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Abstract: This paper addresses the problem of noncooperative spectrum sensing in very low signal-
to-noise ratio (SNR) conditions. In our approach, detecting an unoccupied bandwidth consists of
detecting the presence or absence of a communication signal on this bandwidth. Digital commu-
nication signals may contain hidden periodicities, so we use Recurrence Quantification Analysis
(RQA) to reveal the hidden periodicities. RQA is very sensitive and offers reliable estimation of the
phase space dimension m or the time delay τ. In view of the limitations of the algorithms proposed
in the literature, we have proposed a new algorithm to simultaneously estimate the optimal values
of m and τ. The new proposed optimal values allow the state reconstruction of the observed signal
and then the estimation of the distance matrix. This distance matrix has particular properties that
we have exploited to propose a Recurrence-Analysis-based Detector (RAD). The RAD can detect a
communication signal in a very low SNR condition. Using Receiver Operating Characteristic curves,
our experimental results corroborate the robustness of our proposed algorithm compared with classic
widely used algorithms.

Keywords: cognitive radio; dynamic spectrum access; spectrum sensing; embedding parameters;
false nearest neighbors; recurrence quantification analysis

1. Introduction

The need to make better use of the radio spectrum is leading to the development
of new spectrum access strategies. Among these strategies, the opportunistic spectrum
access based on the cognitive radio concepts allows the sharing of a spectral bandwidth
between two categories of users: Primary User “PU” and Secondary User “SU”. The PU
holds the license to exploit the bandwidth, and the SU is an opportunistic user willing to
use the channel when the PU is idle. One of the most crucial challenges for the SU is the
identification of a free bandwidth by conducting a spectrum sensing [1,2]. Many reliable
spectrum sensing methods have been developed to help the SU limit their interference to
the PU’s transmission [3–11]. Among the spectrum sensing approaches, we can mention
Waveform Detection (WFD) [12], Cyclostationary-Features-based Detection (CFD) [13], and
Energy-based Detection (ED) [14,15]. One of the most reliable methods, WFD, requires
prior knowledge of the PU’s signal characteristics. Based on the cyclic spectrum estimation,
the CFD requires a relatively high computational cost for a high-frequency resolution. ED
is the simplest detection method, but it is unable to distinguish a communication signal
from an energetic noise when the noise is not a weak-sense stationary stochastic process
or the signal-to-noise ratio (SNR) is very low. Recently, spectrum sensing algorithms,
based on the promising concept of machine or deep learning, have been proposed [16–19].
However, these algorithms do not perform well in a noncooperative context or at a low
SNR (SNR ≤ −3 dB) and require a huge database to be optimized. To overcome these
issues, we developed a blind strategy based on the Recurrence Quantification Analysis
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(RQA) of the received signal [20]. RQA is a nonlinear data analysis technique applied
to various fields to study the dynamics of complex systems. It is particularly useful for
analyzing time series data that exhibit nonlinear, nonstationary, or chaotic behavior. It is
widely introduced in the financial sector, particularly in the analysis of cryptocurrencies
like Bitcoin [21]. In the field of cardiology, RQA has been also employed to understand
the nonlinear dynamics of heart rate variability after acutely induced myocardial ischemia
by percutaneous transluminal coronary angioplasty [22]. RQA is a versatile tool that
has been applied to a wide range of applications, from financial markets and cardiology
to atmospheric science, urban management, and neurocognitive research. Its ability to
reveal important properties of time series data, such as determinism, laminarity, stability,
randomness, regularity, and complexity, makes it a valuable technique for analyzing the
dynamics of complex systems across various domains [21–25]. In this paper, we propose
to use RQA in digital communications, because it is able to reveal some intrinsic features
of digital communication signals, such as hidden periodicities, stationarity features, or
linearity properties. Indeed, due to modulation standards, transmitted signals may contain
hidden periodicities. Using this fact, we use Recurrence Quantification Analysis (RQA)
tools to detect if the bandwidth allocated to the PU is available or not. The main RQA tool
used to quantify the recurrence level is the Recurrence Rate (RR), which is considered the
probability of having recurring states in a signal. In a recent work, we proposed an RR-
based Detector (RRD) [20]. However, the RRD is very sensitive to SNRs and depends on the
choice of a recurrence threshold. To overcome the RRD’s limits, in this paper, we propose
an efficient algorithm called the Recurrence-Analysis-based Detector (RAD). The RAD
exploits the similitude of distances among various states of the signal in a multidimensional
space. This similitude of distances is evaluated by a square symmetrical matrix named the
distance matrix. Using symmetrical properties, we only exploit the upper triangular part
of this matrix in order to considerably reduce the computational cost of the RAD. Then,
we show that for a White Gaussian Noise (WGN), the coefficients of the first top diagonal
of the distance matrix become a representative sample of all other coefficients. This is
not the case for a communication signal even with a small SNR. This new approach can
detect a communication signal in a very low SNR. We have analytically established the
probabilities of detection Pd and false alarm Pf a. Through Monte Carlo simulations, we
studied the Receiver Operating Characteristic (ROC) curves of the RAD. The theoretical and
experimental results show the ability of the RAD to detect the presence of a communication
signal as soon as the SNR is greater than −12 dB with a very low probability of a false alarm.

