Evaluation of Different ZX Tensile Coupon Designs in Additive Manufacturing of Amorphous and Semi-Crystalline Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design Optimization
2.3. Process Parameters Optimization Using Design of Experiment (DoX)
2.4. Material Characterization and Testing
2.4.1. Rheology
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. Mechanical Testing
3. Results
3.1. Rheological Properties
3.2. FDM-Printed Parts of PCTG Z and HTN Z Using Single, Two-, and Four-Tensile-Bar Designs
3.3. Design Modification for PEI-CF
3.4. DoX Study and Mechanical Properties
3.5. Comparison of the Different Designs’ Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, N.; Ye, X.; Wei, D.; Zhong, J.; Chen, Y.; Xu, G.; He, D. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl. Mater. Interfaces 2014, 6, 14952–14963. [Google Scholar] [CrossRef]
- Long, J.; Gholizadeh, H.; Lu, J.; Bunt, C.; Seyfoddin, A. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr. Pharm. Des. 2017, 23, 433–439. [Google Scholar] [CrossRef]
- Sonaye, S.Y.; Bokam, V.K.; Saini, A.; Nayak, V.V.; Witek, L.; Coelho, P.G.; Bhaduri, S.B.; Bottino, M.C.; Sikder, P. Patient-specific 3D printed Poly-ether-ether-ketone (PEEK) dental implant system. J. Mech. Behav. Biomed. Mater. 2022, 136, 105510. [Google Scholar] [CrossRef]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Habib, S.R.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef]
- Kain, S.; Ecker, J.; Haider, A.; Musso, M.; Petutschnigg, A. Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites. Eur. J. Wood Wood Prod. 2020, 78, 65–74. [Google Scholar] [CrossRef]
- Singh, J.; Goyal, K.K.; Kumar, R. Effect of filling percentage and raster style on tensile behavior of FDM produced PLA parts at different build orientation. Mater. Today Proc. 2022, 63, 433–439. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Process parameter optimization of viscoelastic properties of FDM manufactured parts using response surface methodology. Mater. Today Proc. 2017, 4, 8250–8259. [Google Scholar] [CrossRef]
- Vaes, D.; Van Puyvelde, P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Kishore, V.; Chen, X.; Ajinjeru, C.; Hassen, A.A.; Lindahl, J.; Failla, J.; Kunc, V.; Duty, C. Additive manufacturing of high performance semicrystalline thermoplastics and their composites. In Proceedings of the Solid Freeform Fabrication 2016: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference, Austin, TX, USA, 8–10 August 2016; pp. 906–915. [Google Scholar]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Ding, S.; Zou, B.; Wang, P.; Ding, H. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test. 2019, 78, 105948. [Google Scholar] [CrossRef]
- Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Yin, X.; Ferraris, E.; Zhang, J. The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Mater. Des. 2023, 226, 111687. [Google Scholar] [CrossRef]
- Zaldivar, R.; Witkin, D.; McLouth, T.; Patel, D.; Schmitt, K.; Nokes, J. Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Addit. Manuf. 2017, 13, 71–80. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Jia, M.; Chen, Y.; Wang, H. Enhancement on the mechanical properties of 3D printing PEI composites via high thermal processing and fiber reinforcing. Polym. Adv. Technol. 2023, 34, 3115–3124. [Google Scholar] [CrossRef]
