Global Historical Megatsunamis Catalog (GHMCat)
Abstract
:1. Introduction
2. Background, Definitions, and Data Availability
2.1. Previous Definitions
2.2. Wave Height and Runup Measurements
- Tide gauge measurements: 63 cases (40%) among the events with Hmax ≥10 m, all from 1945 onwards; 11 cases (24%) with Hmax ≥30 m, from 1946 onwards, except for the 1883 Krakatoa tsunami.
- Depth gauge measurements: 11 cases (7%) among the events with Hmax ≥10 m, and only 1 case for Hmax ≥30 m, the 2011 Japan tsunami.
2.3. Megatsunamis and Large Tsunamis
3. Causes and Origin of Megatsunamis
3.1. Causes of Megatsunamis (Why)
3.2. Origin of Megatsunamis (Where)
- A tsunami, as defined by NOAA [28], is “a water wave or a series of waves generated by an impulsive vertical displacement of the surface of the ocean or other body of water”, specifying, further, that “locally destructive tsunamis may be generated by landslides into bays or lakes”.
- Impulse waves and seiches are specific types of waves encompassed under the term of megatsunami, since they can be produced by megatsunamis.
4. Methodology
- Phase 1: Megatsunami Definition Based on Wave Heigh Data
- Analysis of data on maximum wave heights of all historical tsunamis documented in the two existing Global Historical Tsunami Databases (GHTDs).
- Establishment of a wave height threshold for megatsunamis based on the statistical distribution of all recorded maximum wave heights for the historical period.
- Definition of “megatsunami” based on the established wave height threshold.
- Phase 2: Megatsunamis Catalog
- Data sources and literature review
- -
- Review of GHTDs as primary data sources.
- -
- Literature review: comprehensive examination of existing catalogs, reports, studies, scientific papers, and other relevant publications.
- -
- Addressing uncertainties: identification of uncertainties and inconsistencies in the data and interpretations of events.
- Data collection and verification
- -
- Identification of definite megatsunamis meeting the proposed definition in the GHTDs.
- -
- Verification of data accuracy and consistency through credible historical records and/or geological evidence from documentary sources.
- -
- Investigation and verification of other documented megatsunamis not included in the GHTDs.
- Analysis of the relationships between maximum wave height and causes of historical tsunamis.
- Data compilation: Global Historical Megatsunamis Catalog (GHMCat)
- -
- Compilation and description of each verified historical megatsunami, including details on maximum wave height, causes, and other significant data and effects when available.
5. Definition of Megatsunami Based on Maximum Recorded Wave Heights
6. Data Sources and Literature Review
6.1. Sources of Primary Information
- The NCEI/WDS Global Historical Tsunami Database [12] supported by the National Geophysical Data Center of the National Oceanic and Atmospheric Administration (NOAA), USA.
- The TL/ICMMG Global Historical Tsunami Database [13] supported by the Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics of Siberian Division of Russian Academy of Sciences, Russia.
6.2. Literature Review
- Iida, K., Cox, D.C. & Pararas-Carayannis, G. 1967. Preliminary catalog of tsunamis occurring in the Pacific Ocean [65].
- Soloviev, S.L. & Go, Ch.N. 1974. A catalogue of tsunamis on the western shore of the Pacific Ocean (173–1968) [25].
- Soloviev, S.L. & Go, Ch.N. 1975. A catalogue of tsunamis on the eastern shore of the Pacific Ocean (1513–1968) [26].
- Iida, K. 1984. Catalog of tsunamis in Japan and its neighboring countries [66].
- Lander, J.F. 1996. Tsunamis affecting Alaska 1737–1996 [30].
- Harris, R. & Major, J. 2016. Waves of destruction in the East Indies: The Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877 [67].
6.3. Addressing Uncertainties
7. Data Collection and Verification
7.1. Megatsunamis Included in the GHTDs
7.2. Verification of Megatsunamis Included in the GHTDs
- The exclusion of three events due to substantial doubts, uncertainties, or discrepancies in the reported data regarding maximum wave height: events of 1737, 1741, and 1880.
