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Abstract: The study of early dog domestication has been the focus of considerable scholarly
interest in recent years, prompting extensive research aimed at pinpointing the precise
temporal and geographic origins of this process. However, a consensus among studies re-
mains elusive, with various research efforts proposing differing timelines and locations for
domestication. To address the questions related to the domestication process, researchers
have employed a wide range of methodologies, including genetic, biomolecular, morpho-
metric, paleontological, biometric, and isotopic analyses, as well as dental wear analysis to
reconstruct paleodiets. Each of these approaches requires access to fossil canid specimens,
given that they work directly with the skeletal remains of dogs or wolves. Alternatively,
some methods can yield insights into the domestication process without necessitating
the physical remains of these canids. Taphonomy, for instance, enables the study of bone
surfaces for tooth marks, which may serve as indirect indicators of carnivore activity,
potentially attributable to dogs or wolves. This study applies a high-resolution tapho-
nomic analysis to bones modified by carnivores at the prehistoric site of Peña Moñuz. Our
aim is to identify the specific carnivores responsible for the observed bone modifications.
The findings demonstrate the efficacy of this technique in identifying the agents of bite
marks, suggesting that taphonomy may complement the paleogenetic, paleontological, and
isotopic methodologies traditionally used to explore the origins of dog domestication

Keywords: domestication; Canis familiaris; taphonomy; tooth marks; human–animal
interactions; geometric morphometrics

1. Introduction
Dog domestication has been a focal point of academic inquiry for decades, with numer-

ous studies exploring the origins of this co-evolutionary milestone [1–6]. Most research on
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this subject is directed at establishing the precise time and place of domestication. However,
the existing studies remain inconclusive, presenting divergent chronologies [4,5,7–18] and
distinct geographic origins [3,8,14,19–30], or suggesting parallel domestication events in
multiple locations [31].

Identifying the markers of dog domestication is a challenging process. Dogs and
wolves, as two morphologically and behaviourally similar canids, present significant chal-
lenges for differentiation within the fossil record. To refine these identifications, various
methodologies have been developed, including genetics [4,6,11,12,21,32–34], biomolecular
approaches [23,35], dental microwear [36], isotopic analyses [4,37,38], biometry [39,40],
multi-method approaches [39], and geometric morphometrics [41]. Each of these ap-
proaches necessitates the fossil remains of dogs or wolves, an often-challenging requirement
given the limitations of the fossil record and the variability in site preservation conditions.
Conversely, other methods that rely on indirect evidence can provide insights into canid
activity, thereby contributing valuable information on the domestication process.

In recent years, utilizing a taphonomic approach, certain studies have classified tooth
marks made by different carnivores with a high degree of probability [42–46]. Research
involving modern samples created by dogs and wolves has achieved considerable success
in identifying which specific canid left the marks [42–46]. Drawing on this approach, the
present study applies these methods to an archeological sample from the prehistoric site of
Peña Moñuz (Guadalajara) to evaluate whether the current techniques for distinguishing
wolf and dog tooth marks are suitable for application to archeological samples.

The rationale for considering this technique as a potentially valuable tool for studying
tooth marks is as follows:

1. Many prehistoric sites with well-preserved faunal remains feature numerous bones
bearing tooth marks. If dogs were present at these sites, it is plausible that they created
some of these marks. Identifying the origin of such marks could provide indirect
evidence of the actions of dogs in these contexts.

2. Testing the hypothesis outlined above would be challenging without a reliable method
to classify tooth marks. However, previous research has demonstrated that tooth
marks made by different predators can be classified with high accuracy [42–46].
Moreover, studies suggest that tooth pits created by different individuals of the same
carnivorous species often exhibit consistent patterns. For example, observations of
wolves from distinct populations—such as Flechas and Villardeciervos in Zamora,
Cabárceno in Cantabria, and Hosquillo in Cuenca—show that both captive and wild
individuals produce similar tooth pits [47]. Similarly, research on other carnivores,
including leopards and tigers, indicates that individuals of the same species, even
with significant size differences due to sexual dimorphism, leave comparable tooth
marks. For instance, male and female leopards, as well as tigers, produce similar
patterns of tooth pits [48].