The rest of this paper is organized as follows: Section 2 presents the problem of
spectrum sensing and our motivation for RQA. Section 3 deals with the concepts of RQA
and the state of the art in the determination of embedding parameters in order to exhibit
the hidden recurrences. Sections 4 and 5 present the Recurrence-Analysis-based detector
model and its theoretical and experimental performance. The last section contains the
conclusion and perspectives.

2. Spectrum Sensing Problem

The radio spectrum is a limited natural resource. Many techniques, such as cooperative
communication systems and heterogeneous networks, have been developed to deal with
this scarcity of the radio spectrum [26]. However, none of them can meet the strong demand
for radio spectrum. The cognitive radio introduced by Mitola [27,28] is a promising solution
allowing dynamic access to the radio spectrum [1]. Dynamic spectrum access (DSA) is
defined as a technique by which the operating spectrum of a radio network can be selected
dynamically from the available spectrum [26]. The DSA allows the SU to exploit the holes
in the spectrum dedicated to the PU. The great challenge of DSA for the SU remains the
spectrum sensing stage, during which the SU should detect the presence of the PU on a
given bandwidth.



Signals 2024, 5 440

2.1. Spectrum Sensing as a Statistical Decision

The PU’s signal detection by the SU can be modeled as a binary hypothesis testing
problem, given as [26]:

• Hypothesis H0: PU’s signal is absent
• Hypothesis H1: PU’s signal is present

Let y(n) be the signal observed by the Secondary User (SU):

y(n) = hs(n) + b(n) (1)

where h is the channel gain and b(n) is the channel noise. The noise samples bk are assumed
to be independent and identically distributed (i.i.d). The noise b(n) is a Complex Circular
Gaussian variable

(
E[b(n)] = 0; E

[
|b(n)|2

]
= σ2

b
)
; E[.] denotes the mathematical expectation.

The Test Statistic T should be compared with a predetermined threshold λ for decision
making. In this case, the probability of false alarm Pf a and the probability (Pr) of detection
Pd [29] are defined as follows:

Pf a ≜ Pr{T ≥ λ|H0} (2)

Pd ≜ Pr{T > λ|H1} (3)

where ≜ stands for equal by definition.
For good performance, Pd should be increased as much as possible while keeping

Pf a under a small preselected value. In the noncooperative spectrum sensing context, the
detection algorithms should be able to find out intrinsic features of the communication
signal to enhance a spectrum sensing task. One of the main features can be the recurrence
of internal states in the communication signals. Hereinafter, we develop a robust algorithm
based on RQA.

2.2. RQA Benefits

The RQA enjoys several specific properties:

1. RQA is based on the chaos theory and is normally used to extract the hidden recurring
states of a dynamic system. The various parts of a transmission chain, such as
modulation, filtering, coding, multiplexing, etc, generate hidden recurring states in
the communication signals. Therefore, RQA can help detect the presence of the PU’s
signal on a desired bandwidth.

2. In a previous work [20], we showed that RQA is a promising tool for the spectrum
sensing task. Indeed, in a noncooperative context, we proposed the Recurrence-Rate-
based detection model (RRD), and this previous algorithm was able to detect the
presence of the PU’s signals with SNR ≥ −5 dB.

3. During the detection procedure, a spectrum sensing algorithm based on RQA does
not require the estimation of the noise variance, as required by some spectrum sensing
algorithms such as ED, which is a great advantage.

4. RQA can help detect a communication signal in a very low SNR; and contrary to
ED, Recurrence Analysis can distinguish a noisy communication signal from a high
energy noise.

5. RQA does not have a high computational cost like CFD. In noncooperative spectrum
sensing, RQA is more robust compared with the widely used ED or CFD.

3. Recurrence Quantification Analysis

Recurrence is a fundamental feature of dynamic systems that can be exploited to
study the behavior of these systems and to discover their intrinsic properties [20,30,31]. To
analyze hidden recurrences in dynamic and nonlinear systems, an important concept in the
chaos theory, in which RQA can be used [32–35]. During the evolution of a dynamic system,
some internal states can be quasi-periodically repeated. In the phase space, the successive
states of a dynamic system form trajectories that characterize the temporal evolution of the
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system. Knowing the temporal evolution equation, any state of the system can be precisely
determined at any time. Unfortunately in real-world situations, this equation is unknown;
instead, we dispose only of a sequence of scalar measurements as time series [36,37]. From
these time series, we should reconstruct the phase space. The gold standard method
for the phase space reconstruction is delay-coordinate embedding [36]. The objective of
a delay-coordinate embedding method is to use the delayed versions of y(n) to form a
multidimensional observable xk called state vector or state of y(n). The state vector xk at
moment k is defined as follows:

xk = [yk, yk+τ , . . . , yk+(m−1)τ ]
T (4)

where yk denotes the sample of y at the moment k, τ is the time delay, and m is the
embedding dimension. The main challenge for the delay-coordinate embedding method is
the reliable estimation of τ and m.