- The correction of Hmax values for four events: 1771, 1788 (heights have been lowered); 1756, 1896 (heights have been increased).
- The inclusion of two events, one in Canada in 1946 and another in Alaska in 1905, as megatsunamis, initially documented with Hmax < 35 m.
7.2.1. Events Excluded as Megatsunamis
7.2.2. Correction of the Maximum Wave Height Values
7.3. Documented Megatsunamis Not Included in the GHTDs
7.4. A New Event in Lituya Bay Prior to 1786
8. Causes of Historical Tsunamis
8.1. Maximum Wave Heights and Causes
8.2. Data Verification for Tsunamis with Hmax ≥30 m Attributed to Earthquakes
8.3. Results
- For Hmax values <30 m, 75% of tsunamis originated from earthquakes.
- For Hmax values >32 m, 100% of tsunamis were caused by landslides.
9. Results: GHMCat Data Compilation and Presentation
10. Global Historical Megatsunami Catalog (GHMCat) 1674–2024: Description of Events
- 1674, February 17—Ambon Island, Indonesia
- Runup: 100 m
- Cause: Earthquake-triggered landslide (submarine?)
- 1756, February 22—Langfjord, Norway
- Runup: >50 m
- Cause: Subaerial rock avalanche
- 1771, April 24—Ryukyu Islands, Japan
- Runup: 35 m
- Cause: Earthquake-triggered submarine landslide
- 1788, August 6—Unga and Sanak Islands, Alaska
- Runup: ≥50 m
- Cause: Earthquake-triggered submarine landslide (proposed)
- 1792, May 21—Kyushu Island, Japan
- Runup: 57 m
- Cause: Subaerial volcanic flank landslide
- 1853, November 30—Lituya Bay, Alaska
- Runup: 120 m
- Cause: Subaerial rock/ice avalanche
- 1883, August 27—Krakatoa Island, Indonesia
- Runup: 41 m
- Cause: Volcanic flank collapse/Caldera collapse
- 1896, June 15—Sanriku coast, Japan
- Runup: 55 m
- Cause: Earthquake-triggered submarine landslide (proposed)
- 1899, September 10—Lituya Bay, Alaska
- Runup: 61 m
- Cause: Earthquake-triggered subaerial landslide/rock avalanche (M~8.2)
- 1905, January 16—Lovatnet Lake, Norway
- Runup: 41 m
- Cause: Subaerial rock avalanche
- 1905, July 4—Disenchantment Bay, Alaska
- Runup: 35 m
- Cause: Glacier landslide
- 1934, April 7—Tafjord, Norway
- Runup: 62 m
- Cause: Subaerial rock avalanche
- 1936, September 13—Lovatnet Lake, Norway
- Runup: 74 m
- Cause: Subaerial rock avalanche
- 1936, September 21—Lovatnet Lake, Norway
- Runup: 40 m
- Cause: Subaerial rock avalanche
- 1936, October 27—Lituya Bay, Alaska
- Runup: 150 m
- Cause: Subaerial landslide/rock avalanche
- 1936, November 11—Lovatnet Lake, Norway
- Runup: >74 m
- Cause: Subaerial rock avalanche
- 1946, April 1—Unimak Island, Alaska
- Runup: 42 m
- Cause: Earthquake-triggered submarine landslide (M 8.6)
- 1946, June 23—Landslide Lake, Canada
- Runup: 51 m
- Cause: Earthquake-triggered subaerial landslide (M~7.3)
- 1958, July 9—Lituya Bay, Alaska
- Runup: 524 m
- Cause: Earthquake-triggered subaerial rock/ice avalanche (M~7.8)
- 1963, October 9—Vaiont Reservoir, Italy
- Runup: 250 m
- Cause: Subaerial landslide
- 1964, March 28—Port Valdez Bay, Alaska
- Runup: 67 m
- Cause: Earthquake-triggered submarine landslide (M 9.2)
- 1965, February 19—Cabrera Lake, Chile
- Runup: 60 m
- Cause: Subaerial landslide
- 1967, October 14—Grewingk Glacier Lake, Alaska
- Runup: 60 m
- Cause: Subaerial landslide
- 1980, May 18—Spirit Lake, USA
- Runup: 260 m
- Cause: Volcanic flank landslide
- 1985, June 12—Yangtze River, Three Gorges Region, China
