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Abstract: In recent years, the use of recycled aggregate concrete (RAC) has become a major
concern when promoting sustainable development in construction. However, the design
of concrete mixes and the prediction of their compressive strength becomes difficult due
to the heterogeneity of recycled aggregates (RA). Artificial-intelligence (AI) approaches
for the prediction of RAC compressive strength ( f c) need a sizable database to have the
ability to generalize models. Additionally, not all AI methods may update input values
in the model to improve the performance of the algorithms or to identify some model
parameters. To overcome these challenges, this study proposes a new method based on
Bayesian Networks (BNs) to predict the fc of RAC, as well as to identify some parameters
of the RAC formulation to achieve a given fc target. The BN approach utilizes the available
data from three input variables: water-to-cement ratio, aggregate-to-cement ratio, and
RA replacement ratio to calculate the prior and posterior probability of fc. The outcomes
demonstrate how BNs may be used to forecast both forward and backward, related to the
fc of RAC, and the parameters of the concrete formulation.

Keywords: Bayesian networks; compressive strength; formulation; recycled aggregate
concrete; prediction

1. Introduction
Construction and demolition waste (CDW) is a significant part of solid waste, around

25% worldwide [1]. Concrete makes up most of CDW, accounting for around 70% of
the material [2]. Recycled aggregate (RA) comes from many resources for demolishing
traditional concrete for buildings and transportation facilities. Using RA is crucial as
a partial substitution in concrete production, as it helps conserve the environment by
decreasing the quantity of CDW that must be dumped in landfills for disposal [3].

The hardened performance of RAC is affected by different parameters, including
design variables and the properties of RA [4]. In detail, the adhered mortar of RA decreases
its quality by increasing its porosity and water absorption (WA), resulting in a decreased
hardened performance of recycled aggregate concrete (RAC) [5,6]. Furthermore, the in-
terfacial transition zones (ITZs) between RA and the mortar also affect the properties of
concrete [7]. Almost all studies reported that RAC’s compressive strength decreased along
with increased replacement level [8,9], but some studies have reported the opposite idea,
especially at a later age [10,11]. Such different conclusions are based on the remaining
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non-hydrated, adhered mortar stuck to the RCA surfaces, thus increasing the late com-
pressive strength. Therefore, determining the link between the proportions of the mix, the
properties of RA, and the compressive strength is a challenge.

Artificial-intelligence methods have been developed to predict RAC’s compressive
strength. Among these methods are: Artificial Neural Networks (ANNs), Radial Basis
Function, Neuro-Fuzzy Inference System, Genetic Programming, and Support Vector
Machine. Dantas et al. [12] utilized ANNs to predict the strength of RAC at various ages,
using 24 input variables. A study from Duan et al. [13] also used 14 input parameters
in ANNs to predict the hardened performance of RAC at 28 days. At the same time,
Deshpande et al. [14] used ANNs, Model Tree (MT), and Non-linear Regression (NLR)
with the same aim by considering the same 14 input parameters as Deshpande et al. [14].
Dabiri et al. [15] implemented NLR and the Random Forest algorithms to estimate RAC’s
compressive strength and compared them to ANNs and MT models. All of the above
studies gave good prediction results with coefficients of determination (R2) above 0.9 [16].
However, they required a significant amount of data.

Many real-world applications have adopted Bayesian networks because this method-
ology could be used to estimate specific variables, handle uncertainties, and integrate
observations (evidence) to facilitate decision analysis and provide prompt responses to end
users [17,18]. The probabilistic inference of BNs requires information about the prior proba-
bility distribution, the influence of variables, and the reasoning from cause to effect and
from effect to cause [19]. Once the BN is developed, it can be updated anytime, whenever
new data become available [20,21]. Furthermore, the BN method works with small datasets
and allows for backward prediction, which is useful for the formulation problem when
the target compressive strength ( fc) is known. As mentioned above, artificial-intelligence
approaches have been widely applied to predict the hardened properties of RAC. However,
the potential of BNs, especially Bayesian updating, has not been comprehensively exploited
to predict the hardened properties or the formulation of RAC.