3.1. Estimation of the Embedding Parameters
3.1.1. Time Delay

Theoretically, the time delay τ can be almost arbitrarily chosen if the observation y(n)
is noise-free with an infinite number of samples. However, these conditions cannot be
satisfied in real applications because of noise which can generate statistical dependence
among the state vectors xk. Therefore, the time delay τ has to be wisely chosen in order
to reduce this statistical dependence [20,36,38]. To determine the optimal time delay τ0,
one can use the autocorrelation function, Average Mutual Information (AMI), or phase
portrait approach. The most appropriate method is the AMI because it measures the
general dependence between two random variables [39]. Therefore, it could provide a
better criterion for the optimal time delay τ0. The concept of AMI consists, first of all, in
estimating the mutual information I(τ) between y(n) and its delay version y(n − τ) by
varying the value of τ from 0 to N; N denotes the number of samples contained in y(n).
After that, the optimal τ0 is chosen as the first τ value that minimizes I(τ) [20,40,41]. Based
on Equation (1), we can conclude that I(τ), and indirectly τ0, depends on three parameters:
the SNR value, the sampling rate, and the modulation scheme. Consequently, using the
AMI method to determine τ0 is not so suitable in the context of a noncooperative spectrum
sensing algorithm.

3.1.2. Phase Space Dimension

The optimal embedding dimension m0 for an observed signal y(n) is the minimum di-
mension for the state vectors xk to give a reliable reconstruction of y(n) phase space [35,37].
From the literature, many approaches to estimate m0 have been developed [38,42,43]. The
most used approach is based on the False Nearest Neighbors (FNNs) method [43]. Ac-
cording to the principle of FNNs, any two true neighboring points in the m − dimensional
reconstructed phase space must remain neighbors in the (m + 1) − dimensional recon-
structed phase space. Otherwise, they are called false neighbors. A perfect embedding
means all neighboring points should be true neighbors [20,42,43]. Inspired by the FNN-
based algorithm proposed in [42], we identify m0 by using the distance ratio, a(i, m),
defined as follows [42]:

a(k, m) =

∥∥∥x(m+1)
k − x(m+1)

l

∥∥∥
∞∥∥∥x(m)

k − x(m)
l

∥∥∥
∞

; (5)

where k, l =∈ {1, 2, · · · , N − mτ}; x(m)
k are the state vectors from the m − dimensional

phase space; and ∥.∥∞ is L − in f inity norm. The major drawback of using the distance
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ratio a(k, m) is its sensitivity to the reference state vector xk. To overcome this drawback,
we consider the average value ā(m, τ) instead of a(k, m):

ā(m, τ) =
1

N − mτ

N−mτ∑
k=1

a(k, m) (6)

To investigate the dependence of ā(m, τ) on m, the coefficient of proximity r(m, τ) is
defined as follows:

r(m, τ) ≜
ā(m + 1, τ)

ā(m, τ)
(7)

When m becomes greater than a limit value mlim, the proximity coefficient r(m, τ) converges
to one. Hence, m0 = mlim + 1 becomes the minimum embedding dimension [42]. Based on
Equation (7), we can observe that r(m, τ) depends on the time delay value τ. This assertion
is corroborated by simulation results. Figure 1 illustrates, for example, the evolution of
r(m, τ) for two extreme values of τ; for τ = 2, the optimal value of m0 = 6; whereas for
τ = 100, we obtain m0 = 9. As m depends on the choice of τ, we propose hereinafter an
optimization strategy to find simultaneously the optimal values of m and τ.
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Figure 1. The proximity coefficient r(m, τ) based on the embedding dimension m for a
16-QAM signal.

3.1.3. Optimal Values of m and τ

r(m, τ) is a bivariate function whose expression leads to

lim
(m,τ)→(m0,τ0)

r(m, τ) = 1 (8)

So we define the cost function f (m, τ):

f (m, τ) = ā(m, τ)− ā(m + 1, τ) (9)

The optimal values m0 and τ0 become

(m0, τ0) = argmin
(m,τ)∈N∗

{ f (m, τ)} (10)

Numerical results show that values of (m0, τ0) obtained from (10) become independent
from modulation schemes, SNR, and the number of samples per symbol Ns. Figure 2
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illustrates the cost function f(m, τ) with respect to (m, τ) for a noisy 16-QAM signal. We
can notice that

∀ τ ≥ 6, m ≥ 1, f(m, τ) → 0 (11)

The number K of state vectors is given by

K = N − (m − 1)τ ≥ Kmin (12)

Based on Takens’ theorem (in Taken’s theorem, the phase space of a system can be reliably
reconstructed if and only if m ≥ 2D + 1, where D ≥ 1 is the dimension of the system
attractor [36,44]) and the minimum number Kmin of state vectors for reliable detection, we
conclude that m0 and τ0 should be chosen in the following ranges:

(m0, τ0) ∈
[

3 ;
N − Kmin

τ0

]
×

[
6 ;

N − Kmin
2

]
(13)

However, we notice that in practice Kmin ≪ N. Consequently, we can

(m0, τ0) ∈
[

3 ;
N
τ0

]
×

[
6 ;

N
2

]
(14)

The recurring states in the phase space can be highlighted by the Recurrence Plot.
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Figure 2. The cost function f(m, τ) based on (m, τ): The flat area of the curve f(m, τ) corresponds to a
set of optimal values of (m, τ). Consequently, the optimal values (m0, τ0) of (m, τ) should be chosen

as follows (m0, τ0) ⊂
[

3 ; N
τ0

]
×

[
6 ; N

2

]
.