- Runup: 54 m
- Cause: Subaerial landslide
- 2000, November 21—Vaigat Strait, Greenland
- Runup: 50 m
- Cause: Subaerial landslide
- 2003, July 14—Qinggan River, Three Gorges Reservoir, China
- Runup: 39 m
- Cause: Subaerial landslide
- 2004, December 26—Sumatra Island, Indonesia
- Runup: ~50 m
- Cause: Earthquake-triggered submarine landslide (M 9.1)
- 2007, April 21—Aysén Fjord, Chile
- Runup: 65 m
- Cause: Earthquake-triggered subaerial landslide (M 6.2)
- 2007, June 15—Shuibuya Reservoir, China
- Runup: 50 m
- Cause: Subaerial landslide
- 2007, November 5—Grijalva River, México
- Runup: 50 m
- Cause: Subaerial landslide
- 2007, December 4—Chehalis Lake, Canada
- Runup: 38 m
- Cause: Subaerial landslide
- 2011, March 11—Sanriku coast, Japan
- Runup: ~40 m
- Cause: Earthquake-triggered submarine landslide (M 9.1)
- 2014, July 21—Askja Lake, Iceland
- Runup: 80 m
- Cause: Subaerial rockslide
- 2015, October 17—Taan Fjord, Alaska
- Runup: 193 m
- Cause: Subaerial landslide
- 2017, June 17—Karrat Fjord, Greenland
- Runup: 90 m
- Cause: Subaerial landslide
- 2018, October 10—Jinsha River, Tibet, China
- Runup: 130–140 m
- Cause: Subaerial landslide
- 2018, December 11—Bureya Reservoir, Russia
- Runup: 90 m
- Cause: Subaerial landslide
- 2018, December 22—Anak Krakatau Island, Indonesia
- Runup: 85 m
- Cause: Volcanic flank landslide
- 2020, November 28—Elliot Lake, Canada
- Runup: 114 m
- Cause: Subaerial landslide
11. Discussion
11.1. Maximum Wave Height, Data Availability, and Measurement
11.2. Causes of Historical Megatsunamis
11.3. GHMCat Temporal and Spatial Scope
11.4. Future Trends
12. Conclusions
- The Global Historical Megatsunami Catalog (GHMCat) compiles the events with the largest waves recorded in historical times. It provides a comprehensive list of 40 verified megatsunamis, detailing their maximum wave heights, causes and primary bibliographic sources. It also describes the main characteristics, attributes, and consequences or damages of each megatsunami. Additionally, a previously unrecorded megatsunami that occurred before 1786 on the coast of Alaska has been documented.
- A definition of megatsunami is proposed based on the objective criterion of maximum height reached by the waves, or runup, with a proposed threshold value of 35 m, derived from the analysis of all historical tsunamis, particularly those with a maximum wave height (Hmax) ≥30 m. The 35 m threshold effectively distinguishes an exclusive group of 40 events, that represent ~1.5% of documented historical tsunamis.
- No tsunami waves caused by earthquakes have been recorded over 32 m. In contrast, all tsunamis exceeding this value have been generated by subaerial or submarine landslides.
- Large subaerial landslides or rock avalanches, occasionally triggered by high-magnitude earthquakes or large explosive volcanic eruptions, account for 80% of megatsunamis, while 20% of the events have been caused by large submarine landslides triggered by very high magnitude earthquakes.
- Megatsunamis generated by subaerial landslides or rock avalanches in confined bodies of water yield the highest recorded runups, reaching up to several hundred meters. The highest is the 1958 Lituya Bay megatsunami, with a runup of 525 m, more than double that of the second highest, Spirit Lake, 1980.
