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Abstract: The continuous assessment of cover crop growth throughout the season is a cru-
cial baseline observation for making informed crop management decisions and sustainable
farming operation. Precision agriculture techniques involving applications of sensors and
unmanned aerial vehicles provide precise and prompt spectral and structural data, which
allows for effective evaluation of cover crop biomass. Vegetation indices are widely used to
quantify crop growth and biomass metrics. The objective of this study was to evaluate the
accuracy of biomass estimation using a machine learning approach leveraging spectral and
canopy height data acquired from unmanned aerial vehicles (UAVs), comparing different
neural network architectures, optimizers, and activation functions. Field trials were carried
out at two sites in Louisiana involving winter cover crops. The canopy height was estimated
by subtracting the digital surface model taken at the time of peak growth of the cover
crop from the data captured during a bare ground condition. When evaluated against the
validation dataset, the neural network model facilitated with a Keras TensorFlow library
with Adam optimizers and a sigmoid activation function performed the best, predicting
cover crop biomass with an average of 96 g m−2 root mean squared error (RMSE). Other
statistical metrics including the Pearson correlation and R2 also showed satisfactory condi-
tions with this combination of hyperparameters. The observed cover crop biomass ranged
from 290 to 1217 g m−2. The present study findings highlight the merit of comprehensive
analysis of cover crop traits using UAV remote sensing and machine learning involving
realistic underpinning biophysical mechanisms, as our approach captured both horizontal
(vegetation indices) and vertical (canopy height) aspects of plant growth.

Keywords: cover crops; biomass; vegetation indices; canopy height; TensorFlow;
deep learning

1. Introduction
Cover crops are the crops that are planted when soil is fallow between main crops [1].

They are grown with the purpose of enhancing soil and crop production as well as pro-
viding many other agroecosystem services rather than a cash crop. This reduces nitrogen
leaching [2] and enhances organic matter, carbon dynamics, and microbial processes in
soil [3]. Among cover crops, legumes consistently add nitrogen to soil, whereas grasses
and brassica scavenge residual nitrogen, as is evident by reduced nitrate and increased
ammonium in spring soil, which will eventually become available to subsequent crops [4].
The goal of cover cropping varies according to the needs of growers. Farmers can grow
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legumes for enhanced nutrient availability to subsequent cash crops, cereal cover crops for
large biomass production to aid soil organic matter buildup, or brassica species to control
soil-borne pests [5].

One of the most well-established roles of cover crops in crop production is the weed
suppression and agrochemical reduction potential [6]. Other ecosystem services include
an enhancement of pollination resources [7,8]. Furthermore, a cover crop may be used as
forage and feed for animal production to generate revenue without land use change [9].
However, these crops are not primarily intended for yield generation; biomass production
is tied with ecological and agronomic functions, and the benefits they can offer vary based
on the amount of biomass production and the types of crop species [10].

The prediction of cover crop biomass is needed for the quantification of its benefit as an
agricultural input and to better understand how much it aids soil properties and subsequent
crop productivity. Cover crops can only reduce nutrient loss if adequate biomass can be
established [11]. Biomass production is positively correlated with nitrogen retention [12].
Researchers and growers target higher biomass production for enhancing the inherent
agroecosystem services [13]. To suppress the most weeds and achieve optimal nitrogen
retention, biomass should ideally reach 4.6 Mg ha−1 and 6.9 Mg ha−1 respectively [13].

It is crucial to assess biomass, as it can be a proxy for estimating canopy cover, which
means a higher soil coverage, reduced nutrient leaching and erosion, and improved weed
suppression. This prediction is useful to identify areas with high weed pressure in the
field, which need intervention to enhance precision weed management strategies. There is
growing interest in estimating crop biomass utilizing remotely sensed imagery for prompt
and precise quantification. By leveraging UAV images and machine learning, the models for
biomass prediction and weed assessment can be refined. The benefits can be significantly
enhanced via timely monitoring of the cover crops biomass through remote sensing [14].
Destructive field sampling and laboratory analysis are costly and labor intensive, especially
when spatial variability is considered within the field.

Among recent technological advancements, the UAV has allowed an unparalleled level
of crop analysis by serving as a reliable measure for harvested biomass in later stages of crop
growth [15]. Remote sensing of vegetation is an established approach for understanding the
plant status in terms of health, growth, stress, water use efficiency, and production [16]. It is a
widely established approach for estimating crop biomass, which involves calculating vegetation
indices (VIs) involving near-infrared (NIR) reflectance [17,18]. Vegetation indices including
the NDVI (Normalized Vegetation Index), G-R (Green–Red Vegetation Index), GNDVI (Green
Normalized Differential Vegetation Index), and SAVI (Soil-Adjusted Vegetation) are efficient for
low to medium biomass range prediction whereas the TVI (Triangular Vegetation Index) can be
used for later stages with high biomass points [19].

