A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques
Abstract
:1. Introduction
2. Methodology
2.1. VGG16
2.2. ResNet-50
2.3. MobileNet
2.4. Xception
3. Details of the Experiment
3.1. Datasets
3.2. Implementation Details
3.3. Performance Metrics
4. Results and Discussion
4.1. Comparison on VGG16 and VGG19 Architecture
4.2. Comparison on VGG16, ResNet50, MobileNet and Xception Architectures
4.3. Challenges in Deep Learning-Based Crack Classification of Concrete Walls
5. Conclusions
- In the first stage, the performance of the VGG16 and VGG19 architectures was evaluated by comparing their results.
- It is ascertained that the VGG16 obtained a test and training accuracy of 99.61% and 99.71%, respectively, whereas the accuracy of the VGG19 was 99.57% and 99.67% for test and training accuracy, respectively.
- The speed and precision of VGG16 architecture were both better than those of VGG19 architecture.
- Secondly, the crack classification capabilities of the VGG16, ResNet50, MobileNet, and Xception architectures were evaluated. The ResNet50 architecture performed better than the other three architectures, with a test accuracy of 99.88%, and it required less training time than the other architectures, except for MobileNet.
- The training time for MobileNet was less than all other pre-trained models considered in this study.
- When compared to other architectures, the Xception architecture performed the worst. Furthermore, the generalization capability of the Xception architecture was less when compared to the other pre-trained models.
- Since the problem under examination was a binary classification problem, all models’ accuracy was high, with an average test accuracy variation of only 0.22%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajamony Laila, L.; Gurupatham, B.G.A.; Roy, K.; Lim, J.B.P. Effect of Super Absorbent Polymer on Microstructural and Mechanical Properties of Concrete Blends Using Granite Pulver. Struct. Concr. 2021, 22, E898–E915. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Kiran, T.; Gunasekaran, J.; Nammalvar, A.; Arulraj, P.; Gurupatham, B.G.A.; Roy, K. Performance of Sustainable Insulated Wall Panels with Geopolymer Concrete. Materials 2022, 15, 8801. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ding, L.; Luo, H.; Li, C.; Li, G. Automated Bughole Detection and Quality Performance Assessment of Concrete Using Image Processing and Deep Convolutional Neural Networks. Constr. Build. Mater. 2021, 281, 122576. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.H. Crack and Noncrack Classification from Concrete Surface Images Using Machine Learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Wei, F.; Wong, M. Autonomous Crack and Bughole Detection for Concrete Surface Image Based on Deep Learningused the Weights and Biases of the Xception Architecture. IEEE Access 2021, 9, 85709–85720. [Google Scholar] [CrossRef]
- Lowe, D.; Roy, K.; Das, R.; Clifton, C.G.; Lim, J.B.P. Full Scale Experiments on Splitting Behaviour of Concrete Slabs in Steel Concrete Composite Beams with Shear Stud Connection. Structures 2020, 23, 126–138. [Google Scholar] [CrossRef]
- Iannuzzo, A.; Angelillo, M.; De Chiara, E.; De Guglielmo, F.; De Serio, F.; Ribera, F.; Gesualdo, A. Modelling the Cracks Produced by Settlements in Masonry Structures. Meccanica 2018, 53, 1857–1873. [Google Scholar] [CrossRef]
- Iannuzzo, A.; Serio, F.D.; Gesualdo, A.; Zuccaro, G.; Fortunato, A.; Angelillo, M. Crack Patterns Identification in Masonry Structures with a C° Displacement Energy Method. Int. J. Mason. Res. Innov. 2018, 3, 295–323. [Google Scholar] [CrossRef]