- Submarine landslides triggered by great earthquakes represent a critical mechanism for generating near-field megatsunamis. This dual earthquake-landslide mechanism helps explain the exceptional tsunami wave heights independently of earthquake magnitudes.
- Historical megatsunamis have been documented in America (~40%), Asia (~32%), and Europe (~22%). Alaska and Norway’s bays and fjords have the highest frequency, accounting for 40% of global recorded megatsunamis in the last 350 years. Other affected areas include the coasts of Indonesia, Japan, Canada, and China, with the latter experiencing four megatsunamis in rivers or reservoirs.
- Megatsunamis have occurred in glaciated regions’ bays, fjords and lakes (45%), open sea coasts (25%), mountain lakes (12%), rivers (10%), and reservoirs (8%). Notably, human activity has influenced landslides in certain instances, such as reservoirs in China and Italy.
- The possibility of more frequent megatsunamis in glaciated regions due to global warming-induced retreat warrants consideration. In contrast, the likelihood of megatsunamis associated with large explosive eruptions or volcanic island flank failures is very low, as is the occurrence of local, near-field megatsunamis generated by large-magnitude earthquake-triggered submarine landslides.
- The information provided by the GHMCat allows for a comprehensive historical overview of megatsunamis, establishing relationships between their causes, wave heights, and geographic distribution over the past 350 years. This may contribute to advancing the knowledge and understanding of the causes and origins of megatsunamis, and aid prevention efforts in high-risk regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHMCat | Global Historical Megatsunamis Catalog |
GHTDs | Global Historical Tsunami Databases |
NCEI/WDS | National Centers for Environmental Information/World Data Service (NOAA), EE.UU. |
NGDC/WDS | National Geophysical Data Center/World Data Service (NOAA), EE.UU. |
NOAA | National Oceanic and Atmospheric Administration, EE.UU. |
TL/ICMMG | Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics (Russian Academy of Sciences) |
VEI | Volcanic explosivity index (relative measure of the explosiveness of volcanic eruptions) |
Appendix A
Date | Name/Place | Cause * | Runup (m) * |
1600 BC | Santorini, Greece | V | 90/- |
1674 | Ambon Island, Indonesia | LEq (6.8)/Eq (8) | 100/80 |
1737 | Kamchatka, Russia | Eq (8.5) | 15/63 |
1741 | Oshima Island, Japan | V/LV | 90/10 |
1756 | Langfjord, Norway | L/- | 38/- |
1771 | Ryukyu Islands, Japan | Eq (7.4)/LEq | 85.4 |
1788 | Unga and Sanak Is., Alaska | Eq (8) | 88 |
1792 | Kyushu Island, Japan | LV/V | 55/57 |
1853 | Lituya Bay, Alaska | L | 120 |
1880 | Sitka, Alaska | LEq (6.3) | 1.8/60 |
1883 | Krakatoa Island, Indonesia | V | 41/35 |
1896 | Sanriku coast, Japan | Eq (8.3)/(8.5) | 38.2 |
1899 | Lituya Bay, Alaska | LEq (8.2) | 61 |
1905 | Lovatnet Lake, Norway | L | 40 |
1934 | Tafjord, Norway | L | 62 |
1936 | Lovatnet Lake, Norway | L | 74/70 |
1936 | Lituya Bay, Alaska | L | 150 |
1946 | Unimak Island, Alaska | LEq (8.6)/Eq (8.6) | 42 |
1958 | Lituya Bay, Alaska | LEq (7.8)/L | 525 |
1963 | Vaiont Reservoir, Italy | L | 235 |
1964 | Port Valdez Bay, Alaska | LEq (9.2)/Eq (9.3) | 67 |
1965 | Cabrera Lake, Chile | LV/V | 60 |
1967 | Grewingk Glacier Lake, Alaska | L | 60 |
1980 | Spirit Lake, EE.UU. | V | 250 |
1985 | Yangtze River, China | L | 54 |
2000 | Vaigat Strait, Greenland | L | 50 |
2003 | Qinggang River, China | L/- | 39/- |
2004 | Sumatra Island, Indonesia | Eq (9.1) | 50.9 |
2007 | Aysén Fjord, Chile | LEq (6.2)/L | 50/65 |