Biomass estimation is more accurate, with narrow band vegetation indices, which do
not have a saturation problem [20,21]. Studies have successfully estimated the aboveground
vegetation of winter cover crops [19,22] through suitable remotely sensed indices. Remote-
sensed vegetation indices are simple yet effective evaluation algorithms for the canopy
cover, robustness, and other growth dynamics. They are good indices for plant height
estimation; however, they lack sensitivity in the later stages of plant growth [23]. The
common imagery datasets obtained from fields allow for estimates of many other traits
of cover crops. Canopy height (CH), one of the most important phenotypic traits of crops,
can be effectively captured by UAVs by assessing spatial auxiliary information including
digital terrain and surface models [24]. This approach is flexible as the canopy height
can still be estimated when a DTM is not available [25,26] and a ground control point
cannot be set for geo-referencing [27]. For this study, the cover crop modeled canopy height
(CHM) was estimated using a digital surface model (DSM) derived from unmanned aerial



Drones 2025, 9, 131 3 of 21

vehicle (UAV) red green blue (RGB) images. Crop biomass data are known to be associated
with the UAV-derived CHM [28]. Others have attempted to combine VIs and the CHM
to estimate crop biomass [28,29]. The artificial neural network (ANN) is an ideal model
to capture complex non-linear relationships between multiple predictors and the target
attribute(s) [30]. The resulting predictions should be accurate and driven by reasonable
underpinning mechanisms identified via feature selection [31].

The objective of this study was to craft a machine learning model using spectral and
structural inputs from UAVs to enhance prediction accuracy. We compared prediction
errors, as measured by RMSE, and identified the most effective model configuration through
the evaluation of different optimizers and activation functions. This study addressed a
research gap by integrating an advanced technology and methodology for data-driven and
reliable cover crop assessment.

2. Materials and Methods
2.1. Data Collection

This study was conducted during winter (October 2023 to March 2024) at LSU AgCenter
Northeast Research Station, St. Joseph, LA, USA (NERS, 31◦56′47.998′′ N, 91◦13′49.688′′ W,
2 m above sea level) and LSU AgCenter Doyle Chambers Central Research Station, Baton
Rouge, LA, USA (CRS, 30◦21′51.826′′ N, 91◦9′52.999′′ W, 5 m above sea level) (Figure 1). At
NERS, cover crops were a mix of cereal rye (Secale cereale L.), daikon radish (Raphanus sativus),
hairy vetch (Vicia villosa), winter peas (Pisum sativum), faba beans (Vicia faba), white mustard
(Sinapis alba), Triticale (Triticum secale), and Safflower (Carthamus tinctorius). At CRS, the
summer cropping system was a corn (Zea mays) and soybean (Glycine max L.) rotation, whereas
at NERS, the summer cropping system was a corn (Zea mays), soybean (Glycine max L.), and
cotton (Gossypium hirsutum) rotation. Cover crops were a monoculture of black oats (Avena
strigosa) and cereal rye (Secale cereale L.) in fields 31 and 33 at CRS, respectively (Figure 1b). At
the time of biomass prediction, in late March at NERS, only the following cover crop species
had substantial biomass: cereal rye, daikon radish, white mustard, and Triticale, while the
other species were either non-existent or had negligible biomass due to natural termination.

Cover crop biomass was collected by cutting the plants at the ground surface using
a 0.5 × 0.5 m quadrant. The sampling quadrant was equipped with a central marking
spot for collection of cm-level-precision geographic coordinate data using an EMLID RS2
Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) instrument (EMLID
Tech Kft., Budapest, Hungary) following biomass data collection. The sampling spots were
scattered across the study field (Figure 1). The gaps where no biomass data were collected
at NERS (Figure 1a) were associated with a separate study with different ground surface
conditions. At CRS, the gaps where no samples were collected (Figure 1b) were associated
with the sections of the fields kept fallow during the winter season (part of another study
comparing the long-term impact of a cover crop vs. fallow in the corn–soybean cropping
system). A total of 174 and 144 data points were taken at CRS on March 26 and 27, 2024
and at NERS on March 27 and 28, 2024, respectively. The plant samples were kept in the
dryer at 68 ◦C for 48 h prior to recording the dry matter weight with an HC30002X Digital
Scale (Fristaden Lab, Reno, NV, USA).
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tion in East Baton Rouge parish, LA. The coordinate reference system (CRS) used was EPSG 32615 

