The Relationship Between Burning Factors and Mediterranean Climatic Conditions in the Croatian Coastal Part
Abstract
:1. Introduction
2. Materials and Methods
- LFMC—leaf fuel moisture content;
- FW—fresh mass;
- DW—dry mass.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.L.; Xanthopoulos, G.; Mercedes, G.; Madrigal, J.; Hernando, C.; Corona, P. Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann. For. Sci. 2017, 74, 1. [Google Scholar] [CrossRef]
- Bonora, L.; Checcacci, E.; Romani, M.; Tesi, E.; Conese, C. Correlation between meteorological data and fire occurrence in a Mediterranean area (Tuscany Region). For. Ecol. Manag. 2006, 234, S63. [Google Scholar] [CrossRef]
- Sabate, S.; Gracia, C.A.; Sanchez, A. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For. Ecol. Manag. 2002, 162, 23–37. [Google Scholar] [CrossRef]
- Clarke, P.J.; Lawes, M.J.; Midgley, J.J.; Lamont, B.B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Rosa Canovas, J.J.; Bedia, J.; Jerez, S.; Montavez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Lampin-Maillet, C. Caracterisation de la Relation Entre Organisation Spatiale d’un Territoire et Risque d’incendie: Le cas des Interface Habitat-Foret du sud de la France. Ph.D. Thesis, Universite de Provence, Marseille, France, 2009. [Google Scholar]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Malcolm Gill, A.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Ferran, A.; Serrasolsas, I.; Vallejo, V.R. Soil evolution after fire in Quercus ilex and Pinus pinaster forests. In Responses of Forest Ecosystems to Environmental Changes; Teller, A., Mathy, P., Jeffers, J.N.R., Eds.; Elsevier: London, UK, 1992; pp. 397–404. [Google Scholar]
- Naveh, Z. The role of fire as an evolutionary and ecological factor on the landscapes and vegetation of Mt. Carmel. J. Mediterr. Ecol. 1999, 1, 11–25. [Google Scholar]
- Barčić, D. Odnosi Stanišnih Čimbenika u Sastojinama Crnoga Bora (Pinus nigra J.F. Arnold) u Hrvatskom Primorju i u Istri. Ph.D. Thesis, Šumarski Fakultet Sveučilišta u Zagrebu, Zagreb, Croatia, 2007; 114p. [Google Scholar]
- Bond, W.J.; Scott, A.C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 2010, 188, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Jactel, H.; Nicoll, B.C.; Branco, M.; Gonzalez-Olabarria, J.R.; Grodzki, W.; Langstrom, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D.; et al. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009, 66, 701. [Google Scholar] [CrossRef]
- Wagner, S.; Nocentini, S.; Huth, F.; Hoogstra, M.A. Forest management approaches for coping with the uncertainty of climate change: Trade-offs in service provisioning and adaptability. Ecol. Soc. 2014, 19, 32. [Google Scholar] [CrossRef]
- Knoke, T.; Ammer, C.; Stimm, B.; Mosandl, R. Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. Eur. J. For. Res. 2008, 127, 89–101. [Google Scholar] [CrossRef]
- Pereira, M.G.; Aranha, J.; Amraoui, M. Land cover fire proneness in Europe. For. Syst. 2014, 23, 598–610. [Google Scholar] [CrossRef]
- Van Altena, C.; van Logtestijn, R.; Cornwell, W.; Cornelissen, H. Species composition and fire: Non-additive mixture effects on ground fuel flammability. Front. Plant Sci. 2012, 3, 63. [Google Scholar]
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Fire in Forestry; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 1983; p. 450. [Google Scholar]
- Bilandžija, J. Prirodno opterećenje sastojina alepskog, primorskog i crnog bora šumskim gorivima. Radovi 1992, 27, 105–113. [Google Scholar]