2007 | Shuibuya Reservoir, China | L/- | 50/- |
2007 | Chehalis Lake, Canada | L | 38/37.8 |
2011 | Sanriku coast, Japan | Eq (9.1) | 39.7/42 |
2014 | Askja Lake, Island | L/- | 60/- |
2015 | Taan Fjord, Alaska | L | 193 |
2017 | Karrat Fjord, Greenland | L | 90 |
2018 | Bureya Reservoir, Russia | L | 90 |
2018 | Anak Krakatau, Indonesia | LV/V | 85 |
Date | Place/Name | Cause | Runup (m) | References | ||
---|---|---|---|---|---|---|
GHTDs | This Study | GHTDs * | This Study | |||
1737 | Kamchatka, Russia | Eq (8.5) | Eq | 63 | 21 | [12,73] |
1741 | Oshima Island, Japan | LV | LV | 90 | 13 | [25,65,75] |
1756 | Langfjord, Norway | L | L | 38 | >50 | [86] |
1771 | Ryukyu Islands, Japan | Eq (7.4) | SLEq | 85.4 | 35 | [78,81,82] |
1788 | Unga and Sanak Is., Alaska | Eq (8) | SLEq ** | 88 | ≥50 | [30,84,85] |
1880 | Sitka, Alaska | LEq (6.3) | SLEq | 60 | <30 | [26] |
1896 | Sanriku coast, Japan | Eq (8.3) | SLEq ** | 38.2 | 55 | [88,89] |
1905 | Disenchantment Bay, Alaska | L | L | 33.5 | 35 | [7,30] |
1946 | Landslide Lake, Canada | LEq (7.3) | LEq (7.3) | 30 | 51 | [90] |
1936 | Lovatnet Lake, Norway | - | L | - | 40 | [9,49] |
1936 | Lovatnet Lake, Norway | - | L | - | >74 | [9] |
2007 | Grijalva River, Mexico | - | L | - | >50 | [118] |
2018 | Jinsha River, China | - | L | - | 130 | [122] |
2020 | Elliot Lake, Canada | - | L | - | 114 | [125] |
Appendix B. Relationships between Maximum Wave Height and Tsunami-Generating Processes Parameters
References
- Felton, E.A.; Crook, K.A.W.; Keating, B.H. The Hulopoe gravel, Lanai, Hawaii: New sedimentological data and their bearing on the ‘‘giant wave’’ (mega-tsunami) emplacement hypothesis. Pure Appl. Geophys. 2000, 157, 1257–1284. [Google Scholar] [CrossRef]
- Ferrer, M.; González-de-Vallejo, L.; Madeira, J.; Andrade, C.; García-Davalillo, J.C.; Freitas, M.C.; Meco, J.; Betancort, J.F.; Torres, T.; Ortiz, J.E. Megatsunamis induced by volcanic landslides in the Canary Islands: Age of the tsunami deposits and source landslides. GeoHazards 2021, 2, 228–256. [Google Scholar] [CrossRef]
- McMurtry, G.M.; Fryer, G.J.; Tappin, D.R.; Wilkinson, I.P.; Williams, M.; Fietzke, J.; Garbe-Schoenberg, D.; Watts, P. Megatsunami deposits on Kohala volcano, Hawaii, from flank collapse of Mauna Loa. Geology 2004, 32, 741–744. [Google Scholar] [CrossRef]
- Goff, J.; Chagué-Goff, C.; Archer, M.; Dominey-Howes, D.; Turney, C. The Eltanin asteroid impact: Possible South Pacific palaeomegatsunami footprint and potential implications for the Pliocene-Pleistocene transition. J. Quat. Sci. 2012, 27, 660–670. [Google Scholar] [CrossRef]
- Bryant, E. Tsunami: The Underrated Hazard, 3rd ed.; Springer-Praxis Publishing: Chichester, UK, 2014; 222p. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Global occurrence of large tsunamis and tsunami-like waves within the last 120 years (1900–2019). Pure Appl. Geophys. 2020, 177, 1261–1266. [Google Scholar] [CrossRef]
- Miller, D.J. Giant Waves in Lituya Bay, Alaska; U.S. Geological Survey Prof. Paper 354-C; USGS: Washington, DC, USA, 1960; 48p. [Google Scholar]
- Slingerland, R.L.; Voight, B. Occurrences, Properties, and Predictive Models of Landslide-Generated Water Waves. In Developments in Geotechnical Engineering, Vol. 14 Rockslides and Avalanches; Voight, B., Ed.; Elsevier: New York, NY, USA, 1979; pp. 317–397. [Google Scholar] [CrossRef]
- Grimstad, E.; Nesdal, S. The Loen Rockslides—A Historical Review. In Rock Joints; Barton, M., Stephansson, W., Eds.; Balkema: Rotterdam, The Netherlands, 1991; pp. 1–6. Available online: https://www.researchgate.net/publication/293471500_Loen_rockslides_A_historical_review (accessed on 15 June 2024).