The main objective of this paper is to propose a new BNs-based framework to predict
the fc and some formulation parameters of RAC. In Section 2, the architecture of the
BN is presented. The BN model is developed using a Python library. Data from many
published papers and experimental data are used to assess the conditional probability tables
(CPTs). Original experimental data are also used to assess the relative error between the
experimental results and the model predictions obtained after Bayesian updating (Section 3).
In Section 4, Bayesian inference is used to identify some parameters in the formulation of
RAC to reach target fc values.

2. Bayesian Networks
Bayesian networks were first developed in the late 1970s [22]. BNs are graph models

that show the cause–effect relationship between the input and output variables. BNs
are based on Bayesian theory, a branch of probability theory. BNs are a popular tool in
mathematics and engineering that combines graph and probability principles to effectively
address complex problems [23]. An illustration of a BN is a directed acyclic graph (DAG),
in which the nodes depict the relationship parameters and the links among them show
any causal or informative associations between the variables. Subjective probability in
a BN model captures the uncertainties. As depicted in Figure 1, a BN is composed of
(a) the variables and directed links, (b) the states for each variable, and (c) the conditional
probability for each variable.

In BNs, the relationships between the variables are described by nodes and links.
For example, a variable X is the parent of another variable Z (and vice versa) if a link
exists between them. These dependencies are quantified using conditional probability
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tables (Figure 1). Based on BNs, the Bayes theorem provides a convincing approach
to managing uncertainty by openly displaying the conditional probability connections
between parameters [24]. In the BNs approach, for n number of parameters Ai with
i = 1, 2, . . . , n, and a given observation B, the probability P

(
Aj

∣∣B) is calculated as follows:

P(Aj|B) =
P
(

B
∣∣Aj

)
× P

(
Aj

)
∑n

i=1 P(B|Ai)× P(Ai)
(1)

where P
(

Aj
∣∣B) represents the posterior probability of Aj given the condition that B occurs,

P
(

Aj
)
, P(Ai) denote the prior probability of Aj, Ai, and P

(
B
∣∣Aj

)
, P(B|Ai) refer to the

conditional probabilities of B given that Aj or Ai occur [25].
The ability of BNs to record both upward inferences, observing the input nodes and

deducing potential impacts and backward inferences, observing the influence of child
nodes, and deducing potential parent causes, makes them an effective tool for assessing
some parameters [17]. Marginalizing the joint probability, it is possible to determine a
given parameter probability distribution [19]. Fundamentally, the probability distributions
of the nodes composing the BN are updated when evidence is introduced. The conditional
probability tables are computed from Equation (1) using information available in the
literature [26], derived from data [27], and/or using physics-based models [28].
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Figure 1. A schematic BN.

3. Developed Bayesian Network
The proposed BN framework was developed following these stages:

1. Data collection and filtering: Experimental studies on RAC are the basis for building
the BN. Since testing is costly and requires long analyses and processing times, it
is necessary to collect data from previous studies on compressive strength ( fc) of
RAC. It is widely known that there are many factors affecting the strength of RAC
(e.g., cement content, mineral additives, water-to-cement ratio (w/c), aggregate-to-
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cement ratio (a/c), RA replacement ratios (R), etc.). The information on these factors
varies for each study in the literature [29–32]. In addition, there are many studies
on high-performance concrete with RA where the RAC formulation is quite specific.
Considering the availability of data in the studies, we have selected three input
parameters that influence fc: w/c, a/c, and R. The w/c, R are the parameters which
have been full investigated in the literature [33,34]. Furthermore, we included a new
parameter a/c, which accounts for the skeleton structure which is a key parameter for
low strength RAC [35]. In this study, we focused on RAC with an average strength of
20–35 MPa.

2. Model development: This stage requires a deep understanding of the data as well as
the relationships between the variables. This stage has the following steps:

• The architecture of the BN is defined considering causal relationships between
the selected parameters and the objective of the model. In this case, the objectives
are to estimate fc (output) as a function of three input parameters: w/c, a/c, and
R or to identify the input parameters to achieve a target fc.

• The data collected in the first stage was attributed to the input and output
nodes in the model. After, the discretization of each node can be determined
by considering the data availability and using similar research cases or expert
knowledge.