- Schöppner, V.; KTP, K.P. Mechanical properties of fused deposition modeling parts manufactured with Ultem* 9085. In Proceedings of the 69th Annual Technical Conference of the Society of Plastics Engineers (ANTEC’11), Boston, MA, USA, 1–5 May 2011; pp. 1–5. [Google Scholar]
- Zaldivar, R.; Mclouth, T.; Ferrelli, G.; Patel, D.; Hopkins, A.; Witkin, D. Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM® 9085 3D printed parts. Addit. Manuf. 2018, 24, 457–466. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.-Y.; Huang, P.; Li, Y.-Q.; Fu, S.-Y. Improved bond strength, reduced porosity and enhanced mechanical properties of 3D-printed polyetherimide composites by carbon nanotubes. Compos. Commun. 2022, 30, 101083. [Google Scholar] [CrossRef]
- Davies, R.; Yi, N.; McCutchion, P.; Ghita, O. Mechanical property variance amongst vertical fused filament fabricated specimens via four different printing methods. Polym. Int. 2021, 70, 1073–1079. [Google Scholar] [CrossRef]
- Zarean, P.; Malgaroli, P.; Zarean, P.; Seiler, D.; de Wild, M.; Thieringer, F.M.; Sharma, N. Effect of printing parameters on mechanical performance of material-extrusion 3D-printed PEEK specimens at the Point-of-care. Appl. Sci. 2023, 13, 1230. [Google Scholar] [CrossRef]
- Faes, M.; Ferraris, E.; Moens, D. Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling. Procedia Cirp 2016, 42, 748–753. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, W.; Niu, B.; Wang, Y.; Wu, X.; Ji, J.; Li, Y.; Zhao, T.; Li, H.; Wang, G. 3D printing high interfacial bonding polyether ether ketone components via pyrolysis reactions. Mater. Des. 2021, 198, 109333. [Google Scholar] [CrossRef]
- Pyl, L.; Kalteremidou, K.-A.; Van Hemelrijck, D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites. Polym. Test. 2018, 71, 318–328. [Google Scholar] [CrossRef]
- Yıldız, A.; Emanetoğlu, U.; Yenigun, E.O.; Cebeci, H. Towards optimized carbon nanotubes (CNTs) reinforced polyetherimide (PEI) 3D printed structures: A comparative study on testing standards. Compos. Struct. 2022, 296, 115853. [Google Scholar] [CrossRef]
- Miller, A.; Brown, C.; Warner, G. Guidance on the use of existing ASTM polymer testing standards for ABS parts fabricated using FFF. Smart Sustain. Manuf. Syst. 2019, 3, 122–138. [Google Scholar] [CrossRef]
- Duty, C.; Ajinjeru, C.; Kishore, V.; Compton, B.; Hmeidat, N.; Chen, X.; Liu, P.; Hassen, A.A.; Lindahl, J.; Kunc, V. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. J. Manuf. Process. 2018, 35, 526–537. [Google Scholar] [CrossRef]
- Das, A.; Gilmer, E.L.; Biria, S.; Bortner, M.J. Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties. ACS Appl. Polym. Mater. 2021, 3, 1218–1249. [Google Scholar] [CrossRef]
- Cossa, K.N. Basic concepts on rheology and application of shear-thickening fluids in protective gear. SN Appl. Sci. 2019, 1, 1–6. [Google Scholar] [CrossRef]
- Ajinjeru, C.; Kishore, V.; Lindahl, J.; Sudbury, Z.; Hassen, A.A.; Post, B.; Love, L.; Kunc, V.; Duty, C. The influence of dynamic rheological properties on carbon fiber-reinforced polyetherimide for large-scale extrusion-based additive manufacturing. Int. J. Adv. Manuf. Technol. 2018, 99, 411–418. [Google Scholar] [CrossRef]
- El Magri, A.; Vanaei, S.; Vaudreuil, S. An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Perform. Polym. 2021, 33, 862–880. [Google Scholar] [CrossRef]
- Salazar-Martin, A.G.; Garcia-Granada, A.A.; Reyes, G.; Gomez-Gras, G.; Puigoriol-Forcada, J.M. Time-Dependent Mechanical Properties in Polyetherimide 3D-Printed Parts Are Dictated by Isotropic Performance Being Accurately Predicted by the Generalized Time Hardening Model. Polymers 2020, 12, 678. [Google Scholar] [CrossRef]
