Data-Driven Models to Forecast the Impact of Temperature Anomalies on Rice Production in Southeast Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Available Data
2.2. Case Study Overview: Southeast Asian Region Peculiarity
2.3. Data-Driven Model Calibration
2.4. Genetic Algorithm
- Population Initialization: initially, a set of individuals is created randomly. This population undergoes iterative evolution until an optimal solution is achieved.
- New Population Generation: this phase involves the evolution of the initial population through three key operations:
- ○
- Selection: like natural selection, this stage identifies the most promising candidates or solutions.
- ○
- Crossover: using the top candidates, hybrid solutions are produced, contributing to subsequent populations.
- ○
- Mutation: new individuals emerge through slight random alterations in the solutions of offspring.
- Termination Test: the process of generating the new population continues until one or more predefined stopping criteria are met. Some of the commonly used criteria include:
- ○
- Reaching a specified number of iterations.
- ○
- Reaching a set number of iterations without notable enhancement in the solution.
- ○
- Exceeding a predefined time threshold.
3. Results and Discussion
3.1. ARX Model Validation
3.2. Impact of Temperature Anomaly on Rice Production
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change Climate Change 2021—The Physical Science Basis, 1st ed.; Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6.
- Sathaye, J.; Najam, A.; Cocklin, C.; Heller, T.; Lecocq, F.; Llanes-Regueiro, J.; Pan, J.; Petschel-Held, G.; Rayner, S.; Robinson, J.; et al. Sustainable Development and Mitigation. In Climate Change 2007: Mitigation; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- United Nations. Environment Programme Emissions Gap Report 2023: Broken Record—Temperatures Hit New Highs, yet World Fails to Cut Emissions (Again); United Nations Environment Programme: Nairobi, Kenya, 2023; ISBN 978-92-807-4098-1. [Google Scholar]
- World Meteorological Organization (WMO); United Nations Environment Programme (UNEP); Intergovernmental Panel on Climate Change (IPCC); Global Carbon Project (GCP); UK Met Office; United Nations Office for Disaster Risk Reduction (UNDRR). United in Science 2022—A Multi-Organization High-Level Compilation of the Most Recent Science Related to Climate Change, Impacts and Responses; WMO: Geneva, Switzerland, 2022.
- United Nations. Long-Term Low-Emission Development Strategies Synthesis Report. In Proceedings of the Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement, Fourth Session, Sharm el-Sheikh, Egypt, 6–20 November 2022. [Google Scholar]
- Boyd, S.; Roach, R. Feeling the Heat: Why Government Must Act to Tackle the Impact of Climate Change on Global Water Supplies and Avert Mass Movement of Climate Change Refugees; Tearfund: London, UK, 2006. [Google Scholar]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model. J. Hydrometeorol. 2006, 7, 1113–1125. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change Climate Change and Land. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915798-8. [Google Scholar]
- Carnevale, C.; Sangiorgi, L. A Receding Horizon Approach for Climate Change Control. In Proceedings of the 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), Rome, Italy, 3 July 2023; pp. 257–262. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Our World in Data. CO2 Emissions (Form the University of Oxford and GCDL). Available online: https://ourworldindata.org/co2-emissions (accessed on 7 September 2023).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability, 1st ed.; Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4. [Google Scholar]
- Easterling, W.; Aggarwal, P.; Batima, P.; Brander, K.; Erda, L.; Howden, M.; Kirilenko, A.; Morton, J.; Soussana, J.-F.; Schmidhuber, S.; et al. Food, Fiber and Forest Products. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Kurukulasuriya, P.; Rosenthal, S. Climate Change and Agriculture a Review of Impacts and Adaptations; Climate Change Series Paper; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Field, C.B.; Barros, V.R. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-64165-5. [Google Scholar]
- FAO. FAO Strategy on Climate Change; FAO: Roma, Italy, 2017. [Google Scholar]
- National Intelligence Council Southeast Asia and Pacific Islands: The Impact of Climate Change to 2030; National Intelligence Council: Washington, DC, USA, 2009.