Figure 1. Cover crop biomass prediction study sites with inset maps showing examples of sampling
distributions. (a) Northeast Research Station (NERS) in Tensas parish, LA. (b) Central Research
Station in East Baton Rouge parish, LA. The coordinate reference system (CRS) used was EPSG
32615 (Universal Transfer Mercator, UTM, zone 15 with World Geodetic System, WGS, 1984 ensemble
datum). Reference easting and northings are shown in the maps of the fields (a,b) and the station
maps (c,d). The corresponding reference geographic coordinates are shown in all maps except for the
inset maps. Red squares in (a,b) indicate the biomass sampled locations with detailed shown in the
inset maps (highlighted as purple rectangles). Cyan rectangles in (c,d) highlight the location of the
study fields in the station overview maps. Orange rectangles in (e,f) highlight the location of NRS
and CRS in the corresponding parishes. Yellow rectangles in (g) highlight the location of the East
Baton Rouge and Tensas parishes in Louisiana.

In this study, vegetation indices (VIs) were derived from multispectral data (Table 1) [32–35],
and the modeled canopy plant height (CHM) was derived from digital surface model (DSM)
products of the RGB data-processing chain in Pix4D Mapper version 4.7.5 [36]. The acquisition of
multispectral (Blue at 475 nm, Green at 560 nm, Red at 668 nm, Red Edge at 717 nm, and NIR at
840 nm) and RGB data was facilitated with MicaSense Red-Edge MX (Seattle, WA, USA), DJI H20
(Shenzhen, China), and DJI Matrice 300 RTK multirotor Unmanned Aerial Vehicle (UAV) aircraft.
The UAV mapping missions were programmed at 40 m altitude using DJI Pilot 2 version 5.1.1.7.
Four ground control points (GCPs) were placed at the corners of the study area, and geographic
coordinate data were measured using an EMLID Reach RS2 GNSS RTK instrument with base
correction using NASA OPUS version 5.0.0 (https://www.ngs.noaa.gov/OPUS/) (accessed on
28 June 2023) and a geographic optimization process in Pix4D Mapper [37]. Following the
generation of orthomosaic reflectance data, the Geospatial Data Abstraction Library (GDAL) [38]
was used to generate composite layers from the five spectral bands. Multispectral imagery was
used for computation of the vegetation indices using raster calculator in QGIS version 3.28.1 [39].

https://www.ngs.noaa.gov/OPUS/
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CHM was generated by subtracting the DSM output taken in the bare ground condition from the
output taken at the time of peak cover crop growth. Universal Transfer Mercator (UTM) zone 15
based on the World Geodetic System (WG) 1984 ensemble datum (EPGS 32615) was used as the
projection and coordinate reference system for the spatial data in this study. The data-sanitizing
process in this study included the removal of outlier pixels with an NDRE value less than 0.2,
given that such NDRE values indicate non-plant surfaces, namely, exposed ground [40].

Table 1. Vegetation indices used in this study. In-progress.

Vegetation Index Equation Ref.Name Description

NDRE Normalized Difference Red Edge (NIR − RE)/(NIR + RE) [32]
GNDVI Green Normalized Difference Vegetation Index (NIR − G)/(NIR + G) [33]
NDVI Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [34]

PVI Perpendicular Vegetation Index
√
(NIR − R)2 + (R − NIR)2 [35]

VIG Vegetation Index Green G/(R + B) [33]
NIR, Near-Infrared (840 nm); RE, Red Edge (717 nm); G, Green (560 nm); R, Red (668 nm); B, Blue (475 nm).

2.2. Model Description

The overall cover crop prediction model used in this study is shown in Figure 2. Five
vegetation indices (NDRE, GNDVI, NDVI, PVI, and VIG) and the modeled canopy height
(CHM) are used as inputs for the machine learning model, with training, validation, and
testing split set at 50–25–25. This training split follows the suggested setting for such a data
usage configuration in machine learning [41].
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Figure 2. The workflow of the cover crop biomass prediction model in this study. UAV, unmanned
aerial vehicle. RGB, red green blue or natural color aerial imagery data. DSM, digital surface model.
CHM, modeled canopy height.