- Bilandžija, J. Struktura goriva, vjerojatnost pojave i razvoj požara u sastojinama primorskog i crnog bora na Biokovu. Prirodosl. Istraživanja Biokov. Područja Ekološke Monogr. 1995, 4, 293–297. [Google Scholar]
- Varner, M.J.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Viegas, D.X.; Reis, R.M.; Cruz, M.G.; Viegas, M.T. Calibracao do Sistema Canadiano de Perigo de Incendio para Aplicacao em Portugal (Canadian Fire Weather Risk System Calibration for aplication in Portugal). Silva Lusit. 2004, 12, 77–93. [Google Scholar]
- Pereira, M.G.; Trigo, R.M.; Da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.; Aptroot, A.; Cornelissen, J.H. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Zylstra, P.; Bradstock, R.A.; Bedward, M.; Penman, T.D.; Doherty, M.D.; Weber, R.O.; Gill, A.M.; Cary, G.J. Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: Species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS ONE 2016, 11, e0160715. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2016, 180, 103–110. [Google Scholar] [CrossRef]
- Dehane, B.; Hernando, C.; Guijarro, M.; Madrigal, J. Flammability of some companion species in cork oak (Quercus suber L.) forests. Ann. For. Sci. 2017, 74, 60. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Dimitrakopoulos, A.P. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Can. J. For. Res. 2004, 34, 2284–2293. [Google Scholar] [CrossRef]
- Lukić, T.; Marić, P.; Hrnjak, I.; Gavrilov, M.B.; Mladjan, D.; Zorn, M.; Komac, B.; Milošević, Z.; Marković, S.B.; Sakulski, D.; et al. Forest fire analysis and classification based on Serbian case study. Acta Geogr. Slov. 2017, 57, 51–63. [Google Scholar] [CrossRef]
- Massari, G.; Leopaldi, A. Leaf flammability in Mediterranean species. Plant Biosyst. 1998, 132, 29–38. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Papaioannou, K.K. Flammability Assessment of Mediterranean Forest Fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest fuel ignitability. Fire Tehnol. 1970, 6, 312–319. [Google Scholar]
- Drysdale, D. An Introduction to Fire Dynamics; John Wiley & Sons: Chichester, UK, 1994; p. 576. [Google Scholar]
- De Magalhaes, R.M.Q.; Schwilk, D.W. Dimensions of plant flammability. New Phytol. 2015, 206, 486–488. [Google Scholar]
- Vazquez de la Cueva, A.; Climent, J.M.; Casais, L.; Quintana, J.R. Current and future estimates for the fire frequency and the fire rotation period in the main woodland types of peninsular Spain: A case-study approach. For. Syst. 2015, 24, 31. [Google Scholar]
- Pezzatti, G.B.; Bajocco, S.; Torriani, D.; Conedera, M. Selective burning of forest vegetation in Canton Ticino (southern Switzerland). Plant Biosyst. 2009, 143, 609–620. [Google Scholar] [CrossRef]
- Bajocco, S.; Pezzatti, G.B.; De Angelis, A.; Conedera, M.; Ricotta, C. Bootstrapping wildfire selectivity for the forest types of Canton Ticino (Switzerland). Earth Interact. 2011, 15, 1–10. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Matesanz, S.; Valladares, F. Ecological and evolutionary responses of Mediterranean plants to global change. Environ. Exp. Bot. 2014, 103, 53–67. [Google Scholar] [CrossRef]
- Fukarek, P. Širokolisna zelenika (Phillyrea latifolia L.). In Šumarska Enciklopedija III; JLZ: Zagreb, Croatia, 1987; p. 637. [Google Scholar]
- Franjić, J. 2016: Popularizacija hrvatske flore. Šum. List. 2016, 7–8, 384–387. [Google Scholar]
- Franjić, J.; Škvorc, Ž. Šumsko Drveće i Grmlje Hrvatske (Novo Izdanje); Sveučilište u Zagrebu-Šumarski Fakultet: Zagreb, Croatia, 2020; p. 516. [Google Scholar]
- Valette, J.C. Inflammabilite des especes forestieres mediterraneennes. Consequences sur la combustibilite des formations forestieres. Rev. For. Fr. 1990, 42, 76–92. [Google Scholar] [CrossRef]