3.2. Recurrence Plot

The Recurrence Plot (RP) illustrates recurrences contained in a signal. The RP is based
on the recurrence matrix R(ε,m)

i,j [30,36]:

R(ε,m)
i,j = Θ

{
ε −

∥∥xi − xj
∥∥

2

}
(15)

where i, j ∈ {1, · · · , K} and K = N − (m − 1)τ denotes the number of reconstructed state
vectors xk; ε is the recurrence threshold, Θ(.) represents Heavisides’ step function, and ∥.∥2
is the L2 or Frobenius norm. dij =

∥∥xi − xj
∥∥

2 are the coefficients of the distance matrix M.
According to Equation (15), the states xi and xj are recurring states if

∥∥xi − xj
∥∥ < ε. In the

RP, a recurrence is represented by a black dot. If the parameters m, τ, and ε are optimal,
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the RP presents some intrinsic patterns of the system. For example, Figures 3–5 represent,
respectively, the RP of 16-QAM signal, GMSK signal, and a random zero mean White
Gaussian Noise (WGN) with a variance σ2

b . We can notice that the patterns in the RP of the
16-QAM signal are different from those of the GMSK signal, whereas the RP of the WGN
has no particular pattern. Heuristically, we can set the recurrence threshold as ε = 0.5σy
where σ2

y denotes the variance of the observed signal y(n); the embedding parameters are
established as m = 16 and τ = 6.
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Figure 3. RP according to Equation (15) of a 16-QAM signal.
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Figure 4. RP of a Gaussian Minimum Shift Keying (GMSK) signal.
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Figure 5. RP of White Gaussian Noise.
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As the visual analysis of RP is not objective, Zbilut and Webber introduced a procedure
to quantify RP structures [45,46]. In the literature, one has five classical tools to perform
the RQA. Some RQA tools are based on the recurrence density, while others use the line
structures of the RP [36]. The classical RQA tools are developed and extended in [30,36].
The main challenge with classical or extended RQA tools is the choice of an optimal
recurrence threshold ε of Equation (15). A small value of ε does not reveal noticeable
occurrences, while a large value of ε may lead to the appearance of neighbors for most
of the existing points and cause false occurrences [30,47]. The choice of ε is a delicate
issue affecting the reliability of the spectrum sensing based on classical or extended RQA
tools [20]. To overcome this issue, we propose in the following sections a new algorithm
called the Recurrence-Analysis-based Detector (RAD), which only exploits the distance
matrix. This distance matrix does not depend on the recurrence threshold ε and nor does
the proposed detection model RAD.

4. Recurrence-Analysis-Based Detector

The Recurrence Rate (RR) is an essential tool of RQA. Our previous works based on
the RQA detection model [20] show that an RR-based detection model (RRD) suffers from
major shortcomings, as follows:

1. It cannot detect the presence of a communication signal when SNR ≤ −5 dB.
2. It is very sensitive to the recurrence threshold ε.
3. The computational cost is relatively high
4. The performance of an RRD is sensitive to the types of modulations of a communica-

tion signal.

To overcome the above limitations, we develop hereinafter a new detection model, the
Recurrence Analysis Detection model (RAD), which is able to operate in very low SNR
conditions. In order to reduce drastically the computational cost and avoid the delicate
issue of the recurrence threshold ε, the RAD only uses the distances dij =

∥∥xi − xj
∥∥

2 of the
upper triangular part of the distance matrix.

4.1. Detection Model

Usually, the RQA is performed on the entire distance matrix D = (dij)1≤i,j≤K of
different state vectors. As D is a symmetrical matrix, in order to reduce the computational
cost, we use the upper triangular part of D, without the main diagonal defined by its
general coefficients:

Dij = dij ; ∀ 1 ≤ i < j ≤ K (16)

We denote by ud the coefficients of the first upper diagonal of D and by u∆ the other
coefficients of the upper triangular part of D, without the main diagonal. ud and u∆ verify
two great properties:

1. For a WGN, ud and u∆ have the same Probability Density Function (PDF), which is
not the case for a noisy communication signal. Hence, to detect the presence of a
communication signal, we check if ud is representative of u∆. For this purpose, we
use a statistical test of conformity to evaluate this representativeness [48].

2. The ud of a WGN or a communication signal has the same PDF. This remark allows
us to design a detector free of noise variance estimation.