In this study, the different hyperparameter configurations of a deep neural network
were explored, facilitated by the Keras and TensorFlow libraries [42]. The performance
levels of these models in predicting cover crop biomass as a function of VIs and the CHM
were compared. The metric for accuracy performance was based on the root mean square
error between the predicted (test results) and measured cover crop biomass. The basic
structure of the Tensor network had 11 dense layers, with the number of batches and
fixed activation functions shown in Figure 3. The fixed and dynamic hyperparameters
(8 optimizers and 8 activation functions) are detailed in Table 2 [43–51]. The architectural
configuration was informed by similar previous studies and an initial analysis of similar
datasets, and it strikes a balance between accuracy and timeliness. For each configuration
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of the dynamic hyperparameters, the model was run 3 times, with the best results chosen
as the final output.
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Figure 3. The neural network diagram of the TensorFlow machine learning for cover crop biomass
prediction in this study. The top line indicates the different layers including the input, 11 dense layers,
and the output layer. The batch number associated with each dense layer is shown at the bottom line
together with activation function (AF) information including the rectified linear unit (relu), dynamic
functions (see Table 2, dyn), and linear function (lin).

Table 2. The hyperparameters of the Keras TensorFlow machine learning for cover crop biomass
prediction in this study.

Aspect Parameter Details 2

Fixed:

Split 0.5, 0.25, 0.25 50% training, 25% validation, 25% testing
Epoch 200 Number of complete passes of the training dataset

Learning rate 0.001 Hyperparameter controlling how much to change the model in response to the estimated error each
time the model weights are updated

Dynamic:

Optimizers Adam Adaptive Moment Estimation. Stochastic gradient descent method based on adaptive estimation of
first-order and second-order moments [43]

Nadam Nesterov-accelerated Adaptive Moment Estimation [44]

Ftrl Follow the (Proximally) Regularized Leader. Online gradient descent with alternative regularization
of model parameters [45]

SGD Stochastic Gradient Descent. Iterative optimization process to search optimum outputs [46]

RMSprop Root Mean Square Propagation. Adaptive learning optimization to improve performance and
learning speed [47]

Adadelta Stochastic gradient descent method based on the adaptive learning rate per dimension, which works
by improving learning rates throughout training and making use of global learning rate [48]

Adagrad Optimizer with parameter-specific learning rates that are adapted relative to how frequently a
parameter is updated during training [49]

Adamax Alternation of Adam optimizer with adaptive approximation of low-order moments based on the
infinity norm [43]

AF 1 Sigmoid f (x) = 1/(1 + e−x); [46]
Tanh f (x) = sin x/cos x; [46]
ReLU f (x) = max(0, x); Rectified Linear Unit [46]

Exponential f (x) = ex ; [46]
Linear f (x) = x; [46]
SELU f (x) =

{
sx, x > 0

sα(ex − 1), x ≤ 0 ; Scaled Exponential Linear Unit [50]

ELU f (x) =
{

x, x > 0
ex − 1, x ≤ 0 ; Exponential Linear Unit [46]

SiLU
{

f (x) = x σ(x)
σ(x) is logistic sigmoid ; Sigmoid Linear Unit [51]

1 AF, Activation Function; 2 x, Input Tensor; s = 1.05070098; α = 1.67326324.
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3. Results
The spatial variability and the histograms of remote-sensing data used in this study