• By figuring out how frequently the value of the parent node appears when the
value of the child node does, we estimated the conditional probability tables of
the BN.

3. Updating: Once the architecture of the BN and the CPTs were defined in the BN, prior
distributions and evidence could be introduced in the BN for prediction purposes.
Two case studies with specific objectives were defined. Figure 2 depicts the considered
case studies. The first objective is to predict fc by updating the parent nodes with
the characteristics of a given formulation. The second objective is to determine some
parameters of the RAC formulation by updating a target compressive strength.
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3.1. BN Architecture and Database Description

The BN architecture proposed in this study is shown in Figure 3. The BN model is
developed in Python. The BN has three variables as inputs (w/c, a/c, and R) and fc as
output. This configuration allows estimating the compressive strength as a function of the
three parent nodes or determining the parent node values when aiming to reach a given fc

after updating.
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The fc of RAC depends on formulation variables such as w/c, RA replacement ratio
(R), physical characteristics of RA, etc. [36–39] In this study, the BN considers a database
with 81 datasets obtained from various sources in the literature (63 datasets) [29–32], and
own experiments (18 datasets). Inconsistent or low-quality data points obtained from other
studies may behave as outliers, which could skew the network’s learned dependencies and
produce inaccurate predictions. To reduce the impact of data quality, we carefully examined
and excluded outliers during the setup of the database. However, data quality remains a
challenge when using data from different sources for prediction purposes. Appendix A
provides a table with the datasets obtained from the literature that were used in this work.
For the experiments, fc was determined for six formulations with w/c = 0.65 to 0.7, a/c = 3.3
to 2.9, and various R values (R = 0%, 20%, 40%, 60%, 80%, 100%). Appendix B summarizes
the material and methods of the experiments as well as details the dataset.

Figure 4 displays the scatterplot of the database. About 24% of w/c values are pri-
marily concentrated in the range of 0.6 to 0.65. For the aggregate-to-cement ratio ( a/c),
64% of values are concentrated in the range 3 to 3.5. For fc, 53% of values are found in
the range of 25–30 MPa. For R, 33% and 30% of values are far away from the mean and
concentrated in the ranges 0–25 and 75–100, respectively. This is mainly due to the fact that
in the literature, many studies take as a reference concrete without CRA (R = 0%) or with a
complete replacement ratio (R = 100%).

Determining whether a relationship exists among the variables being studied is crucial.
Therefore, Figure 5 provides the Pearson correlation coefficients, which quantify these
links by determining the correlation between variables. For the parent nodes, as the values
range from −0.4 to 0.29, as depicted in Figure 5, it is possible to assume that there are no
linear correlations between w/c, a/c, and R. Consequently, we assume that these three
parameters are independent. fc has moderate to fairly strong correlations with the parent
nodes, confirming causal relationships between the child and the parent nodes.

3.2. BN Discretization and Prior Probabilities

All nodes are defined on a given domain and partitioned into various states in this
stage. The intervals of variables should include the variables’ theoretical/physical values
and correspond to the values available in the database. These ranges were determined
considering the information available in the database and the literature. The information
on nodes is depicted in Table 1. In this study, as there is a large variability of values for the
nodes w/c, a/c, and fc, we considered a confidence interval of 95% from the database to
define the boundaries of the BN.



J. Compos. Sci. 2025, 9, 72 6 of 20
J. Compos. Sci. 2025, 9, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 4. Scatterplot for the database. 

Table 1. The information of nodes in the BNs model. 

Nodes Number of States Boundaries of the BN Range of States 𝑤/𝑐 4 [0.5, 0.7] 0.5–0.55, 0.55–0.6, 0.6–0.65, 0.65–0.7 𝑎/𝑐 3 [2, 3.5] 2–2.5, 2.5–3, 3–3.5 𝑅 (%) 6 [0, 100] 0–10, 10–30, 30–50, 50–70, 70–90, 90–100 𝑓𝑐 (MPa) 5 [20, 35] 20–23, 23–26, 26–29, 29–32, 32–35 

Figure 4. Scatterplot for the database.