- Tan, X.; Abu-Obeidah, A.; Bao, Y.; Nassif, H.; Nasreddine, W. Measurement and Visualization of Strains and Cracks in CFRP Post-Tensioned Fiber Reinforced Concrete Beams Using Distributed Fiber Optic Sensors. Autom. Constr. 2021, 124, 103604. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Ahn, E.; Shin, M.; Sim, S.-H. Crack Identification Method for Concrete Structures Considering Angle of View Using RGB-D Camera-Based Sensor Fusion. Struct. Health Monit. 2021, 20, 500–512. [Google Scholar] [CrossRef]
- Andrushia, A.D.; Thangarajan, R. RTS-ELM: An Approach for Saliency-Directed Image Segmentation with Ripplet Transform. Pattern Anal. Appl. 2020, 23, 385–397. [Google Scholar] [CrossRef]
- Diana Andrushia, A.; Anand, N.; Prince Arulraj, G. A Novel Approach for Thermal Crack Detection and Quantification in Structural Concrete Using Ripplet Transform. Struct. Control Health Monit. 2020, 27, e2621. [Google Scholar] [CrossRef]
- Cheng, H.D.; Wang, J.; Hu, Y.G.; Glazier, C.; Shi, X.J.; Chen, X.W. Novel Approach to Pavement Cracking Detection Based on Neural Network. Transp. Res. Rec. 2001, 1764, 119–127. [Google Scholar] [CrossRef]
- Hoang, N.D. An Artificial Intelligence Method for Asphalt Pavement Pothole Detection Using Least Squares Support Vector Machine and Neural Network with Steerable Filter-Based Feature Extraction. Adv. Civ. Eng. 2018, 2018, 7419058. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, S.; Wang, W.; Xiao, D.; Wang, K.C.P. Cracking Classification Using Minimum Rectangular Cover–Based Support Vector Machine. J. Comput. Civ. Eng. 2017, 31(5), 04017027. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic Road Crack Detection Using Random Structured Forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Flah, M.; Suleiman, A.R.; Nehdi, M.L. Classification and Quantification of Cracks in Concrete Structures Using Deep Learning Image-Based Techniques. Cem. Concr. Compos. 2020, 114, 103781. [Google Scholar] [CrossRef]
- Ali, R.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Structural Crack Detection Using Deep Convolutional Neural Networks. Autom. Constr. 2022, 133, 103989. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Nammalvar, A.; Andrushia, A.D.; Gurupatham, B.G.A.; Roy, K. Influence of Nano Composites on the Impact Resistance of Concrete at Elevated Temperatures. Fire 2023, 6, 135. [Google Scholar] [CrossRef]
- Laxman, K.C.; Tabassum, N.; Ai, L.; Cole, C.; Ziehl, P. Automated Crack Detection and Crack Depth Prediction for Reinforced Concrete Structures Using Deep Learning. Constr. Build. Mater. 2023, 370, 130709. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef] [PubMed]
- Huyan, J.; Li, W.; Tighe, S.; Xu, Z.; Zhai, J. CrackU-Net: A Novel Deep Convolutional Neural Network for Pixelwise Pavement Crack Detection. Struct. Control Health Monit. 2020, 27, e2551. [Google Scholar] [CrossRef]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. SDNET2018: An Annotated Image Dataset for Non-Contact Concrete Crack Detection Using Deep Convolutional Neural Networks. Data Br. 2018, 21, 1664–1668. [Google Scholar] [CrossRef]