are shown in Figures 4 and 5 for the NRRS and CRS sites, respectively. As shown in the
histogram data, the NDRE at NERS had a single peak (Figure 4a), while there were two
peaks at CRS (Figure 5a). At both sites, the GNDVI and especially the NDVI data exhibited
skewness toward high values (Figure 4b,c and Figure 5b,c). At NERS, the PVI histogram
indicates a slightly off-center peak toward the high values (Figure 4d), unlike the PVI
at the CRS site, with a peak closer to the center (Figure 5d). The variable VIG, on the
other hand, showed the opposite trend, with the histogram for NERS slightly off-center
toward the low values (Figure 4e), unlike the VIG at the CRES site, with a peak closer
to the center (Figure 5e). The plant height estimate (PLH) at NERS showed dual peaks,
with the dominant one skewed toward the high values (Figure 4f), whereas at CRS, the
peak was toward the low values (Figure 5f). All vegetation indices except for VIG showed
general similarity in their spatial patterns. The orthomosaic maps reveal four distinct
spatial patterns exhibited by the remotely sensed data used in this study. The first pattern
is shared among the NDRE, GNDI, and NDVI. The second, third, and fourth patterns are
shown by the PVI, VIG, and CHM, respectively (Figures 4 and 5).
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(20 March 2024). (a) NDRE, Normalized Difference Red Edge. (b) GNDVI, Green Normalized Differ-
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Vegetation Index. (e) VIG, Vegetation Index Green. (f) CHM, Modeled Canopy Height.
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The progress of the neural network model configuration, when trained utilizing the
sampled remotely sensed data and cover crop dry matter (DM), based on the different
optimizers and activation functions is shown in Figures 6 and 7, respectively. In these
figures, the training results (root mean squared errors (RMSEs) of the predictions) are
shown for the entire 200 epochs, with the first 40 epochs shown in detail in the inset graphs.
From the initial RMSE of 578 g m−2, when using default parameters, the model performance
reached RMSE 131 g m−2, with Adam performing the best among the optimizers tested at
RMSE 124 g m−2 and Adadelta performing the worst at RMSE 138 g m−2 (Figure 6). All
optimizers showed an early drop in RMSE at epoch 2, except for Adadelta. The optimizers
Nadam, Ftrl, SGD, RMSprop, and Adadelta showed relatively slower RMSE improvement
in the first 15 epochs as compared to Adam, Adagrad, and Adamax. The average ultimate
RMSE at epoch 200 among the different activation functions was 131 g m−2, with sigmoidal
performing the best at RMSE 124 g m−2 and the linear activation function performing the
worst at RMSE 140 g m−2 (Figure 7). The pattern of training progress, at least in the first
40 epochs, was strongly determined by the choice of optimizers rather than the activation
functions, as shown in Figures 6 and 7.
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Figure 6. TensorFlow training progresses to predict cover crop biomass with Adam (a), Nadam (b),
Ftrl (c), SGD (d), RMSprop (e), Adadelta (f), Adagrad (g), and Adamax (h) Keras optimizers. Detailed
results within the first 40 epochs (E) are shown in the inset graphs, where R represents RMSE.
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Figure 7. Neural network training progresses to predict cover crop biomass with sigmoid (a), tanh (b),
ReLU (c), exponential (d), linear (e), SELU (f), ELU (g), and SiLU (h) activation functions. Detailed
results within the first 40 epochs (E) are shown in the inset graphs, where R represents RMSE.
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The ultimate judgement of the neural network model performance in predicting cover
crop biomass in this study was based on the 25% of the data set aside for model testing, with
the results shown in Table 3 and Figures 8 and 9. The top four configurations providing the best
RMSEs are shown in bold in Table 3. The TensorFlow model configured with Adam and the
sigmoid activation function at Dense 2 showed the best performance for cover crop biomass
prediction, with an RMSE of 96 g m−2 (Table 3). This configuration also showed higher values of
the Pearson correlation (0.793) and R2 (0.629) as compared with the other configurations, except
for the configuration with Adam and the SiLU activation function, which had a slightly higher
Pearson correlation and R2, at 0.797 and 0.635, respectively, when exploring the connection
between predicted and actual values in the test set. The scatter plots of observed values against
predicted ones are shown in Figures 8 and 9, providing useful insights regarding the robustness
of the different models evaluated in this study. The configuration using the Adam optimizer
with the exponential activation function and that using SGD with the sigmoid activation
function showed moderate RMSEs of 111 and 118, respectively, but the scatter plots for these
configurations showed a clustering phenomenon, indicating that a random data selection for the
evaluation might have lowered the variation for these configurations, preventing a more effective
test of their robustness (Figures 8d and 9d). On the other hand, the configuration with Adam and
Nadam optimizers with a sigmoid activation function (Figure 8a,b) and an Adam optimizer with
SELU and SiLU activation functions (Figure 9f,h) visually showed robust performance levels
across a good stretch of the observed cover crop DM values. The inset graphs in Figures 8 and 9
provide clear visualizations of the common drawbacks in the prediction of cover crop DM even
in this study, even with the best configuration (Adam with sigmoid activation function), that is,
the tendency to underpredict at higher biomasses. Some configurations, namely Adadelta and
Adgrad optimizers with the sigmoid activation function and Adam with ReLU and exponential
activation functions, exhibited the worst performance levels when they made underpredictions
at higher observed biomasses (Figure 8f,g and Figure 9c,d).

Table 3. Performance of the TensorFlow models with different optimizers and activation functions
and in predicting cover crop biomass.

Optimizer Activation
Function

RMSE
(g m−2) Pearson R2 Observed Predicted

Min. Max. Min. Max.