To evaluate the resolution and utility of this analytical approach, we conducted a
preliminary test in this study. We analyzed tooth marks from a prehistoric site to determine
which carnivores were responsible for the marks and to assess the method’s applicability
to the fossil record.

2. The Site of Peña Moñuz
Peña Moñuz is a settlement spanning 4600 m2, located in the town of Olmeda de

Cobeta in Guadalajara (Figure 1). It sits on a high and prominent limestone platform within
the Dehesa de Olmeda, with a nearly vertical escarpment at an elevation of 1240 m above sea
level. The site occupies a strategic point in the landscape and is characterized by a complex
defensive architectural layout [49,50]. Peña Moñuz lies within the geomorphological
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context of the Upper Tagus basin, where fluvial dissection has eroded the terrain to form
sharp valleys bordered by limestone ridges, ultimately creating karst landscapes [51].
Chronologically, the site was occupied over several phases, with notable habitation during
the Iron Age (Table 1), particularly between the 4th and 2nd centuries BCE [52].
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Figure 1. (A) Physical map of Spain, 1:3,000,000 scale, by the National Geographic Institute (IGN).
(B) National Topographic Map (1:50,000 scale) Sheets 0488 (Ablanque) and 0489 (Molina de Aragón),
by the IGN. (C) Satellite image from Google Earth with a cadastral view (parcel 378, polygon 004).
(D) Panoramic photograph of the Peña Moñuz site from the east. (E) Plan of the prehistoric settlement
at Peña Moñuz, modified from Arenas-Esteban, J. (see [50]).

Table 1. Radiocarbon dating (14C) samples from Peña Moñuz (see [52]).

Lab Reference Material Radiocarbon Date Average Date Calibrated Dates

Beta 270931 Bone 2290 ± 40 BP 2210 ± 40 BP 400-350 BC/290-220BC
Beta 270932 Bone 2180 ± 40 BP 2100 ± 40 BP 370-150 BC/140-110BC
Beta 270933 Bone 2220 ± 40 BP 2140 ± 40 BP 390-180BC
Beta 270934 Bone 2290 ± 40 BP 2190 ± 40 BP 400-350 BC/290-220BC
Beta 99068 Bone 2280 ± 40 BP 2210 ± 40 BP 400-355 BC/265-230BC

Since 2006, archeological work led by J. Arenas Esteban has defined multiple functional
areas within the site dedicated to activities such as milling, metalworking, and food storage.
Zooarcheological studies of Peña Moñuz indicate a faunal accumulation dominated by do-
mestic animals, primarily caprines, cattle, and pigs. Other domestic species, such as horses
and dogs, are also represented at the site, although their remains are relatively scarce [53].
Mortality patterns reveal a predominance of adult individuals across all the species, sug-
gesting that caprines and cattle were likely exploited for milk or wool production. Once
these animals reached the end of their productive lives, they were slaughtered and used for
meat, as evidenced by bones with cut marks. Additionally, the presence of various tooth
marks on the bones suggests they were scavenged by carnivores, likely dogs—a hypothesis
this study seeks to test by applying high-resolution taphonomic analyses.
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3. Materials and Methods
The primary objective of this study is to analyze the tooth marks found at Peña

Moñuz to identify the carnivores responsible for creating them. To achieve this, we applied
high-resolution taphonomic techniques and compared our findings with a comprehensive
database of tooth marks produced by various carnivores.

Carnivores leave a range of distinct tooth marks, including “pits” (indentations created
by tooth pressure on bone), “scores” (scratches from teeth dragging across bone), “punc-
tures” (perforations on bone surfaces), and “holes” (larger openings created by digestive
processes) [54–66].