To provide a better understanding of this notion of representativeness, we present
the histogram of the ud and u∆ of WGN and the communication signal, respectively, in
Figures 6 and 7, and we define the confidence interval Φ∆ as follows:

Φ∆ = [u∆ − λ; u∆ + λ] (17)

where u∆ is the average value of u∆ and λ is the predetermined detection threshold for
RAD. Further details about λ can be found in Section 4.2.4.
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On the basis of the histogram of distance and by using Kolmogorov–Smirnov test [49],
for a WGN only, we note that ud and u∆ can be approximated by the same PDF (see
Figure 6). Consequently, by using the statistical test of conformity based on the estimation
average value, we show that ud is representative of u∆. Indeed, ud ∈ Φ∆; ud denotes
the average value of ud. Contrariwise, Figure 7 gives the histogram of distance for a
communication signal buried in the WGN with an SNR= 0 dB; we can notice that ud /∈ Φ∆,
so ud is not representative of u∆.
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Figure 6. Histogram of ud and u∆ for a White Gaussian Noise (WGN): We have ud = 90.6 and u∆ = 90. For
Pf a = 0.01, the detection threshold of the RAD becomes λ = 12.5. Based on the u∆ value, the confidence interval
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Using the statistical test of conformity, we propose the following test statistic T:

T = |u∆ − ud|
H1
≷
H0

λ (18)
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In the course of our work, we establish the analytical expressions of the probability of
detection Pd and the probability of false alarm Pf a in order to compare the theoretical and
experimental results.

4.2. Analytical Expression of the Probability of False Alarm

The probability of a false alarm Pf a can be expressed from the PDF of T under H0. In
order to find this PDF, one should evaluate the PDF of u∆ and ud; see Equation (18).

4.2.1. The PDF of u∆ under Hypothesis H0

Under H0, the average value u∆ of u∆ is defined as follows:

u∆/H0 =
1

K∆

K∆∑
k=1

u(k)
∆/H0

(19)

where K∆ = (K − 1)(K/2 − 1) and u(k)
∆/H0

∈ {dij; 1 ≤ i ≤ K − 2; i + 2 ≤ j ≤ K}.
Based on the central limit theorem for independent random variables and for a large

K, u∆/H0 is asymptotically normally distributed with mean u∆/H0 and variance σ2
∆/H0

:

u∆/H0 7→ N
(

µ∆/H0 , σ2
∆/H0

)
(20)

where

µ∆/H0 = E
[
u∆/H0

]
(21)

σ2
∆ = var

[
u∆/H0

]
(22)

To calculate µ∆/H0 and σ2
∆/H0

, we can use the PDF fu∆/H0
(u) of u∆/H0 . An outcome u∆/H0

of u∆/H0 is given by

u∆/H0 = dij =

√√√√m−1∑
k=0

(
bi+kτ − bj+kτ

)2
(23)

As b(n) 7→ N
(
0, σ2

b
)
, then bi+kτ − bj+kτ 7→ N

(
0, 2σ2

b
)

and vk =
( bi+kτ−bj+kτ

σb
√

2

)
7→ N (0, 1).

By setting Z =
√∑m−1

k=0 v2
k , we can conclude that Z follows a Chi distribution χ(m)

with m degrees of freedom [50,51]:

Z =
u∆/H0

σb
√

2
7→ ≻(m) (24)

The expectation value E[Z] and variance var[Z] of Z are given as follows [50,51]:

E[Z] = µZ =
√

2
Γ
(

m+1
2

)
Γ
(m

2
) (25)

var[Z] = m − µ2
Z (26)

where Γ(m) =
∫ +∞

0 xm−1e−xdx is the Gamma function.
From Equation (24), we show that the PDF fu∆/H0

of u∆/H0 is defined as follows: [52]:

fu∆/H0
(u) =

um−1

2m−1σm
b Γ(m

2 )
exp

[
− u2

4σ2
b

]
(27)
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The mean µ∆/H0 and variance σ2
∆/H0

of X̄∆/H0 can be determined by using Equation (24)
as follows:

µ∆/H0 = σb
√

2E[Z] (28)

σ2
∆/H0

=
2σ2

b
K∆

var[Z] (29)

Finally, we have u∆/H0 7→ N
(

µ∆/H0 , σ2
∆/H0

)
with

µ∆/H0 = 2σb

Γ
(

m+1
2

)
Γ
(m

2
) (30)

σ2
∆/H0

=
2σ2

b
K∆

m − 2

Γ
(

m+1
2

)
Γ
(m

2
)

2 (31)

4.2.2. The PDF of ud under Hypothesis H0

Under H0, the average value ud of ud is defined as follows:

ud/H0 =
1

Kd

Kd∑
k=1

u(k)
dk/H0

(32)

where u(k)
d/H0

∈ {di,i+1}; 1 ≤ i ≤ Kd = K − 1.