- Dimitrov, T. Biološki parametri prikladni za poboljšanje indeksa opasnosti od šumskih požara. Šum. List. 1994, 118, 105–113. [Google Scholar]
- Alessio, G.A.; Penuelas, J.; De Lillis, M.; Llusia, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis plant. Ecology 2008, 10, 123–128. [Google Scholar]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Scarff, F.R.; Westoby, M. Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 2006, 20, 745–752. [Google Scholar] [CrossRef]
- Troumbis, A.Y.; Trabaud, L. Some questions about flammability in fire ecology. Acta Oecol. Oecol. Plant 1989, 10, 167–175. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; French, B.J.; Prior, L.D. Have plants evolved to self-immolate? Front. Plant Sci. 2014, 5, 590. [Google Scholar] [CrossRef]
- Madrigal, J.; Hernando, C.; Guijarro, M.; Diez, C.; Marino, E.; De Castro, A.J. Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device. J. Fire Sci. 2009, 27, 323–342. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Vlahou, M.; Anagnostopoulou, C.; Mitsopoulos, I.D. Impact of drought on wildland fires in Greece: Implications of climatic change? Clim. Change 2011, 109, 331–347. [Google Scholar] [CrossRef]
- Bianchi, L.O.; Oddi, F.J.; Munoz, M.; Defosse, G.E. Comparison of leaf moisture content and ignition characteristics among native species and exotic conifers in Northwestern Patagonia, Argentina. For. Sci. 2019, 65, 375–386. [Google Scholar] [CrossRef]
- Popović, Z.; Bojović, S.; Marković, M.; Cerda, A. Tree species flammability based on plant traits: A synthesis. Sci. Total Environ. 2021, 800, 149625. [Google Scholar] [CrossRef]
- Babrauskas, V. Effective heat of combustion for flaming combustion of conifers. Can. J. For. Res. 2006, 36, 659–663. [Google Scholar] [CrossRef]
- Rosavec, R.; Barčić, D.; Španjol, Ž.; Oršanić, M.; Dubravac, T.; Antonović, A. Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests 2022, 13, 1266. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA, Forest Service, Research: Madison, WI, USA, 1972; p. 115. [Google Scholar]
- Viegas, D.X.; Pinol, J.; Viegas, M.T.; Ogaya, R. Estimating live fine fuels moisture content using meteorologically-based indices. Int. J. Wildland Fire 2001, 10, 223–240. [Google Scholar] [CrossRef]
- Madrigal, J.; Hernando, C.; Guijarro, M. A new bench-scale methodology for evaluating flammability of live forest fuels. J. Fire Sci. 2013, 31, 131–142. [Google Scholar] [CrossRef]
- Viegas, D.X. Fuel mositure evaluation for fire behaviour assessment. In Advanced Study Course on Wildfire Management; Eftichidis, G., Balabanis, P., Ghazi, A., Eds.; Final Report; CSIRO Publishing: Victoria, Australia, 1998; pp. 81–92. [Google Scholar]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C.; Cornwell, W.K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 2015, 29, 1486–1497. [Google Scholar] [CrossRef]
- Simpson, K.J.; Ripley, B.S.; Christin, P.A.; Belcher, C.M.; Lehmann, C.E.R.; Thomas, G.H.; Osborne, C.P. Determinants of flammability in savanna grass species. J. Ecol. 2016, 104, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Van Wagner, C.E. Climate Change and Wildfire in Canada. Can. J. Forest Res. 1991, 21, 66–72. [Google Scholar] [CrossRef]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Change 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Wotton, B.M.; Stocks, B.J.; Flannigan, M.D.; Laprise, R.; Blanchet, J.P. Estimating Current and Future Fire Climates in the Boreal Forest of Canada Using a Regional Climate Model. In Proceedings of the 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Coimbra, Portugal, 16–20 November 1998; pp. 1207–1221. [Google Scholar]