Our sample consisted of 26 pit marks found on 15 long bone shafts of caprines, bovines,
and suids from Peña Moñuz (Figure 2). The distribution of the tooth marks analyzed in
this study included 8 bones with a single pit, 5 bones with 2 pits, 1 bone with 3 pits, and
1 bone with 5 pits. We focused specifically on pits because these are the only marks that
exhibit consistent characteristics whether created by captive or wild carnivores [43–45,48].
In contrast, other marks, like scores, tend to vary slightly depending on whether the
carnivores are in captivity or the wild [44].
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The comparative database included pits generated by various carnivores from the
subfamilies Caninae (Canis lupus signatus, Canis familiaris, Lycaon pictus, and Vulpes vulpes),
Ursinae (Ursus arctos), Hyaeninae (Crocuta crocuta), and Pantherinae (Panthera leo, P. onca,
and P. pardus) (see [42–44,67,68]). We also incorporated pits from six different dog breeds, as
described in [46]. In total, 658 tooth marks were analyzed, averaging 50 pits per carnivore,
with the following distribution for the dogs: Mastiff (50 pits), Boxer (28 pits), mixed breed
(50 pits), Labrador retriever (50 pits), Rottweiler (50 pits), and Irish Setter (30 pits).

Following the methodologies presented in previous studies [44,47,67–69], only pit
tooth marks were used for comparative analysis, as score tooth marks are subject to greater
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variability (see discussion in [47]). The comparative samples used for Peña Moñuz have
been well documented in earlier works [42–46]. In all the cases, the tooth marks analyzed
were located on the diaphyses of long bones and were produced by at least two individuals
of each carnivore species [44]. The samples were obtained through collaborations with
various natural parks.

The Parque de la Naturaleza de Cabárceno provided access to horse diaphyses pro-
cessed by wolves, African wild dogs, lions, jaguars, brown bears, and spotted hyenas [44].
Biopark Fuengirola (Málaga) supplied samples modified by leopards [44,48]. The Hosquillo
Park contributed wolf-modified samples from prey such as goats and deer [44,45,67,68].
Finally, tooth marks produced by wild foxes were collected from sheep bones in Ayllón
(Segovia) [69].

Most of the analyzed samples come from horse long bone diaphyses, but bones from
smaller animals, such as goats, wild boar, and deer, were also included [69]. Despite these
differences, previous studies have shown that prey size does not significantly affect the
morphology of tooth marks [44,67], enabling comparisons across different prey types. The
samples analyzed for each carnivore are summarized below and detailed in [44]:

Brown Bears (Ursus arctos): A total of 50 pits from horse diaphyses collected in the
summer of 2020 at Cabárceno Park. The marks were produced by multiple adult individuals
of varying sexes.

Spotted Hyenas (Crocuta crocuta): A total of 50 pits from horse tibiae and radii collected
in 2012 at Cabárceno Park, produced by a single adult female. The bones exposed for
extended periods were typically consumed entirely, so these samples were retrieved after
only a few hours.

Wolves (Canis lupus): A total of 50 pits from both wild and captive individuals,
collected from Villardeciervos and Flechas (wild populations, Zamora, Spain) and the
Hosquillo Park (Cuenca, Spain) and Cabárceno Park (Cantabria, Spain). A total of 571 tooth
marks were recorded on horse, ibex, deer, and boar limb bones, from which 50 were
randomly selected for analysis. Bone collection occurred over several days to weeks
after feeding.

Foxes (Vulpes vulpes): A total of 50 pits from sheep long bone diaphyses collected in
2002 at Ayllón (Segovia). Details are available in [69].

African Wild Dogs (Lycaon pictus): A total of 50 pits from horse radii and tibiae
collected in summer 2010 at Cabárceno Park, produced by two individuals of both sexes.
Further details can be found in [70].

Jaguars (Panthera onca): A total of 50 pits from horse radii and tibiae collected between
2009 and 2010 at Cabárceno Park, created by multiple individuals of varying sexes [71].

