and processing speed for apple fruit detection from three-dimensional point clouds, al-
though this approach will require more data and computational resources than the method
presented in this study. Moreover, findings from the research field of automatic fruit shape
completion could enhance volume estimations with the provided model.
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Appendix A

Table A1. Sparse cloud gradual selection details.

Chunk Year Tool Value Points Remaining

7 m

2018

Sparse point cloud 414,178

reprojection error 0.1 101,731

reconstruction
uncertainty 50 91,603

projection accuracy 20 88,054

reprojection error 0.3 85,507

2020

Sparse point cloud 1,558,660

reprojection error 0.5 916,904

reconstruction
uncertainty 50 686,592

projection accuracy 20 679,896

reprojection error 0.5 670,046

10 m

2018

Sparse point cloud 458,186

reprojection error 0.1 105,305

reconstruction
uncertainty 50 102,221

projection accuracy 20 98,218

reprojection error 0.1 71,493

2020

Sparse point cloud 1,138,353

reprojection error 0.5 722,328

reconstruction
uncertainty 60 671,906

projection accuracy 20 666,541

reprojection error 0.3 463,051
Red values indicate higher error margins in order to prevent image data loss in the dataset; bold point numbers
indicate the end result of sparse point cloud thinning.
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