- Bianchi, L.O.; Defosse, G.E. Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina. Int. J. Wild. Fire 2015, 24, 340–348. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; De Dios, V.R.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Bruggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [Google Scholar] [CrossRef]
- Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Normand, S.; Ruger, N.; Beck, P.S.A.; Blach-Overgaard, A.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; et al. Plant functional trait change across a warming tundra biome. Nature 2018, 562, 57–62. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.C.P.; Nunes, A.; Rodrigues, R.G.; Branquinho, C. The response of plant functional traits to aridity in a tropical dry forest. Sci. Total Environ. 2020, 747, 141177. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Wyse, S.V.; Buckley, H.L.; Perry, G.L.W.; Sullivan, J.J.; Mason, N.W.H.; Buxton, R.; Richardson, S.J.; Curran, T.J. Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. J. Ecol. 2020, 108, 641–653. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.S.; Taylor, S.H.; Pasquet-Kok, J.; Vuong, C.; Zhang, Y.; Watcharamongkol, T.; Scoffoni, C.; Edwards, E.J.; Christin, P.A.; Osborne, C.P.; et al. Developmental and biophysical determinants of grass leaf size worldwide. Nature 2021, 592, 242–247. [Google Scholar] [CrossRef] [PubMed]
Species | Flammability DI (s) | Combustion DC (s) | Live Fuel Moisture Content LFMC (%) | |||
---|---|---|---|---|---|---|
Makarska | Rab | Makarska | Rab | Makarska | Rab | |
Mock privet | 4.53–9.49 | 5.03–11.21 | 8.32–10.54 | 9.25–13.52 | 41.74–101.34 | 60.96–146.02 |
Variable | DI | LFMC | Mean Monthly Air Humidity (%) | Mean Monthly Air Temperature (°C) | Mean Monthly Maximum Air Temperature (°C) | Mean Monthly Minimum Air Temperature (°C) | Mean Monthly Precipitation (mm) |
---|---|---|---|---|---|---|---|
Aleppo pine (Pinus halepensis Mill.) | |||||||
Rab–DI | 1.00 | 0.51 | 0.40 | −0.41 | −0.42 | −0.40 | 0.11 |
Makarska–DI | 1.00 | 0.62 | 0.22 | −0.73 | −0.75 | −0.72 | 0.50 |
Island of Rab | |||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | |
model | 6 | 22.940 | 3.823 | 2.114 | 0.103 | 0.413 | 0.217 | 17.238 | 1.347 |
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | ||||
Intercept | 1 | 5.560 | 5.831 | 0.950 | 0.353 | ||||
LFMC | 1 | 0.029 | 0.014 | 2.061 | 0.054 | ||||
Mean monthly humidity | 1 | 0.035 | 0.067 | 0.523 | 0.608 | ||||
Mean monthly air temp. | 1 | −1.164 | 1.687 | −0.693 | 0.499 | ||||
Mean monthly max. air temp. | 1 | 0.124 | 0.847 | 0.152 | 0.885 | ||||
Mean monthly min. air temp. | 1 | 1.047 | 1.224 | 0.863 | 0.403 | ||||
Mean monthly precipitation | 1 | −0.006 | 0.0057 | −1.111 | 0.281 | ||||
Makarska | |||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | |
model | 6 | 28.024 | 4.671 | 9.608 | <0.0001 | 0.762 | 0.683 | 10.823 | 0.698 |
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | ||||
Intercept | 1 | 11.562 | 2.590 | 4.463 | 0.001 | ||||
LFMC | 1 | 0.016 | 0.012 | 1.344 | 0.198 | ||||
Mean monthly humidity | 1 | −0.012 | 0.032 | −0.366 | 0.720 | ||||
Mean monthly air temp. | 1 | 2.162 | 0.838 | 2.582 | 0.019 | ||||
Mean monthly max. air temp. | 1 | −1.934 | 0.559 | −3.463 | 0.003 | ||||
Mean monthly min. air temp. | 1 | −0.153 | 0.416 | −0.377 | 0.716 | ||||
Mean monthly precipitation | 1 | −0.001 | 0.003 | −0.175 | 0.865 |
Island of Rab | ||||||
Variable | Proc. Param. | SE | Tip II SS | F | Pr > F | Parc. R2 |