Adam Sigmoid 96 0.793 0.629 290 1217 335 1040
Nadam Sigmoid 106 0.677 0.458 367 1110 302 1011

Ftrl Sigmoid 132 0.512 0.262 293 1223 394 777
SGD Sigmoid 118 0.481 0.231 327 935 412 792

RMSprop Sigmoid 103 0.694 0.482 376 944 324 859
Adadelta Sigmoid 132 0.638 0.407 281 1326 352 748
Adagrad Sigmoid 121 0.687 0.471 263 1008 331 779
Adamax Sigmoid 124 0.656 0.430 316 1057 402 861

Adam Tanh 108 0.732 0.536 314 1028 342 939
Adam ReLU 137 0.491 0.240 313 1134 327 813
Adam Exponential 111 0.654 0.428 342 1264 433 1002
Adam Linear 148 0.708 0.500 330 1394 354 939
Adam SELU 99 0.676 0.458 263 907 369 856
Adam ELU 133 0.758 0.575 276 1081 265 810
Adam SiLU 104 0.797 0.635 274 974 340 854

The rows in bolds indicate the top four best biomass prediction results achieved by the combination of the
optimizer and activation functions used in the TensorFlow model in this study.
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Figure 8. Validation results of cover crop dry matter (DM) prediction with TensorFlow models using
Adam (a), Nadam (b), Ftrl (c), SGD (d), RMSprop (e), Adadelta (f), Adagrad (g), and Adamax (h)
Keras optimizers. Residuals expressed as predicted − observed (−e) as a function of the observed
DM are shown in graph insets.
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Figure 9. Validation results of cover crop dry matter (DM) prediction with TensorFlow models using
sigmoid (a), tanh (b), ReLU (c), exponential (d), linear (e), SELU (f), ELU (g), and SiLU (h) activation
functions. Residuals expressed as predicted − observed (−e) as a function of the observed DM are
shown in the inset graphs.
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The results of subsequent tests of the best-performing TensorFlow model with the
Adam optimizer using all possible combinations of vegetation indices and modeled canopy
height (CHM) data are shown in Table 4. The single vegetation index along with the CHM,
NDRE, and GNDVI are superior predictors. Nonetheless, substantially lower RMSEs of
cover crop biomass predictions were only achieved with combinations of the CHM with at
least three VIs, namely, the NDRE, NDVI, PVI (RMSE of 92 g m−2), NDRE, GNDVI, NDVI,
PVI (RMSE of 95 g m−2), and all five VIs (RMSE of 96 g m−2).

Table 4. Performance of the TensorFlow model (Adam, sigmoid) with 31 combinations of vegetation
indices and modeled canopy height (CHM) in predicting cover crop biomass.

Vegetation Index
GNDVI NDVI PVI VIG

---------- RMSE (g m−2) ----------

NDRE 107 - - - -
GNDVI 106 - - - -
NDVI 125 - - - -

PVI 129 - - - -
VIG 121 - - - -

NDRE - 118 101 113 109
GNDVI - - 117 102 144
NDVI - - - 117 132

PVI - - - - 148
NDRE, GNDVI - - 116 112 103
NDRE, NDVI - - - 92 122

NDRE, PVI - - - - 120
GNDVI, NDVI - - - 110 114

GNDVI, PVI - - - - 139
NDVI, PVI - - - - 122

NDRE, GNDVI, NDVI - - - 95 125
NDRE, GNDVI, PVI - - - - 133
NDRE, NDVI, PVI - - - - 134

GNDVI, NDVI, PVI - - - - 119
NDRE, GNDVI, NDVI, PVI - - - - 96

NDRE, Normalized Difference Red Edge; GNDVI, Green Normalized Difference Vegetation Index; NDVI, Nor-
malized Difference Vegetation Index; PVI, Perpendicular Vegetation Index, VIG, Vegetation Index Green; RMSE,
root mean squared error. Results shown in bold are the top 3 best RMSE results obtained by the combination of
variables used for biomass prediction in this study.

4. Discussion
The performance of the best deep learning model in this study, with an RMSE of

96 g m−2 and nRMSE of 15.3%, is comparable with the results reported from previous stud-
ies, as shown in Table 5 [28,52–59]. All previous studies listed in Table 5, except for Hamada
et al. [54], deployed UAV remote sensing. The complexity of the methodologies of these
previous studies varied from a simple regression approach involving vegetation indices
(Vis) [28,52,54] to a complex one involving LiDAR data [56] and biomass modeling [59].
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Table 5. Comparison of vegetation DM prediction from this study with other studies.

Authors Site Species Date Predictor(s) Method
RMSE nRMSE

Observed DM

Min. Mean Max.