Table 1. The information of nodes in the BNs model.

Nodes Number of States Boundaries of the BN Range of States

w/c 4 [0.5, 0.7] 0.5–0.55, 0.55–0.6, 0.6–0.65, 0.65–0.7

a/c 3 [2, 3.5] 2–2.5, 2.5–3, 3–3.5

R (%) 6 [0, 100] 0–10, 10–30, 30–50, 50–70, 70–90, 90–100

fc (MPa) 5 [20, 35] 20–23, 23–26, 26–29, 29–32, 32–35
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The prior probabilities were calculated from the frequencies of the database. The prior
distributions for the parent and the child nodes are depicted in Figure 6. In Figure 6, the
w/c prior values are focused on the states 0.5–0.55 and 0.65–0.7; these are 22.2% and 59.3%,
respectively. Regarding a/c, the values in the prior probability focus on 64.2% at state 3–3.5.
The R values in the distribution emphasize the same probability of 22.2% at states 50–70
and 90–100, respectively. The values of fc concentrate on states 20–23 MPa, 23–26 MPa, and
26–29 MPa, with prior probabilities of 20.9%, 33.3%, and 34.5%, respectively. However,
the distribution of R is uniform, indicating that the discretization of the database has
approximatively a uniform representation of this parameter that is quite important when
we try to predict the performance of RAC. The concentration of data in the first three states
for fc could result in more accurate predictions when targeting a fc between 20 and 29 MPa.
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The relationships in a BN are modeled by a set of CPTs. The CPT sizes would be
(4 × 3 × 6) rows and 5 columns (see an extraction in Table 2). These CPTs have been
applied for BNs. For example, in Table 2, the CPT values of fc focus on the state 26–29
when w/c in the state 0.65–0.7, a/c in the state 2–2.5, and R in the state 0–10 (row 67). When
increasing R, and keeping the same states for w/c, a/c, the conditional probability values
of fc concentrate in the lower states of compressive strength (rows 68–72). This means that
for fixed values of w/c and a/c, the probability of obtaining low compressive strength
decreases when the replacement ratio increases.

Table 2. Extract of the CPTs of the BNs model.

No. of Row
Node and States States of Node fc and Conditional Probability

w/c a/c R 20–23 23–26 26–29 29–32 32–35

1 0.5–0.55 2–2.5 0–10 0 0 0 1 0

...
...

...
...

...
...

...
...

67 0.65–0.7 3–3.5 0–10 0 0 1 0 0

68 0.65–0.7 3–3.5 10–30 0 0.33 0.67 0 0

69 0.65–0.7 3–3.5 30–50 0 1 0 0 0

70 0.65–0.7 3–3.5 50–70 0.6 0.2 0.2 0 0

71 0.65–0.7 3–3.5 70–90 0.6 0.4 0 0 0

72 0.65–0.7 3–3.5 90–100 0.5 0.5 0 0 0

3.3. Assessment of Posterior Probabilities

The marginal probability distribution of the output node can be determined by the
following equation:

P( fc) = ∑
w/c,a/c,R

P( fc|w/c, a/c, R)P(w/c, a/c, R) (2)

where P(w/c, a/c, R) = P(w/c)P(a/c)P(R). A Python library was used to implement
this BN architecture and determine the posterior probability of fc by Bayesian inference.
Considering the prior probabilities presented in the previous section, the probabilities of
the child node are depicted in Figure 7. The results show that in the state 23–26 MPa is the
highest probability of fc, which is equal to 75.1%. The probabilities rise compared to prior
values for states 23–26 by 41.8%, whereas the posterior probability of states 20–23 MPa
and 26–29 MPa decrease by 12.75% and 24.6%, respectively. For the state 29–32 MPa, the
posterior probability is 2.71%, which is low compared to the prior probability of 4.9%. In
summary, these results illustrate how the prior information could be used to estimate the
distribution of a variable of interest, which is, in this case, fc. Further applications of the
proposed BN framework are provided and discussed in the next section.
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4. Applications
4.1. Prediction of Compressive Strength by Bayesian Updating

Among the benefits of the BN-based approach is the ability to update CPTs and node
evidence when dealing with new information or data [40,41]. It is then possible to design a
model utilizing the best data and information available and incorporate evidence later on
by adapting the BN model’s performance to new information or data [42,43]. The findings
enable the use of already available data as proof of variable correlations or observational
data for distribution updates.