- Ajinjeru, C.; Kishore, V.; Chen, X.; Hershey, C.; Lindahl, J.; Kunc, V.; Hassen, A.A.; Duty, C. Rheological survey of carbon fiber-reinforced high-temperature thermoplastics for big area additive manufacturing tooling applications. J. Thermoplast. Compos. Mater. 2021, 34, 1443–1461. [Google Scholar] [CrossRef]
- de Carvalho, W.S.; Marzemin, F.; Belei, C.; Petersmann, S.; Arbeiter, F.; Amancio-Filho, S.T. Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditions. Polym. Test. 2023, 128, 108207. [Google Scholar] [CrossRef]
- Purslow, D. Some fundamental aspects of composites fractography. Composites 1981, 12, 241–247. [Google Scholar] [CrossRef]
- Dhakal, N.; Wang, X.; Espejo, C.; Morina, A.; Emami, N. Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers. J. Mater. Res. Technol. 2023, 23, 1252–1272. [Google Scholar] [CrossRef]
Composite | Extrusion Temperature (°C) | Layer Height (mm) |
---|---|---|
PEI-CF | 430, 450 | 0.2, 0.3 |
PCTG Z | 290, 310 | 0.2, 0.3 |
HTN Z | 320, 340 | 0.2, 0.3 |
Q (mm3/s) | n | R2 | |
---|---|---|---|
PCTG Z | 7.2 | 0.813 | 0.987 |
HTN Z | 4.8 | 0.035 | 0.998 |
PEI-CF | 7.2 | 0.843 | 0.88 |
PCTG Z | HTN Z | PEI-CF | ||||
---|---|---|---|---|---|---|
Run Order | Extrusion Temperature (°C) | Layer Height (mm) | Extrusion Temperature (°C) | Layer Height (mm) | Extrusion Temperature (°C) | Layer Height (mm) |
1 | 290 | 0.2 | 340 | 0.2 | 430 | 0.2 |
2 | 310 | 0.2 | 320 | 0.2 | 450 | 0.3 |
3 | 290 | 0.3 | 320 | 0.3 | 430 | 0.3 |
4 | 310 | 0.3 | 340 | 0.3 | 450 | 0.2 |
Composite | |||
---|---|---|---|
Parameter | PEI-CF | PCTG Z | HTN Z |
Extrusion temperature (°C) | 450 | 290 | 340 |
Layer height (mm) | 0.3 | 0.3 | 0.2 |
Print speed (mm/s) | 40 | 40 | 40 |
Build plate temperature (°C) | 160 | 80 | 80 |
Chamber temperature (°C) | 90 | 50 | 80 |
Nozzle diameter (mm) | 0.6 | 0.6 | 0.6 |
Extrusion width (mm) | 0.6 | 0.6 | 0.6 |
Extrusion multiplier | 1 | 1 | 1 |
Retraction distance (mm) | 4.5 | 6 | 3 |
Extra restart distance (mm) | 0 | 0 | 0 |
Retraction vertical lift (mm) | 1 | 1 | 0.5 |
Retraction speed (mm/s) | 30 | 30 | 30 |
Top solid layers | 2 | 2 | 2 |
Bottom solid layers | 2 | 2 | 2 |
Outlines | 1 | 1 | 1 |
Infill angle | ±45 | ±45 | ±45 |
Outline overlap (%) | 40 | 40 | 40 |
Fan speed (%) | Not used | 25 | 25 |
Composite | ||
---|---|---|
Parameter | PCTG Z | HTN Z |
Retraction distance (mm) | 5 | 7 |
Extra restart distance (mm) | 0 | 0 |
Retraction vertical lift (mm) | 0.5 | 0.5 |
Retraction speed (mm/s) | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayaprolu, R.; Kadiyala, A.K.; Lawrence, J.G. Evaluation of Different ZX Tensile Coupon Designs in Additive Manufacturing of Amorphous and Semi-Crystalline Polymer Composites. J. Compos. Sci. 2024, 8, 379. https://doi.org/10.3390/jcs8090379
Rayaprolu R, Kadiyala AK, Lawrence JG. Evaluation of Different ZX Tensile Coupon Designs in Additive Manufacturing of Amorphous and Semi-Crystalline Polymer Composites. Journal of Composites Science. 2024; 8(9):379. https://doi.org/10.3390/jcs8090379
Chicago/Turabian StyleRayaprolu, Raviteja, Ajay Kumar Kadiyala, and Joseph G. Lawrence. 2024. "Evaluation of Different ZX Tensile Coupon Designs in Additive Manufacturing of Amorphous and Semi-Crystalline Polymer Composites" Journal of Composites Science 8, no. 9: 379. https://doi.org/10.3390/jcs8090379