---------------- g m−2 ----------------

This study Baton Rouge and
St. Joseph, LA, USA

Winter cover crops
including cereal rye
(Secale cereale L.) and

black oats (Avena
strigosa)

4 March 2024
24 March 2024

VI (NDRE, GNDVI,
NDVI, PVI, VIG)

and CHM from UAV

Deep learning with
Adam optimizer and

sigmoid activation
function

96 15.3 290 628 1217

Bendig et al.
[28] Cologne, Germany Barley (Hordeum

vulgare) 23 July 2013 VIs and CHM Multiple linear
regression 240 44.6 23 538 1640

Biswal et al. [52] Kharagpur, West
Bengal, India

Lowland rice (Oryza
sativa)

10 September
2019

VI (15 total)
including GNDVI
and NDVI from

UAV

Multiple linear
regression and
Random Forest

76 9.1 383 635 842

Sinde-Gonzales
et al. [53] Pichincha, Ecuador

Perennial ryegrass
(Lolium perenne),
annual ryegrass

(Lolium multiflorum),
and kikuyugrass

(Pennisetum
clandestinum)

16 January 2018 DSM, DTM from
UAV

f(density factor,
predicted volume

derived from DTM
and DSM)

198 31.0 325 635 1125

Hamada et al.
[54]

Brighton, IL,
Urbana, IL,

Ithaca, NE, and
South Shore, SD,

USA

Switchgrass for
bioenergy

November 2020
December 2020

VI (20 total)
including GNDVI
and NDVI from

Sentinel-2 satellite

f(GNDVI) 60 12.8 119 539 1110

Lussem et al.
[55] Esdorf, Germany

Foxtail grass
(Alopecurus sp.),

timothy grass (Phleum
pratense), and clover

(Trifolum sp.)

22 August 2017

VI from visible
range (RGB)

including ExGI and
CHM

f(ExG, CHM) 41.6 17.78 167 234 357

Maesano et al.
[56] Savigliano, Italy Arundo donax for

bioenergy November 2016

Detailed canopy
structure data

derived from LiDAR
with UAV

f(maximum stem
height, stem height

with most occurrence,
and count of unique

stem height)

908 18.17 2133 4542 7867



Drones 2025, 9, 131 16 of 21

Table 5. Cont.

Authors Site Species Date Predictor(s) Method
RMSE nRMSE

Observed DM

Min. Mean Max.

---------------- g m−2 ----------------

Oliveira
et al. [57] Jokioinen, Finland

Silage grass consisting
of timothy meadow

fescue (Phleum pratense
and Festuca pratensis)

June 2017
Orthomosaic images
derived from RGB

UAV data

Deep learning using
VGG16 with Adadelta
optimizer and linear
activation function

67 25.2 54 265 546

Theau et al. [58] Lennoxville, Quebec,
Canada

Red clover (Trifolium
pratense), timothy

(Phleum pratense L.),
birdsfoot trefoil (Lotus
corniculatus), meadow
bromegrass (Bromus

commutatus), and
Kentucky bluegrass

(Poa pratensis L.)

29 August 2017

VI (total of 9)
including NDVI,

GNDVI, NDRE, and
CHM from UAV

f(DSM, DTM, GNDVI) 132 38 76 348 820

Zhang et al. [59]
Gansu, Inner

Mongolia, and
Jiangsu, China

Alpine meadow
(Poaceae and

Cyperaceae), Stipa
glareosa, Iris lactea Pall,

Bassia dasyphylla,
Spartina alterniflora,
Suaeda glauca, and
Phragmites australis

August 2017 VI and CH from
UAV

Biomass model based
on CH combined with

ExG from RGB
96 15.3 20 628 824

VI, Vegetation Index; CH, Canopy Height; DSM, Digital Surface Model; DTM, Digital Terrain Model; ExG, Excess Greenness; f(x, z, . . .) indicates a function of x, z, and any other
variables listed.



Drones 2025, 9, 131 17 of 21

It is interesting to note that five out of eight of these previous studies included the
canopy height derived from an UAV as key predictor of biomass [53,55,56,58,59]. Only
one of these studies deployed deep learning, but their approach involved the use of
orthomosaic images as inputs [57] and thus the utilization of machine learning included
image analyses. The comparative analysis provided in this report is complete with RMSE
and nRMSE, along with the reported statistical data of the observed biomass. In contrast,
Poley and McDermid [60] reviewed 46 studies of UAV-based biomass prediction only using
the R2 as the selected metric. Nonetheless, their comprehensive review suggests that the
NDVI, GNDVI, and CHM are the most common predictors used in biomass prediction
studies. In the present study, the only combinations of vegetation indices (VIs) resulting in
a high accuracy of biomass predictions were those that use near-infrared (NIR) spectral
data. This finding agrees with Viljanen et al. [61], who through a Random Forest machine
learning approach, obtained an improvement in biomass prediction when RGB inputs were
complemented with NIR reflectance data.