- Loverdos, D.; Sarhosis, V. Automatic Image-Based Brick Segmentation and Crack Detection of Masonry Walls Using Machine Learning. Autom. Constr. 2022, 140, 104389. [Google Scholar] [CrossRef]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. Comparison of Deep Convolutional Neural Networks and Edge Detectors for Image-Based Crack Detection in Concrete. Constr. Build. Mater. 2018, 186, 1031–1045. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Advances in Neural Information Processing Systems 27 (NIPS’14); MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ai, L.; Zhang, B.; Ziehl, P. A Transfer Learning Approach for Acoustic Emission Zonal Localization on Steel Plate-like Structure Using Numerical Simulation and Unsupervised Domain Adaptation. Mech. Syst. Signal Process. 2023, 192, 110216. [Google Scholar] [CrossRef]
- Kang, D.; Benipal, S.S.; Gopal, D.L.; Cha, Y.J. Hybrid Pixel-Level Concrete Crack Segmentation and Quantification across Complex Backgrounds Using Deep Learning. Autom. Constr. 2020, 118, 103291. [Google Scholar] [CrossRef]
- Su, C.; Wang, W. Concrete Cracks Detection Using Convolutional Neural Network Based on Transfer Learning. Math. Probl. Eng. 2020, 2020, 7240129. [Google Scholar] [CrossRef]
- Dung, C.V.; Anh, L.D. Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Qu, Z.; Mei, J.; Liu, L.; Zhou, D.Y. Crack Detection of Concrete Pavement with Cross-Entropy Loss Function and Improved VGG16 Network Model. IEEE Access 2020, 8, 54564–54573. [Google Scholar] [CrossRef]
- Joshi, D.; Singh, T.P.; Sharma, G. Automatic Surface Crack Detection Using Segmentation-Based Deep-Learning Approach. Eng. Fract. Mech. 2022, 268, 108467. [Google Scholar] [CrossRef]
- Doğan, G.; Ergen, B. A New Mobile Convolutional Neural Network-Based Approach for Pixel-Wise Road Surface Crack Detection. Measurement 2022, 195, 111119. [Google Scholar] [CrossRef]
- Rajamony Laila, L.; Gurupatham, B.G.A.; Roy, K.; Lim, J.B.P. Influence of Super Absorbent Polymer on Mechanical, Rheological, Durability, and Microstructural Properties of Self-Compacting Concrete Using Non-Biodegradable Granite Pulver. Struct. Concr. 2021, 22, E1093–E1116. [Google Scholar] [CrossRef]
- Madan, C.S.; Munuswamy, S.; Joanna, P.S.; Gurupatham, B.G.; Roy, K. Comparison of the Flexural Behavior of High-Volume Fly AshBased Concrete Slab Reinforced with GFRP Bars and Steel Bars. J. Compos. Sci. 2022, 6, 157. [Google Scholar] [CrossRef]
- Paul Thanaraj, D.; Kiran, T.; Kanagaraj, B.; Nammalvar, A.; Andrushia, A.D.; Gurupatham, B.G.A.; Roy, K. Influence of Heating–Cooling Regime on the Engineering Properties of Structural Concrete Subjected to Elevated Temperature. Buildings 2023, 13, 295. [Google Scholar] [CrossRef]
- Madan, C.S.; Panchapakesan, K.; Reddy, P.V.A.; Joanna, P.S.; Rooby, J.; Gurupatham, B.G.A.; Roy, K. Influence on the Flexural Behaviour of High-Volume Fly-Ash-Based Concrete Slab Reinforced with Sustainable Glass-Fibre-Reinforced Polymer Sheets. J. Compos. Sci. 2022, 6, 169. [Google Scholar] [CrossRef]
- Guzmán-Torres, J.A.; Naser, M.Z.; Domínguez-Mota, F.J. Effective Medium Crack Classification on Laboratory Concrete Specimens via Competitive Machine Learning. Structures 2022, 37, 858–870. [Google Scholar] [CrossRef]
- Ye, W.; Deng, S.; Ren, J.; Xu, X.; Zhang, K.; Du, W. Deep Learning-Based Fast Detection of Apparent Concrete Crack in Slab Tracks with Dilated Convolution. Constr. Build. Mater. 2022, 329, 127157. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Zou, T.; Wang, X.; You, J.; Luo, Y. A Novel Image Classification Approach via Dense-Mobilenet Models. Mob. Inf. Syst. 2019, 2020, 7602384. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar] [CrossRef]