Because of the structure of the upper triangular distance matrix, the coefficients of the
first top diagonal u(k)

d/H0
are strongly decorrelated. In addition, Kd is a large number. Thus,

we can approximate ud by a Gaussian variable by using the central limit theorem:

ud/H0 7→ N
(

µd/H0 , σ2
d/H0

)
(33)

Using a similar approach to the calculation of the expectation value µ∆/H0 and variance
σ2

∆/H0
of u∆/H0 , we obtain

µd/H0 = 2σb

Γ
(

m+1
2

)
Γ
(m

2
) (34)

σ2
d/H0

=
2σ2

b
Kd

m − 2

Γ
(

m+1
2

)
Γ
(m

2
)

2 (35)

4.2.3. The Probability Density Function of T under hypothesis H0

ud/H0 and u∆/H0 are Gaussian random variables. Based on Equations (20), (30), (31)
and (33)–(35) we end up with

u∆/H0 − ud/H0 7→ N
(

0, σ2
0

)
(36)

where

σ2
0 = σ2

∆/H0
+ σ2

d/H0
− 2Cov

(
ud/H0 , u∆/H0

)
(37)
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Applying the random variable transformation theorem [52,53] on T from Equation (18), we
end up with t ≥ 0:

fT/H0(t) =
2

σ0
√

2π
exp

[
− t2

2σ2
0

]
(38)

4.2.4. Probability of False Alarm and Detection Threshold

Based on Equation (38), the Pf a is expressed as follows:

Pf a =

∫ ∞

λ
fT/H0(t)dt = er f c

(
λ

σ0
√

2

)
(39)

er f c(x) denotes the Complementary Error Function—the Complementary Error Function
er f c(x) is defined as follows:

er f c(x) =
2√
π

∫ +∞

x
e−θ2

dθ

—and the detection threshold λ is

λ = σ0
√

2 er f c−1
(

Pf a

)
(40)

4.3. Analytical Expression of the Probability of Detection

Taking into account the presence of the communication signal s(n) and keeping the
same approach as under H0, we demonstrate that

u∆/H1 7→ N
(

µ∆/H1 , σ2
∆/H1

)
(41)

ud/H1 7→ N
(

µd/H1 , σ2
d/H1

)
(42)

where

µ∆/H1 = 2
√

σ2
s + σ2

b

Γ
(

m+1
2

)
Γ
(m

2
) (43)

σ2
∆/H1

=
2(σ2

s + σ2
b )

K∆

m − 2

Γ
(

m+1
2

)
Γ
(m

2
)

2 (44)

µd/H1 = 2σb

Γ
(

m+1
2

)
Γ
(m

2
) (45)

σ2
d/H1

=
2σ2

b
Kd

m − 2

Γ
(

m+1
2

)
Γ
(m

2
)

2 (46)
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We deduce the PDF of T under the hypothesis H1 as follows:

fT/H1(t) =
1

σ1
√

2π

e
−
(

t−µ1
σ1

√
2

)2

+ e
−
(

t+µ1
σ1

√
2

)2
 (47)

with t ≥ 0. µ1 and σ2
1 are given by

µ1 = µ∆/H1 − µd/H1 , (48)

σ2
1 = σ2

∆/H1
+ σ2

d/H1
− 2Cov

(
u∆/H1 , ud/H1

)
(49)

Consequently, the Probability of Detection Pd becomes

Pd =

∫ +∞

λ
fT/H1(t)dt

= 1 − 1
2

[
er f c

(
−λ − µ1

σ1
√

2

)
− er f c

(
λ − µ1

σ1
√

2

)] (50)

5. Simulations Results

To evaluate the efficiency and the robustness of the proposed detection method,
we generate Receiver Operating Characteristic (ROC) curves using Monte Carlo simula-
tions [54,55]. The parameters defined in Table 1 are used with different kinds of communi-
cation signals, such as 64-QAM, 16-QAM, BPSK, and 4-ASK.

Table 1. Simulation parameters.

Entity Parameters Value

PU’s signal
Sampling frequency Fe 128 kHz
Symbol rate 16 Bd
Bandwidth of Interest B 24 kHz

SU’s Detector Observation time 15.6 ms
Sampling Frequency 128 KHz

Embedding parameters Dimension m 16
time delay τ 6

Transmission Channel Noise Model AWGN

In order to compare the theoretical and experimental performance of the RAD, we
generated Pd versus SNR performance curves. Figure 8 shows these performance curves.
The theoretical curves were generated by Equation (50) and the experimental curves
according to the Monte Carlo simulations. It can be clearly observed that the theoretical
results match the simulated ones. From the theoretical and experimental curves, reliable
detection is possible as soon as SNR ≥ −12 dB with Pd ≥ 0.95 and Pf a = 0.05.

The Receiver Operating Characteristic curves for different SNR values can be viewed
in Figure 9. Here, the RAD is applied on a 16-QAM signal, and the observation time
is 31.25 ms. For SNR = −14 dB and Pf a = 0.1, the RAD detects the presence of a
communication signal with Pd = 0.76, but for SNR = −13 dB, Pd = 0.9. The detector
proves itself powerful as soon as the SNR ≥ −12 dB, since the detection probability
Pd = 0.95 with a very low value of Pf a = 0.05; see Figure 9.

Another advantage of the proposed detector is its robustness against any type of
classical modulations, such as QAM, PSK, and ASK; see Figure 10, where the ROC curves
for 4-ASK, BPSK, and 64-QAM signal are almost identical.