It is unlikely that improving the sophistication of instruments can further improve the
accuracy of biomass prediction, as is evident by the relatively similar results achieved with
a methodology deploying LiDAR sensor [56] as compared to the present study without
such an expensive instrument. The use of hyperspectral instruments, as tested by Bendig
et al. [28], did not significantly improve the prediction of vegetation biomass as compared
to a multispectral sensor; in particular, the canopy height approach was found to be ideal,
given its satisfactory results and yet practical and economical steps.

Without machine learning, particularly deep learning, previous studies performed
to predict the vegetation biomass required multiple steps to derive models using training
datasets, with the resulting models being site-specific. In contrast, machine learning
provides the sophistication of next-generation data interpretation beyond the conventional
multi-step regression approach. Oliveira et al. [57], who also implementing deep learning,
found similar findings as the present study, discovering a varied performance in terms
of biomass prediction accuracy depending on the combination of model optimizers and
architecture. In their case, the Adadelta optimizer with the VGG16 convolutional neural
network (CNN) architecture performed the best, with an RMSE of 67 g m−2 and R2 of 0.79,
whereas the Adam optimizer with the Inception V3 CNN architecture performed the worst,
with an RMSE of 883 g m−2 and R2 of −72.43. The range of results obtained by Oliveira
et al. [57] through the different combinations of CNN architectures and optimizers was
more extreme than in the present study. The negative R2 they obtained was indicative that
the given CNN architecture and optimizer did not provide an opportunity for the deep
learning model to give a positive performance during training, a phenomenon that was
lacking in the present study.

While we may point out their similar deep learning setups, such as 200 for the number
of epochs, a learning rate of 0.01, and a similar split for testing at 20–25%, it is not feasible to
draw a straightforward comparison between the present study and that of Oliveira et al. [57]
due to the different natures of their deep learning applications. The deep learning technique
used by Oliveira et al. [57] was tailored to make use of UAV natural color (RGB) images for
the prediction of vegetation biomass, whereas in the present study, the orthomosaic input
data were converted to numerical data of vegetation indices, and we modeled canopy height
information prior to their usage to predict vegetation biomass. Moreover, Oliveira et al. [57]
focused on the CNN architecture, commonly applied for dealing with image classification
tasks, whereas the Keras optimizers and activation functions used in the present study are
more suitable for dealing with numerical features and for output prediction.

The drawback of the machine learning approach is the sensitivity of the outcome to the
quantity of data used [62]. To achieve sufficient data points for machine learning, there is
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an opportunity to leverage a non-destructive and rapid methodology to generate biomass
data using rising plate or disk meters (RPMs). Available commercial RPM instruments uti-
lizing ultrasonic technology include the GrassHopper (TrueNorth Technologies, Shannon,
Ireland), GrassOmeter (Monford AG Systems Ltd., Dublin, Ireland), Pasture Meter (C-Dax
Agricultural Solutions, Palmerston North, New Zealand), and Pasture Reader (Naroaka
Enterprises, Narracan, Australia) [55]. The present study highlights the need to address
the saturation problem with vegetation indices at high biomass conditions, resulting in the
trend of the model underpredicting the biomass in conditions conducive to heavy growth.
Comparable results were reported by others who found a saturation of machine learning
performance when feature information was sufficiently utilized [63,64]. A new creative
approach to using the data may be needed, such as exploring the rate of change in the VI
and CHM. In high biomass conditions, differences in absolute values are difficult to detect,
and the rates should offer stronger indicators. An example of this is the presence of abiotic
or biotic stress causing slight a reduction in VIs and/or the CHM, which can be detected
much more efficiently by examining the rates of changes than static variables. This creative
approach will be explored in future studies, which will also test the prediction model in
more locations and growing seasons.

5. Conclusions
The present study reinforces the finding of previous studies that canopy height estima-

tion along with vegetation indices can be used effectively to predict vegetation biomass. In
the present study, the deep learning neural network model with the Adam optimizer and
sigmoid activation function performed the best, providing cover crop biomass prediction
with a 96 g m−2 RMSE and 15.1% nRMSE. These findings underscore the value of com-
bining UAV remote sensing and machine learning for a comprehensive analysis of cover
crop traits. By incorporating realistic biophysical mechanisms, this approach effectively
captured both the horizontal (vegetation indices) and vertical (canopy height) dimensions
of plant growth.
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