Leopards (Panthera pardus): A total of 50 pits from Sri Lankan leopards (P. p. kotiya) at
Biopark Fuengirola (Málaga). These samples, collected in autumn 2020, include cow axial
skeletal bones [48].

Lions (Panthera leo): A total of 50 pits from horse radii and tibiae collected in 2011 at
Cabárceno Park, produced by several individuals of varying sexes.

Domestic Dogs (Canis familiaris): The samples included medium to large breeds
(e.g., Spanish Mastiff, Boxer, mixed-breed, Labrador retriever, Rottweiler, and Irish Setter),
with 28–50 pits analyzed per breed. These breeds were selected for their similarity to
wolves in tooth mark characteristics [46].

The experimental protocols entailed the following steps:

1. Carnivores were provided with whole horse bones (typically radius and tibiae).
2. The bones were semi-defleshed before being offered to the animals after feeding.
3. The bones were left in enclosures for several days.
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4. The bones were subsequently collected and boiled in water to preserve tooth marks,
avoiding chemical cleaning agents that could degrade them. After boiling and drying,
the bones were ready for examination.

5. Pits on each bone were identified and located in preparation for further comparative
study in the subsequent stages of the research.

To analyze the tooth marks, we followed the established methodologies
(see [42–46,67,68]), which emphasize comprehensive three-dimensional documentation
of pits using geometric morphometrics and robust statistical analysis. These results were
then compared with the reference dataset to account for multiple carnivore species. This
approach overcomes the limitations of earlier metric-based analyses of tooth marks [72].

The first step in this process was to identify pit marks, which were then scanned
using a DAVID SLS-2 structured light 3D scanner (Figure 3) from the Archaeometry and
Archaeological Analysis Unit at the Research Support Center for Earth Sciences and Ar-
chaeometry at the Complutense University of Madrid. Macro lenses ranging from 2x to
10x magnification were fitted to both the camera and the projector. Before scanning, the
equipment was calibrated using a marker template with 15 mm intervals between points.
The results were saved in .obj format and converted to .ply format for processing in the
landmark delimitation software.

Heritage 2025, 8, 34 6 of 15 
 

 

The experimental protocols entailed the following steps: 

1. Carnivores were provided with whole horse bones (typically radius and tibiae). 
2. The bones were semi-defleshed before being offered to the animals after feeding. 
3. The bones were left in enclosures for several days. 
4. The bones were subsequently collected and boiled in water to preserve tooth marks, 

avoiding chemical cleaning agents that could degrade them. After boiling and dry-
ing, the bones were ready for examination. 

5. Pits on each bone were identified and located in preparation for further comparative 
study in the subsequent stages of the research. 

To analyze the tooth marks, we followed the established methodologies (see [42–
46,67,68]), which emphasize comprehensive three-dimensional documentation of pits us-
ing geometric morphometrics and robust statistical analysis. These results were then com-
pared with the reference dataset to account for multiple carnivore species. This approach 
overcomes the limitations of earlier metric-based analyses of tooth marks [72]. 

The first step in this process was to identify pit marks, which were then scanned us-
ing a DAVID SLS-2 structured light 3D scanner (Figure 3) from the Archaeometry and 
Archaeological Analysis Unit at the Research Support Center for Earth Sciences and Ar-
chaeometry at the Complutense University of Madrid. Macro lenses ranging from 2x to 
10x magnification were fitted to both the camera and the projector. Before scanning, the 
equipment was calibrated using a marker template with 15 mm intervals between points. 
The results were saved in .obj format and converted to .ply format for processing in the 
landmark delimitation software. 

Once scanned, and following the protocol by Courtenay et al. (see [43]), 25 landmarks 
were defined for each pit. These included four landmarks outlining the mark’s perimeter, 
one marking the deepest point, and 20 others distributed across the entire morphology of 
the mark. The landmarks were consistently placed using the Landmark software (version 
3.0.0.6), and the data were exported in Morphologika text format for a morphometric anal-
ysis [73,74]. 