- Chun, P.J.; Izumi, S.; Yamane, T. Automatic Detection Method of Cracks from Concrete Surface Imagery Using Two-Step Light Gradient Boosting Machine. Comput. Civ. Infrastruct. Eng. 2021, 36, 61–72. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Huynh, T.-C.; Tran, V.-D. Concrete Spalling Severity Classification Using Image Texture Analysis and a Novel Jellyfish Search Optimized Machine Learning Approach. Adv. Civ. Eng. 2021, 2021, 5551555. [Google Scholar] [CrossRef]
- Yamane, T.; Chun, P.J. Crack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep Learning. J. Adv. Concr. Technol. 2020, 18, 493–504. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Fan, Z.; Li, C.; Chen, Y.; Di Mascio, P.; Chen, X.; Zhu, G.; Loprencipe, G. Ensemble of Deep Convolutional Neural Networks for Automatic Pavement Crack Detection and Measurement. Coatings 2020, 10, 152. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1–11. [Google Scholar] [CrossRef]
- Bush, J.; Corradi, T.; Ninić, J.; Thermou, G.; Bennetts, J. Deep Neural Networks for Visual Bridge Inspections and Defect Visualisation in Civil Engineering. In Proceedings of the EG-ICE 2021 Workshop on Intelligent Computing in Engineering, Berlin, Germany, 30 June–2 July 2021; pp. 421–431. [Google Scholar]
- Manjurul Islam, M.M.; Kim, J.M. Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network. Sensors 2019, 19, 4251. [Google Scholar] [CrossRef]
- Paramanandham, N.; Koppad, D.; Anbalagan, S. Vision Based Crack Detection in Concrete Structures Using Cutting-Edge Deep Learning Techniques. Trait. du Signal 2022, 39, 485–492. [Google Scholar] [CrossRef]
- Asadi, E.; Xu, C.; Rao, A.S.; Nguyen, T.; Ngo, T.; Dias-da-costa, D. Automation in Construction Vision Transformer-Based Autonomous Crack Detection on Asphalt and Concrete Surfaces. Autom. Constr. 2022, 140, 104316. [Google Scholar] [CrossRef]
Parameter | Training |
---|---|
Initial learning rate | 0.001 |
Batch size | 64 |
Optimizer | Adam |
Number of epochs | 20 |
Steps per epoch | 275 |
Network | Test Loss | Training Accuracy | No. of Epochs | Best Epoch |
---|---|---|---|---|
VGG16 | 0.00923 | 99.71% | 20 | 11 |
VGG19 | 0.01592 | 99.67% | 20 | 9 |
ResNet50 | 0.00073 | 99.91% | 20 | 7 |
MobileNet | 0.02300 | 99.72% | 20 | 12 |
Xception | 0.08611 | 99.64% | 20 | 9 |
Architecture | Class | Precision | Recall | F1 | Support |
---|---|---|---|---|---|
VGG16 | Negative | 1.00 | 0.99 | 1.00 | 2197 |
Positive | 0.99 | 1.00 | 1.00 | 2203 | |
VGG19 | Negative | 1.00 | 0.99 | 1.00 | 2197 |
Positive | 0.99 | 1.00 | 1.00 | 2203 | |
ResNet50 | Negative | 1.00 | 0.99 | 1.00 | 2197 |
Positive | 0.99 | 1.00 | 1.00 | 2203 | |
MobileNet | Negative | 0.99 | 0.99 | 0.99 | 2197 |
Positive | 0.99 | 0.99 | 0.99 | 2203 | |
Xception | Negative | 0.98 | 0.99 | 0.98 | 2197 |
Positive | 0.99 | 0.98 | 0.98 | 2203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philip, R.E.; Andrushia, A.D.; Nammalvar, A.; Gurupatham, B.G.A.; Roy, K. A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques. J. Compos. Sci. 2023, 7, 169. https://doi.org/10.3390/jcs7040169
Philip RE, Andrushia AD, Nammalvar A, Gurupatham BGA, Roy K. A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques. Journal of Composites Science. 2023; 7(4):169. https://doi.org/10.3390/jcs7040169
Chicago/Turabian StylePhilip, Remya Elizabeth, A. Diana Andrushia, Anand Nammalvar, Beulah Gnana Ananthi Gurupatham, and Krishanu Roy. 2023. "A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques" Journal of Composites Science 7, no. 4: 169. https://doi.org/10.3390/jcs7040169