Intercept | 4.439 | 1.218 | 23.767 | 13.284 | 0.002 | |
LFMC | 0.032 | 0.011 | 14.432 | 8.066 | 0.009 | 0.260 |
Makarska | ||||||
Variable | Proc. Param. | SE | Tip II SS | F | Pr > F | Parc. R2 |
Intercept | 10.834 | 1.567 | 20.501 | 47.802 | <0.001 | |
LFMC | 0.016 | 0.010 | 1.071 | 2.504 | 0.129 | 0.029 |
Mean monthly temp. | 1.880 | 0.521 | 5.580 | 13.014 | 0.002 | 0.171 |
Mean max monthly temp. | −1.801 | 0.472 | 6.240 | 14.557 | 0.001 | 0.555 |
Variable | DC | LFMC | Mean Monthly Air Humidity (%) | Mean Monthly Air Temperature (°C) | Mean Monthly Maximum Air Temperature (°C) | Mean Monthly Minimum Air Temperature (°C) | Mean Monthly Precipitation (mm) |
---|---|---|---|---|---|---|---|
Aleppo pine (Pinus halepensis Mill.) | |||||||
Rab–DC | 1.00 | −0.48 | −0.06 | −0.01 | 0.00 | 0.00 | −0.04 |
Makarska–DC | 1.00 | −0.13 | 0.24 | −0.37 | −0.38 | −0.36 | 0.10 |
Island of Rab | |||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | |
model | 6 | 9.804 | 1.634 | 1.283 | 0.316 | 0.299 | 0.065 | 10.092 | 1.130 |
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | ||||
Intercept | 1 | 13.285 | 4.896 | 2.712 | 0.014 | ||||
LFMC | 1 | −0.022 | 0.012 | −1.912 | 0.073 | ||||
Mean monthly humidity | 1 | 0.005 | 0.0562 | 0.091 | 0.933 | ||||
Mean monthly air temp. | 1 | −1.196 | 1.416 | −0.843 | 0.410 | ||||
Mean monthly max. air temp. | 1 | 0.521 | 0.711 | 0.735 | 0.473 | ||||
Mean monthly min. air temp. | 1 | 0.665 | 1.027 | 0.656 | 0.525 | ||||
Mean monthly precipitation | 1 | 0.001 | 0.005 | 0.133 | 0.895 | ||||
Makarska | |||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | |
model | 6 | 46.684 | 7.781 | 2.422 | 0.068 | 0.447 | 0.262 | 13.462 | 1.793 |
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | ||||
Intercept | 1 | 20.604 | 6.659 | 3.096 | 0.006 | ||||
LFMC | 1 | −0.0827 | 0.031 | −2.664 | 0.016 | ||||
Mean monthly humidity | 1 | 0.096 | 0.081 | 1.185 | 0.253 | ||||
Mean monthly air temp. | 1 | 3.110 | 2.153 | 1.446 | 0.166 | ||||
Mean monthly max. air temp. | 1 | −2.209 | 1.437 | −1.545 | 0.142 | ||||
Mean monthly min. air temp. | 1 | −0.984 | 1.068 | −0.926 | 0.369 | ||||
Mean monthly precipitation | 1 | 0.001 | 0.009 | 0.032 | 0.980 |
Island of Rab | ||||||
Variable | Proc. Param. | SE | Tip II SS | F | Pr > F | Parc. R2 |
Intercept | 13.663 | 0.952 | 225.166 | 206.111 | <0.001 | |
LFMC | −0.023 | 0.009 | 7.681 | 7.030 | 0.014 | 0.234 |
Makarska | ||||||
Variable | Proc. Param. | SE | Tip II SS | F | Pr > F | Parc. R2 |
Intercept | 23.141 | 3.132 | 171.641 | 54.592 | <0.001 | |
LFMC | −0.068 | 0.026 | 20.603 | 6.554 | 0.018 | 0.197 |
Mean max monthly temp. | −0.205 | 0.063 | 33.597 | 10.683 | 0.004 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosavec, R.; Barčić, D.; Rožman, T.; Ugarković, D. The Relationship Between Burning Factors and Mediterranean Climatic Conditions in the Croatian Coastal Part. Fire 2025, 8, 34. https://doi.org/10.3390/fire8010034
Rosavec R, Barčić D, Rožman T, Ugarković D. The Relationship Between Burning Factors and Mediterranean Climatic Conditions in the Croatian Coastal Part. Fire. 2025; 8(1):34. https://doi.org/10.3390/fire8010034
Chicago/Turabian StyleRosavec, Roman, Damir Barčić, Toni Rožman, and Damir Ugarković. 2025. "The Relationship Between Burning Factors and Mediterranean Climatic Conditions in the Croatian Coastal Part" Fire 8, no. 1: 34. https://doi.org/10.3390/fire8010034
APA StyleRosavec, R., Barčić, D., Rožman, T., & Ugarković, D. (2025). The Relationship Between Burning Factors and Mediterranean Climatic Conditions in the Croatian Coastal Part. Fire, 8(1), 34. https://doi.org/10.3390/fire8010034