 

Figure 3. (A) Digital sample generation using the 3D DAVID SLS-2 scanner. (B) A 15 mm marker 
template. (C) Projection by the projector and camera. (D) Virtual model of the tooth mark. 

Figure 3. (A) Digital sample generation using the 3D DAVID SLS-2 scanner. (B) A 15 mm marker
template. (C) Projection by the projector and camera. (D) Virtual model of the tooth mark.

Once scanned, and following the protocol by Courtenay et al. (see [43]), 25 landmarks
were defined for each pit. These included four landmarks outlining the mark’s perimeter,
one marking the deepest point, and 20 others distributed across the entire morphology of
the mark. The landmarks were consistently placed using the Landmark software (version
3.0.0.6), and the data were exported in Morphologika text format for a morphometric
analysis [73,74].

To analyze and compare the data, we performed statistical analyses including Prin-
cipal Components Analysis (PCA) and Multivariate Analysis of Variance (MANOVA)
using the R programming language and relevant functions from the “shapes” and
“RVAideMemoire” packages.
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First, a Generalized Procrustes Analysis (GPA) was conducted to optimally align
the landmarks through translation, rotation, and scaling [75–79]. This type of analysis
extracts morphological data from the initial samples, producing configurations based on
“shape” (with scaling) and “form” (without scaling). In this case, however, scaling was
unnecessary as the sample size did influence comparative outcomes. Thus, we focused
solely on original-scale shapes for the GPA using the function procGPA (x$coords, scale =
FALSE). This analysis yields Principal Component (PC) scores, which can then be plotted
via the “data.frame” and “ggplot” functions to produce a PCA graph.

Lastly, Multivariate Analysis of Variance (MANOVA) was used to compare two sam-
ples to determine similarity. This was implemented using the “pairwise.perm.manova”
code. To select an appropriate test (either “Hotelling-Lawley” or “Wilk’s Lambda”), we
assessed whether the PC scores followed a normal (Gaussian) distribution, verified through
the Shapiro–Wilk test. The MANOVA results showing p-values < 0.003 [44,68] indicate a
significant similarity between the compared samples.

Additionally, we included allometric analyses to explore shape–size relationships.
Using the “geomorph” package [73], we applied the following functions: “gpagen” for
Generalized Procrustes Analysis (GPA), “geomorph.data.frame” to create a dataframe that
preserves the sample size (unscaled), “procD.lm” to conduct Procrustes ANOVA (taking
centroid size and sample type into account) with a unique allometric formula (shape ~
log(Csize) * group, data = dataset), and “plotallometry” to observe shape–size covariation
using the “PredLine”, “RegScore”, “size.shape”, and “CAC” methods.

4. Results and Discussion
In analyzing the pits from Peña Moñuz, we conducted an initial comparative analysis

with tooth marks produced by other carnivores, including felines, ursids, and other canids.
This comparison allowed us to evaluate the relationship between the pits at Peña Moñuz
and the reference framework established for various carnivores.

Our initial Principal Component Analysis (PCA), presented in Figure 4, demonstrates
that the tooth pits from Peña Moñuz are relatively smaller compared to those produced by
other carnivores, including foxes and wolves (Figure 4). To provide more robust results, we
applied Multivariate Analysis of Variance (MANOVA) using the Wilks’ Lambda method.
The preliminary Shapiro–Wilk test demonstrated a non-homogeneous distribution, justify-
ing this choice. The MANOVA documented a similarity between the Peña Moñuz values
and those for Canis familiaris, with a p-value of 0.023 (Table 2). Conversely, comparisons
with other carnivores yielded significantly lower p-values (all p = 0.001). Given that the
comparison with dogs exceeds the 0.003 threshold (3σ), this suggests that the tooth marks
at Peña Moñuz likely correspond to dogs.