In this section, we used our experimental results (Appendix B) to analyze the im-
pact of introducing new knowledge or evidence when reevaluating beliefs or updating
probabilities. In the approach, evidence was introduced in the parent nodes to update
the model output. Observational data were used to update the output node’s posterior
probability because it was related to every input node. Experimental data were used to
define the prior information of the BN and the evidence of the parent nodes (w/c, a/c and
R). Experimental results for fc were compared with BN predictions to test the accuracy
of the BN. The evidence used for the parent nodes is presented in Table 3. This evidence
allows the testing of the ability of the BN to predict fc when changing the replacement ratio.

Table 3. Evidence in BNs updating of the parent nodes (all the evidence is concentrated in one
target stage).

Case w/c a/c R

1 [0.65–0.7] = 100% [3–3.5] = 100% [0–10] = 100%

2 [0.65–0.7] = 100% [3–3.5] = 100% [10–30] = 100%

3 [0.65–0.7] = 100% [3–3.5] = 100% [30–50] = 100%

4 [0.65–0.7] = 100% [3–3.5] = 100% [50–70] = 100%

5 [0.65–0.7] = 100% [3–3.5] = 100% [70–90] = 100%

6 [0.65–0.7] = 100% [2.5–3] = 100% [90–100] = 100%

Figure 8 shows the posterior probabilities of the studied cases. With small replacement
ratios (R = [0–10%], reference case), the posterior probability values of fc are 58.5% and
18.2% for the states [26–29 MPa] and [29–32 MPa], respectively. The larger probability for
these states indicates that value fc for this reference concrete is reasonable in comparison
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with the results for the other cases because the reference concrete always has the highest
strength compared to RAC with the same/close w/c. Furthermore, the reference concrete
has no recycled aggregate, which is the main reason for the reduction of fc because of
the large water absorption of CRA, which increases the total water quantity and reduces
the compressive strength [44]. When R increases, there is a reduction in the compressive
strength, which is consistent with the literature [45] and our experimental observations
(Appendix B). When R = 100%, larger probabilities are observed at the states [20–23 MPa]
and [23–26 MPa], which correspond to the lower values of fc. The compressive strength
decreases for large R values by two reasons: (i) using large amounts of CRA with high
absorption will lead to weak the bond between the RA and the cement matrix, reducing
the concrete strength; and (ii) using large amounts of CRA decreases the shear strength
of the aggregate matrix because the CRA has a smaller crushing value than the natural
aggregate [46].
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To evaluate the efficiency of the proposed BN configuration, the relative error (EM)
between the mean of fc obtained using BNs (MBNs) and the mean computed from experi-
mental values (ME) was used in this study [47]:

EM =
|ME − MBNs|

MBNs
× 100% (3)

The means for fc estimated from Bayesian inference and experimental data are de-
picted in Figure 9. MBNs with R = 0% is 29.6 MPa, and the corresponding relative error is
3%. With R = 20%, the value of MBNs decreases to 25.2 MPa, and the relative is 2.7%. These
EM are small, indicating that, for these replacement rates, the predictions have a very good
agreement with the experimental data. EM increases by 3.1%, 8.1%, 8.9% and 10.5% for
R = 40%, 60%, 80% and 100%, respectively. The relative errors of values predicted with BNs
are low when R ≤ 20% and around 10% for high replacement ratios. These small errors
demonstrate that the BNs approach outperforms other models, like bagging regressor,
decision tree, and gradient boosting, that are employed in the literature with the same
dataset [29]. When R =10–30%, the fc value of the BNs is smaller than the experimental
value, which is different from the trend of the previous cases. The reason here may be the
lack of data in this case. Furthermore, the error of the BNs increases significantly when
considering large replacement ratios. This can be explained by the lack of experimental
data or may be due to the nature of the CRA used in our experiments (included recycled
concrete, recycled brick, etc.) being different from the CRA used in the studies from the
literature (only recycle concrete). These results could be enhanced by filtering the informa-
tion used to create the BN configuration and optimizing the discretization of the nodes in
the BN [48]. Furthermore, the model can include other parent nodes, such as the cement
content, the composition of CRA, etc., to reduce the relative errors. This requires more
complete datasets.
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4.2. Posterior Probabilities of Parent Nodes for a Target Compressive Strength