Signals 2024, 5 451

SNR (dB)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

P
ro

b
a
b
il
it
y
 o

f 
D

e
te

c
ti
o
n
 P

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pd vs RSB;  16-QAM Signal;  P
fa

= 0.05

Experimental

Theoretical

Figure 8. Theoretical and experimental probability of detection for RAD versus SNR.
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The performance of RAD increases with the number of samples N. Figure 11 depicts
this performance evolution based on N in a Gaussian channel where SNR = − 12 dB.
We notice that for Pf a = 0.1, the RAD detects the communication signal with Pd = 0.5
when N = 500 samples, with Pd = 0.8 when N = 1000 samples, and with Pd = 0.97 when
N = 2000 samples.
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Figure 11. Receiver Operating Characteristic of the RAD model based on the number of observed
samples in a Gaussian channel with SNR = −12 dB.

By comparing RAD with two other blind spectrum sensing algorithms, Energy De-
tection (ED) [56] and Cyclostationary Features Detector (CFD) [57,58], and according to
the results presented in Figures 12 and 13, we notice the superiority of the RAD to ED
and CFD in a Gaussian channel. For example, for the SNR = −12 dB and Pf a = 0.05,
the RAD detects the signal with Pd = 0.95, whereas the probability of detection for the
ED is only Pd = 0.67 (see Figure 12). Figure 13 shows that the RAD is able to detect the
communication signal in very weak low SNR conditions. For −12 dB ⩽ SNR ⩽ −10 dB,
the RAD detects the presence of a communication signal with Pd ⩾ 0.95 for Pf a = 0.05. ED
achieves RAD performance only when SNR ⩾ −10 dB, and CFD works correctly when
SNR ⩾ −7 dB with Pd ⩾ 0.97.
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Figure 12. ROC performance: ED vs RAD. The RAD is superior to ED.
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Figure 13. Comparison of Energy Detector (ED), Cyclostationary Features Detector (CFD), and
Recurrence Analysis Detector (RAD).

After testing the performance of the detector in a Gaussian channel, we are now
interested in the behavior of the RAD in a multipath channel. As a model, we use model D
of the Rayleigh channel defined in [59] with the following parameters (Tables 2 and 3):

Table 2. Rayleigh Channel Model Features.

Model D of Rayleigh Channel

Entity Parameters Value

Features Number of Path 6
Doppler Frequency fdmax 1.2 kHz

Table 3. Delay and Gain values for 6 paths [59].

Path Number 1 2 3 4 5 6

Delay (ns) 0 300 8900 12,900 17,100 20,000

Gain (dB) 0 −2.5 −12.8 −10.0 −25.2 −16.0

Figure 14 summarizes the performance of the RAD in a noisy Rayleigh channel. The
RAD’s performance remains almost unchanged. It detects a communication signal with
Pd ≥ 0.92 with Pf a = 0.05 as soon as SNR ≥ −12 dB.
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Figure 14. Performance Curve Pd as a function of SNR for 16-QAM signal in a Rayleigh channel.
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6. Complexity Analysis of Recurrence-Analysis-Based Detector

Theoretical and experimental analyses show the superiority of the RAD compared
with the Energy Detector (ED) and the Cyclostationary Feature Detector (CFD) in a low
SNR scenario detection process. The complexity of the algorithms is measured through the
number of complex multiplications that the algorithms have to perform for the calculation
of the test statistics [60]. In this section, we provide the complexity analyses of the ED, CFD,
and RAD.

6.1. Complexity Analysis of Energy-Based Detector

Let y(n) be the observed signal with N samples yk. The energy Ey of y(n) is given by

Ey =
1
N

N∑
k=1

y2
k (51)

The ED detection process is summarized in Figure 15.

Figure 15. Energy Detector process. λED denotes the detection threshold of the ED.

The complexity of the computation can be evaluated according to Equation (51). N
multiplication operations are required to perform y2

k . Consequently, the computation
complexity CED becomes [60]

CED = N (52)

6.2. Complexity Analysis of Cyclostationary-Feature-Based Detector

In a blind context, the CFD is based on the reliable estimation of the cyclic
spectrum [13,61,62]. The crest factor Fc of the cyclic spectrum can be used as a decision
statistic [13]:

Fc(α) =
maxα D(α)√

1
2N+1

∑2N+1
k=1 D2(α)

H1
≷
H0

λCFD (53)

where α stands for the cyclic frequency and D(α) denotes the Cyclic Domain Profile (CDP).
The computation of Fc requires six steps [13]. First, a Hamming sliding window w(n) is
used to apodize the observed signal y(n). Then, we apply a first Fast Fourier Transform
(FFT) and calculate the complex demodulates of the apodized signal. After that, we
compute the spectral correlation of the different complex demodulates and apply a second
FFT. At the end, we obtain the cyclic spectrum, and we compute the crest factor Fc of the
cyclic spectrum.

Let N be the number of samples contained in the observed signal y(n) and Np be

the number of samples contained in each apodized block of y(n). L =
Np
4 denotes the

decimation factor, and P = N
L is the number of apodized blocks from y(n). The apodization

is carried out with a Hamming window [13,61,63]. Figure 16 summarizes the essential
steps of Fc computation.
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Figure 16. Different steps of the CFD detection process.