Based on these findings, the tooth marks identified at Peña Moñuz show alignment
with those produced by dogs. To strengthen these conclusions, additional PCA and
MANOVA analyses were conducted specifically comparing the Peña Moñuz samples
to those of Canis familiaris (Figure 4). In the PCA, the Peña Moñuz ellipse is contained
within the Canis familiaris ellipse. For MANOVA, the Wilks’ Lambda method yielded a
p-value of 0.023, confirming that the samples are statistically similar. Thus, there appears
to be a relationship between the tooth pits from Peña Moñuz and the marks typically
associated with dogs (Table 2).
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C. familiaris 0.001 - - - - - - - - - 
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Figure 4. Principal Components Analysis (PCA) showing the PC1 and PC2 values of the tooth marks
of Peña Moñuz alongside data from other animals in the database grouped by subfamilies, with
a distribution of landmarks and size (form). The data presented in this analysis were not scaled
(scale = FALSE), ensuring that size and form were taken into account.

Table 2. Results of the p-values from the Multivariate Analysis of Variance (MANOVA) comparing
the Peña Moñuz values to those of other carnivores and humans, as determined using the Wilks’
Lambda method. The calculations considered the size of the samples and, consequently, the size of
the individuals. In other words, the tooth marks were not scaled (scale = FALSE).

U. arctos C.
familiaris V. vulpes H.

sapiens C. crocuta P. onca P.
pardus

P.
leo

L.
pictus

Peña
Moñuz

C. familiaris 0.001 - - - - - - - - -
V. vulpes 0.001 0.002 - - - - - - - -

H. sapiens 0.068 0.174 0.052 -
C. crocuta 0.002 0.001 0.001 0.005 - - - - - -

P. onca 0.001 0.001 0.001 0.023 0.642 - - - - -
P. pardus 0.002 0.002 0.017 0.046 0.001 0.001 - - - -

P. leo 0.001 0.001 0.001 0.001 0.453 0.755 0.001 - - -
L. pictus 0.052 0.001 0.001 0.071 0.434 0.260 0.004 0.022 - -

Peña
Moñuz 0.001 0.023 0.001 0.001 0.001 0.001 0.001 0.001 0.001 -

C. lupus 0.072 0.003 0.001 0.667 0.001 0.001 0.003 0.001 0.004 0.001

Despite these results, we conducted a second test comparing the tooth marks from
Peña Moñuz with those produced by other canids, including foxes, wolves, and various
dog breeds (Figure 5). Additionally, to rule out the possibility of human activity, we also
compared the Peña Moñuz marks with those associated with human tooth marks (Table 2,
Figure 5).
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Figure 5. Principal Components Analysis (PCA) showing the PC1 and PC2 values of the tooth marks
of Peña Moñuz and some canids, Canis lupus signatus, Canis familiaris, and Vulpes vulpes, and the
experimental of Homo sapiens. The data presented in this analysis were not scaled (scale = FALSE),
ensuring that size and form were taken into account. Also, the MANOVA results using the Wilks’
Lambda method.

Our findings indicate that the tooth marks from Peña Moñuz show statistical similarity
exclusively with dogs. Comparisons with wolves, foxes, and humans yielded p-values
below 0.003, with all three cases showing a p-value of 0.001. In contrast, the values
associated with Canis familiaris were p = 0.021 (Figure 5).

Having established that the Peña Moñuz tooth marks are related to dogs, we then
sought to identify the specific type of dog that may have produced these marks (Figure 6,
Tables 3 and 4). The MANOVA results in Tables 3 and 4 indicate that whether scaling is
applied (scale = TRUE) or not (scale = FALSE), the Peña Moñuz tooth pits align most closely
with those produced by Labrador retriever (Figure 6). However, this does not imply that
a Labrador made these marks, as this breed did not exist during the Iron Age. Instead, it
suggests that the tooth pits from Peña Moñuz could have been created by a canid with
characteristics similar to those of a Labrador. Specifically, this points to a dog weighing
approximately 25 to 35 kg.