In this section, we will fix a target fc and use the distribution of this target to estimate,
by Bayesian updating, the required distributions of the parent nodes. More specifically,
the new information will update the BN with a histogram where the target is to obtain a
given resistance. Figure 10 shows the configuration of the BN, the prior distributions of the
parent nodes, and the evidence of the child node. In this case, we assume that the prior
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probabilities of parent nodes are: w/c: 80% for [0.5–0.55] and 20% for [0.55–0.6]; and for
a/c and R the prior probabilities have the same values for all the states. This means that
we are looking for a formulation with low w/c and we do not make any assumption about
the values for a/c and R. We suppose that after that, the target probability value (evidence)
for the compressive strength has a probability of 100% belonging to the state [23–26 MPa].
This corresponds to a mean fc value of 21.5 MPa.
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Figure 11 presents the posterior probabilities of w/c, a/c , and R after updating the fc

node. In comparison with Figure 10, the posterior probabilities of w/c, a/c, and R changed
with the evidence. The probability values of w/c have a maximum value of 68.7% for states
[0.5–0.55], which is low compared to the prior probability of 80%. The values of the node
a/c changed to a maximum value of 66.4% at state [2–2.5], which is a high value compared
to the prior value of 33.3%. The posterior probabilities of R are large for the states [70–90%]
and [90–100%]; these results are 30.53% and 47.51%, which are high compared to 16.7%
and 16.7% of prior values, respectively. These values could provide some insights into the
concrete formulation (w/c, a/c, and R) required to obtain a target compressive strength.
For example, the mean values of parent nodes in this example are 0.54, 2.54, and 80.7% for
w/c, a/c and R, respectively. Furthermore, the results could be improved by filtering the
data used to build the CPT as well as optimizing the discretization of the nodes in the BNs,
as mentioned previously. Further work should be addressed in both areas.
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Table 4 summarizes the mean values of all parent nodes with various cases of fc

evidence. The following targets (evidence) for fc were considered: [20–23 MPa]: 100%;
[23–26 MPa]: 100%; [26–29 MPa]: 100%; [29–32 MPa]: 100%; [32–35 MPa]: 100%. It can be
observed in Table 4 that when increasing fc, the mean values of w/c decrease slightly: 1.7%
in comparison to the larger value obtained for the target fc of [20–23 MPa]. This agrees with
the fact that when the w/c ratio is reduced, the strength of the cement paste will increase,
leading to an increase of fc. For a/c there is a clear trend: when rising the a/c, the fc also
increases. This is explained by the positive correlation between a/c and fc estimated for
the data in Figure 5. Furthermore, when the a/c ratio has low values as 2–3.5 in the model,
the aggregate matrix strength depends on the low strength of the RAC [35]. Mean values
of R also decrease from 80.7% to 10.8% which is consistent with the trend in experiment
data. Furthermore, R also has a great influence on fc, since CRA has high water absorption
and lower crushing value compared with natural aggregates. The influence of w/c is much
smaller than that of R, a/c after updating, because R, a/c has a larger relationship with fc

as observed in in Figure 5 [16]. These results illustrate a practical use of the BN for optimal
mix design. Further studies could also include durability indicators and other properties
targets of RAC.

Table 4. Mean values of parent nodes with various fc targets.