- Bhandari, S.R. Asia’s Heatwaves 30 Times More Likely Due to Climate Change, Scientists Say. Radio Free Asia. 2023. Available online: https://www.rfa.org/english/news/environment/asia-heatwave-05182023020840.html (accessed on 28 January 2024).
- AFSIS. Rice Growing Outlook Report; AFSIS: New York, NY, USA, 2020. [Google Scholar]
- AFSIS. Rice Growing Outlook Report; AFSIS: New York, NY, USA, 2021. [Google Scholar]
- Copernicus Climate Change Service. Temperature and Precipitation Gridded Data for Global and Regional Domains Derived from In-Situ and Satellite Observations. Available online: https://cds.climate.copernicus.eu/doi/10.24381/cds.11dedf0c (accessed on 14 September 2023).
- Vose, R.S.; Arndt, D.; Banzon, V.F.; Easterling, D.R.; Gleason, B.; Huang, B.; Kearns, E.; Lawrimore, J.H.; Menne, M.J.; Peterson, T.C.; et al. NOAA’s Merged Land–Ocean Surface Temperature Analysis. Bull. Am. Meteorol. Soc. 2012, 93, 1677–1685. [Google Scholar] [CrossRef]
- Our World in Data. Agricultural Production. Available online: https://ourworldindata.org/agricultural-production (accessed on 11 October 2023).
- FAO. Crops and Livestock Products; FAO: Rome, Italy, 2021. [Google Scholar]
- Asian Develoopment Bank. The Economics of Climate Change in Southeast Asia: A Regional Review; Asian Develoopment Bank: Sydney, Australia, 2009; ISBN 978-971-561-787-1. [Google Scholar]
- Our World in Data. Employment in Agriculture. Available online: https://ourworldindata.org/employment-in-agriculture (accessed on 28 January 2024).
- Yuan, S.; Stuart, A.M.; Laborte, A.G.; Rattalino Edreira, J.I.; Dobermann, A.; Kien, L.V.N.; Thúy, L.T.; Paothong, K.; Traesang, P.; Tint, K.M.; et al. Southeast Asia Must Narrow down the Yield Gap to Continue to Be a Major Rice Bowl. Nat. Food 2022, 3, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, H.; Xu, L.; Ge, J.; Jiang, J.; Zuo, L.; Wang, C. Twenty-Meter Annual Paddy Rice Area Map for Mainland Southeast Asia Using Sentinel-1 Synthetic-Aperture-Radar Data. Earth Syst. Sci. Data 2023, 15, 1501–1520. [Google Scholar] [CrossRef]
- Dawe, D.; Pandey, S.; Nelson, A. Emerging Trends and Spatial Patterns of Rice Production. In Rice in the Global Economy: Strategic Research and Policy Issues for Food Security; Pandey, S., Byerlee, D., Dawe, D., Dovermann, A., Mohanty, S., Rozelle, S., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2010; pp. 15–35. ISBN 978-971-22-0258-2. [Google Scholar]
- Ljung, L. System Identification: Theory for the User, 2nd ed.; Prentice Hall Information and System Sciences Series; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999; ISBN 978-0-13-656695-3. [Google Scholar]
- Ehrgott, M. Multicriteria Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 491. [Google Scholar]
- Gallagher, K.; Sambridge, M.; Drijkoningen, G. Genetic Algorithms: An Evolution from Monte Carlo Methods for Strongly Non-Linear Geophysical Optimization Problems. Geophys. Res. Lett. 1991, 18, 2177–2180. [Google Scholar] [CrossRef]
- Wang, H.; Lang, X.; Mao, W. Voyage Optimization Combining Genetic Algorithm and Dynamic Programming for Fuel/Emissions Reduction. Transp. Res. Part D 2021, 90, 102670. [Google Scholar] [CrossRef]