The apodization equation is defined as follows:

rk = wkyk; k = 1..Np (54)

where wk denotes the Hamming window coefficients, yk is the samples of the observed
signal y(n), and rk becomes the coefficients resulting from the apodization.

The apodization step requires PNp multiplication operations. The second step in the
CFD detection process is the first FFT applied on apodized blocks. The complexity of
FFT computation is known as Np log2 Np. Consequently, the P apodized blocks require
PNplog2Np multiplication operations. The complex demodulates computation requires
PN2

p multiplication operations, and the step of complex demodulates multiplication re-
quires P2N2

p multiplication operations.
The second FFT with P data points to obtain the estimation of cyclic spectrum requires

N2
p P log2 P multiplication operation and the calculation of crest factor Fc alone requires

2N + 1 multiplication operations.
Finally, the algorithmic complexity of CFD, CCFD, is

CCFD = 34N2 + 64NL + 10N + 2 (55)

6.3. Algorithmic Complexity of Recurrence-Analysis-Based Detector

To make decisions, the RAD uses a statistic test defined in Equation (18). The RAD
detection process is summarized in Figure 17.

Figure 17. Different steps of the RAD detection process.

The algorithmic complexity of the RAD essentially concerns the distance matrix
computation and the calculation of average values of distance matrix coefficients. From
the observed signal y(n) containing N samples, we obtain K = N − (m − 1)τ state vectors.
Each state vector contains m coordinates. The distance dij =

∥∥x−xj
∥∥ from the state vector

xi to other state vectors xj requires mK addition operations. Because we exploit only the
upper triangular part of the distance matrix with the main diagonal coefficients, we use
m
2 K(K − 2) addition operations. The computation of the average value of the first upper
diagonal requires K elementary operations, and the average value of other coefficients
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requires (K−2)2

2 elementary operations. The statistic test of the RAD requires one addition
operation. Consequently, the computation complexity CRAD of the RAD becomes

CRAD = 2N2 + 4N(τ − mτ − 1) +
[
2(mτ)2 + 2τ2 − 4mτ2 − 4τ + 2mτ + 6

]
(56)

From Equations (52), (55), and (56), in Figure 18, we generated the curves of the evolution
of the algorithmic complexity of the ED, CFD, and RAD based on the number of samples
contained in the observed signal y(n). The results in Figure 18 show that ED is the
simplest algorithm, whereas CFD is the most complicated one. We also notice that the RAD
algorithm is less complicated than the CFD algorithm.

Number of samples N ×104

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
u
m

b
e
r
 o

f 
e
le

m
e
n
ta

r
y
 o

p
e
r
a
ti
o
n
s
 

(
a
d
d
it
io

n
s
 a

n
d
 m

u
lt
ip

li
c
a
ti
o
n
s
)

×109

0

2

4

6

8

10

12

14
Algorithmic complexity of ED, CFD and RAD

ED

CFD

RAD

Figure 18. Curves of the algorithmic complexity of ED, CFD, and RAD.

7. Conclusions

This paper deals with the problem of noncooperative spectrum sensing in very low
SNR conditions. Many algorithms have recently been developed to overcome the scarcity
of radio spectrum. However, most of them suffer from noise uncertainty and do not work
correctly in very low SNR conditions. In this paper, we use the promising approach of the
Recurrence Quantification Analysis (RQA) to propose a robust detection model, named the
Recurrence-Analysis-based Detector (RAD). The RAD benefits from the exploitation of the
similitude among the different state vectors. Indeed, our analyses reveal that for a White
Gaussian Noise, the coefficients contained on the first upper diagonal are representative of
other coefficients of the distance matrix, which is not the case for a communication signal.
Thus, by applying a conformity test between the coefficients of the first upper diagonal and
other coefficients of the distance matrix, the presence or absence of a communication signal
can be revealed. The RAD presents five major advantages: it is more robust than the Energy
Detector (ED) and the Cyclostationary Feature Detector (CFD), which are widely used in the
noncooperative spectrum sensing context; it does not suffer from noise variance estimation,
because the estimation of the noise variance is not required during the spectrum sensing
process; it is able to detect the communication signal in a very low SNR condition; contrary
to the ED, the RAD is able to distinguish a noisy communication signal and a high energy
noise; the RAD does not need a high computational cost like the CFD. Our present work
also presents two major contributions. First, we determined, for digital communication
signals, the optimal values of the time delay τ and embedding dimension m needed for the
phase space reconstruction. Second, we established the analytical expression of detection
threshold λ, the probability of detection Pd, and the probability of false alarm Pf a of the
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detection model based on RQA. From the ROC curves, we can notice without ambiguity
that the RAD is more robust than the ED and CFD algorithms. Our current simulations
show that the RAD is able to detect the communication signal for SNR ≥ −12 dB. In
addition to facilitating the blind detection of communication signals, RQA could be used to
accurately estimate the characteristic frequencies of the signal of interest. In our future work,
we will optimize the performance of the RAD detector based on this reliable estimation of
the characteristic frequencies of the signal of interest.
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