Target fc (MPa)
Mean Values

w/c a/c R (%)

20–23 0.540 2.54 80.7

23–26 0.539 2.79 68.3

26–29 0.535 2.86 46.4

29–32 0.534 2.92 14.6

32–35 0.528 3.25 10.8
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5. Sensitivity Analysis
A sensitivity analysis was carried out to investigate further the main factors that affect

the prediction of compressive strength. Entropy reduction or mutual information is used in
this sensitivity analysis:

I(X; fc) = H( fc)− H( fc|X) (4)

where X can be any input (w/c, a/c or R), I(X; fc) is the mutual information between
the input X and the output fc, H( fc) is the entropy of the output variable, and H( fc|X) is
the conditional entropy of fc given the input X. The results for this BN are presented in
Table 5. Entropy reduction measures the amount of information gained about the output
by observing a particular input parameter. This metric captures the degree of dependence
between the input parameter (i.e., w/c, a/c or R) and the output ( fc). In Table 5, w/c has
the larger mutual information, followed by a/c and R. Higher entropy reduction values
indicate that w/c is the more informative parameter for predicting the output. However, the
small differences found for a/c and R indicate that these variables also have a meaningful
impact on the determination of fc.

Table 5. Results of the sensitivity analysis.

X I(X;fc)

w/c 0.15

a/c 0.13

R 0.11

6. Conclusions
This study proposed a BN model based on the literature and own experimental data

to predict the compressive strength when w/c, a/c, and R are defined. The BN also served
to find combinations of w/c, a/c, and R to reach a given compressive strength target. The
main conclusions of the study are summarized as follows:

• The relative error between the mean values obtained by BN updating and the experi-
ments is around 10%. The relative error gradually increases with replacement ratios,
demonstrating the sensitivity of the model to variations in CRA composition. These
findings proved the ability and efficiency of the proposed BN to predict compressive
strength values by Bayesian updating.

• The ability to update data at both parent and child nodes and propagate evidence
for the remaining nodes is very helpful in providing insights about a concrete mix
proportion with a target compressive strength. The results show that mean values of
w/c, R decrease from 0.54 to 0.528 and from 80.7% to 10.8%, respectively, when we
target a compressive strength between the mean values of 21.5 MPa and 33.5 MPa. For
these values, the mean of a/c increases from 2.54 to 3.25. Although the model predicted
that great replacement ratios result in low compressive strengths, the application of
Bayesian updating allows the identification of combinations of aggregate-to-cement
and water-to-cement ratios that could lessen these impacts. The BN’s capacity to
account for specific constraints for the RAC formulations emphasizes its potential to
reduce the environmental footprint of concrete construction by facilitating the effective
utilization of recycled aggregates while attaining the intended mechanical qualities.

• The performance of the proposed BN can be improved by including other parent
nodes, such as the quality of the original concrete, the cement content, the admixture
kinds, or the curing conditions, which were not considered in this study. Further-
more, an optimal discretization of the considered random variables in the BN would
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improve the accuracy of the predictions. Both improvements require a more compre-
hensive database.

• Most of the RAC in the dataset used to build the model have compressive strengths
between 20 and 35 MPa. The framework application might be expanded to include
high-performance RAC or different strength ranges. The model performance could
be improved by adding more extensive datasets and utilizing sophisticated data
categorization methods like K-means clustering, especially for larger replacement
ratios when compressive strength variability is more noticeable.

Bayesian networks are effective tools for reasoning and modeling in the face of un-
certainty. They depict variable dependencies using probabilistic relationships, enabling
advanced inference and clear representation. Through the integration of data and expert
knowledge, BNs enable the application of sparse data and effectively handle missing data
through marginalization. However, BNs have some drawbacks. They can be computation-
ally costly, particularly for large networks where the conditional probability table grows too
big and accurate inference becomes challenging as the number of nodes and states for each
node increase. Relying on expert input might result in bias, and BNs require accurate data
and probability distributions to estimate parameters appropriately by Bayesian updating.
Significant expertise and effort are required to build and validate network architectures,
particularly when the number of nodes is very large. Furthermore, the assumptions about
conditional independence and a predetermined structure do not necessarily align with
practical situations. These difficulties show how important it is to thoroughly plan and
implement BNs.
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Appendix A

Table A1. Dataset for the BN analysis.

w/c a/c R fc Ref.

0.5 2.8 20 30.2

[31]

0.7 3.3 50 27.7

0.7 2.2 100 20.4

0.65 2.3 100 22.1

0.5 3.2 0 32.7

0.5 2.6 100 25.1

0.54 3.4 0 32.8

0.5 2.8 30 32.6
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Table A1. Cont.

w/c a/c R fc Ref.