- Beasley, J.E.; Chu, P.C. A Genetic Algorithm for the Set Covering Problem. Eur. J. Oper. Res. 1996, 94, 392–404. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Luo, Y.; Deng, X.; Grieneisen, M.L.; Yang, F. Stepwise Genetic Algorithm for Adaptive Management: Application to Air Quality Monitoring Network Optimization. Atmos. Environ. 2019, 215, 116894. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice Yields Decline with Higher Night Temperature from Global Warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed]
- Amnuaylojaroen, T.; Parasin, N. The Future Extreme Temperature under RCP8.5 Reduces the Yields of Major Crops in Northern Peninsular of Southeast Asia. Sci. World J. 2022, 2022, 1410849. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D. Simulating the Impact of Climate Change on Rice Production in Asia and Evaluating Options for Adaptation. Agric. Syst. 1997, 54, 399–425. [Google Scholar] [CrossRef]
- Farmer, B.H. The “Green Revolution” in South Asia. Geography 1981, 66, 202–207. [Google Scholar]
- Muehe, E.M.; Wang, T.; Kerl, C.F.; Planer-Friedrich, B.; Fendorf, S. Rice Production Threatened by Coupled Stresses of Climate and Soil Arsenic. Nat. Commun. 2019, 10, 4985. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, C.S.C. Climate Change and Rice Economy in Asia: Implications for Trade Policy; FAO: Roma, Italy, 2018. [Google Scholar]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World Scientists’ Warning of a Climate Emergency. BioScience 2019, 70, biz088. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023; FAO: Rome, Italy, 2023; ISBN 978-92-5-137226-5. [Google Scholar]
- Pingali, P. Agricultural Policy and Nutrition Outcomes—Getting beyond the Preoccupation with Staple Grains. Food Secur. 2015, 7, 583–591. [Google Scholar] [CrossRef]
Feature | Value |
---|---|
Population | 100 |
Crossover Function | Scattered |
Crossover Fraction | 0.8 |
Mutation Function | Gaussian |
Subregion | MAE | Correlation |
---|---|---|
Antarctica and Greenland | 0.41 | 0.53 |
European Union | 0.39 | 0.74 |
Europe outside EU | 0.41 | 0.72 |
USA | 0.30 | 0.77 |
Canada | 0.53 | 0.67 |
South America | 0.18 | 0.87 |
Middle East | 0.32 | 0.80 |
Central Asia | 0.50 | 0.69 |
East Asia | 0.21 | 0.86 |
India | 0.28 | 0.76 |
China | 0.22 | 0.83 |
Russia | 0.55 | 0.75 |
North Africa | 0.23 | 0.84 |
Sub-Saharan Africa | 0.16 | 0.87 |
Oceania | 0.26 | 0.74 |
Subregion | 1-Step Ahead | Simulation |
---|---|---|
NMAE | 0.03 | 0.10 |
Correlation Coefficient | 0.99 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Nardi, S.; Carnevale, C.; Raccagni, S.; Sangiorgi, L. Data-Driven Models to Forecast the Impact of Temperature Anomalies on Rice Production in Southeast Asia. Forecasting 2024, 6, 100-114. https://doi.org/10.3390/forecast6010006
De Nardi S, Carnevale C, Raccagni S, Sangiorgi L. Data-Driven Models to Forecast the Impact of Temperature Anomalies on Rice Production in Southeast Asia. Forecasting. 2024; 6(1):100-114. https://doi.org/10.3390/forecast6010006
Chicago/Turabian StyleDe Nardi, Sabrina, Claudio Carnevale, Sara Raccagni, and Lucia Sangiorgi. 2024. "Data-Driven Models to Forecast the Impact of Temperature Anomalies on Rice Production in Southeast Asia" Forecasting 6, no. 1: 100-114. https://doi.org/10.3390/forecast6010006