Table 3. Multivariate Analysis of Variance (MANOVA) showing the p-values of the tooth marks of
Peña Moñuz and the different dog breeds using the Wilks’ Lambda method. The data presented in
this analysis were scaled (scale = TRUE), and size was not taken into account.

Boxer Labrador Mastiff Mixed
Breed

Peña
Moñuz Rottweiler

Labrador
retriever 0.001 - - - - -

Spanish
Mastiff 0.001 0.001 - - - -

Mixed breed 0.001 0.001 0.223 - - -
Peña Moñuz 0.001 0.007 0.001 0.001 - -
Rottweiler 0.050 0.001 0.001 0.001 0.001 -
Irish Setter 0.026 0.001 0.001 0.001 0.001 0.001
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Figure 6. Principal Components Analysis (PCA) showing the PC1 and PC2 values of the tooth marks
of Peña Moñuz with the different dog breeds and wolves. The data presented in this analysis were
not scaled (scale = FALSE), ensuring that size and form were taken into account.

Table 4. Multivariate Analysis of Variance (MANOVA) showing the p-values of the tooth marks of
Peña Moñuz and the different dog breeds using the Wilks’ Lambda method. The data presented in
this analysis were not scaled (scale = FALSE), ensuring that size and form were taken into account.

Boxer Labrador Mastiff Mixed
Breed

Peña
Moñuz Rottweiler

Labrador
retriever 0.001 - - - - -

Spanish
Mastiff 0.001 0.001 - - - -

Mixed breed 0.001 0.001 0.001 - - -
Peña Moñuz 0.001 0.004 0.001 0.001 - -
Rottweiler 0.001 0.001 0.001 0.001 0.001 -
Irish Setter 0.001 0.001 0.001 0.001 0.001 0.001

This finding is significant because prior research has proposed the possibility of
Celtiberians using dogs resembling the modern Spanish Mastiff [80]. However, our study,
along with osteometric measurements from dogs at other archeological sites dating from
the Late Bronze Age, Iron Age, and early Roman period on the Iberian Peninsula, suggests
that medium-sized dogs were more common. When shoulder height could be estimated,
most canids measured between 30 and 50 cm at the withers, which corresponds to the
dimensions of medium-sized dogs (Supplementary Table S1).
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5. Conclusions
The findings from this study indicate that the methods used to classify tooth marks

successfully associated the pits at Peña Moñuz with dog tooth marks. These results align
with expectations, as dog remains have been found at Peña Moñuz [53]. However, it is
noteworthy that tooth marks from other carnivores—such as fox, wolf, or badger—found
at this and other nearby sites are absent from this sample [53]. Consequently, this study
demonstrates that the methodology applied here may serve as an effective approach for
documenting canid presence in earlier prehistoric contexts, complementing other estab-
lished methods, including genetics [4,6,11,12,19,23,27,41], morphometric and biometric
paleontological analyses [3,7,39,40], paleodietary analyses [4,36–38], or others.

The present study opens new avenues for future research. Expanding the range of dog
types studied would strengthen this line of analysis. While this study’s primary aim was to
demonstrate the effectiveness of the morphometric analysis of tooth marks in exploring
dog domestication, future research could pursue the identification of the specific dog types
responsible for bone markings. Currently, this is beyond our reach due to insufficient data
on the characteristics of dogs at Peña Moñuz and its surroundings. However, through
the analysis of tooth marks, we have been able to rule out the possibility that these marks
were produced by large dogs, such as Mastiffs. Instead, we have determined that the tooth
marks at Peña Moñuz were made by medium-sized dogs.

In conclusion, while the results from this study are promising, further steps are needed
as follows: (1). expanding the current dog databases to enhance the robustness of studies
on tooth marks produced by dogs, and (2). analyzing additional prehistoric sites to test the
feasibility of identifying dog activity in older contexts.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/heritage8010034/s1, Supplementary Materials Table S1 [81–84].
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