0.5 2.8 50 30.4

[30]
0.54 3.2 0 23.5

0.66 3 100 25.7

0.66 3.2 80 28

0.66 3 100 25.1

0.66 3.1 85 27.5

[32]

0.66 2.9 90 26.1

0.66 2.9 70 27.4

0.66 2.9 70 27.7

0.66 2.8 50 25

0.54 3.1 0 30.8

0.55 3.2 50 27.5

0.6 3.3 50 26.6

0.6 3.3 50 25.7

[29]

0.5 3.5 0 28.3

0.5 3.5 20 27.2

0.5 3.5 40 26.5

0.5 3.5 60 25.4

0.5 3.2 20 26.4

0.5 3.1 40 25.9

0.65 3.3 0 28.2

0.65 3.4 0 28.9

0.66 3.3 20 28.7

0.68 3.1 50 24.4

0.68 2.8 100 23.1

0.65 3.4 0 27.9

0.65 3.3 20 26.7

0.65 3.1 50 26.4

0.65 2.8 100 22.1

0.55 2.9 100 22.3

0.65 3.3 100 24.8

0.6 3.1 0 30

0.6 3 25 26.7

0.6 2.5 50 21.5

0.6 2.5 75 21.4

0.6 2.4 100 20

0.66 2.9 0 27

0.66 2.8 30 24

0.55 2.8 0 26

0.55 2.7 30 25

0.51 2.6 50 24
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Table A1. Cont.

w/c a/c R fc Ref.

0.5 2.7 0 31

0.5 2.6 30 25

0.58 3.1 0 32.8

0.67 2.8 0 23.6

0.68 3 20 26.5

0.67 3 50 21

0.7 2.3 100 20

0.58 2.8 80 23.5

0.51 2.3 20 31.4

0.61 2.3 60 26

0.62 2.3 50 25.5

0.5 2.3 10 31.4

0.56 2.3 20 28.2

0.52 2.2 0 29.9

0.5 3.5 20 33

0.5 3.2 50 29.1

0.68 3.2 100 23.5

0.68 3.4 100 24.2

0.68 3.4 100 24.7

0.5 3 30 27.6

Appendix B
Materials and Methods

We used a cement CEM II/A-LL 42.5 R with a specific density of 3150 kg/m3 and
5/20 mm CRA provided by a recycling platform in La Rochelle, France. Table A2 provides
the physical properties of the aggregate used in the study. Natural sand, which has a
density of 2670 kg/m3, was used in the experiment, while CRA and CNA have densities of
2870 kg/m3 and 2354 kg/m3, respectively. CRA has a water porosity of 7.95% while that of
CNA is 0.5%.

We considered a cement content of 290 kg/m3, and mixes maintained a 19 ± 1 mm
slump range after an hour using a superplasticizer to regulate the mix proportion slump.
All concretes were tested at the age of 28 days in terms of compressive strength. In total, we
cast 18 concrete specimens (11 cm diameter and 22 cm height), including three samples for
every test of mix proportion. Table A3 presents the data collected from our experiments.

Table A2. Physical properties of the aggregates used.

Physical Tests Natural Sand Coarse Natural Aggregate Coarse Recycled
Aggregate

Oven-dry particle density (kg/m3) 2670 2870 2354

Water absorption (%) 1.2 0.5 7.95
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Table A3. Dataset collected from authors’ experiment.

w/c a/c R fc (MPa)

0.7 3.3 0 28.7

0.7 3.3 0 28

0.7 3.3 0 27.3

0.7 3.2 20 26.4

0.7 3.2 20 25.9

0.7 3.2 20 25.67

0.7 3.1 40 24.3

0.7 3.1 40 25

0.7 3.1 40 23.9

0.7 3 60 23

0.7 3 60 22.2

0.7 3 60 21.6

0.7 3 80 21.3

0.7 3 80 21.6

0.7 3 80 21.1

0.7 2.9 100 20

0.7 2.9 100 20.07

0.7 2.9 100 20.02
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