- Gusiakov, V.K. Identification of Slide-Generated Tsunamis in the Historical Catalogs. In Submarine Landslides and Tsunamis, NATO Science Series, vol 21; Yalçiner, A.C., Pelinovsky, E.N., Okal, E., Synolakis, C.E., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 17–24. [Google Scholar] [CrossRef]
- Heller, V.; Ruffini, G. A critical review about generic subaerial landslide-tsunami experiments and options for a needed step change. Earth Sci. Rev. 2023, 242, 104459. [Google Scholar] [CrossRef]
- NCEI/WDS Global Historical Tsunami Database. National Geophysical Data Center of the National Oceanic and Atmospheric Administration (NOAA), EE.UU. Available online: https://www.ngdc.noaa.gov/hazard/tsu_db.shtml (accessed on 31 May 2024). [CrossRef]
- TL/ICMMG Global Historical Tsunami Database. Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics of Siberian Division of Russian Academy of Sciences. Available online: http://tsun.sscc.ru/gtdb/default.aspx (accessed on 31 May 2024).
- Ferrer, M. Megatsunamis; Spanish Nat. Research Council (CSIC)-Catarata: Madrid, Spain, 2023; 130p. [Google Scholar]
- Bourgeois, J. Extended period of extinctions across the Cretaceous/Tertiary boundary in planktonic foraminifera of continental-shelf sections: Implications for impact and volcanism theories: Discussion and reply. Geol. Soc. Am. Bull. 1991, 103, 434–435. [Google Scholar] [CrossRef]
- Bourgeois, J.; Hansen, T.A.; Wiberg, P.L.; Kauffman, E.G. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science 1988, 241, 567–570. [Google Scholar] [CrossRef]
- Paskoff, R. Likely occurrence of a megatsunami in the middle Pleistocene, near Coquimbo, Chile. Rev. Geol. Chile 1991, 18, 87–91. [Google Scholar]
- Moore, J.G.; Moore, G.W. Deposit from a giant wave on the Island of Lanai, Hawaii. Science 1984, 226, 1312–1315. [Google Scholar] [CrossRef]
- Moore, G.W.; Moore, J.G. Large-Scale Bedforms in Boulder Gravel Produced by Giant Waves in Hawaii. In Sedimentologic Relevance of Convulsive Geologic Events, GSA Special Papers; Clifton, H.E., Ed.; GSA: Boulder, CO, USA, 1988; Volume 229, pp. 101–110. [Google Scholar] [CrossRef]
- Alexander, W.R.; Neall, F.B. Assessment of Potential Perturbations to Posiva’s SF Repository at Olkiluoto from the ONKALO Facility; Working Report 2007-35; Posiva Oy: Olkiluoto, Finland, 2007; 155p. [Google Scholar]
- Krehl, P.O.K. History of Shock Waves, Explosions and Impact; Springer: Berlin/Heidelberg, Germany, 2009; 1288p. [Google Scholar]
- Goff, J.; Terry, J.P.; Chagué-Goff, C.; Goto, K. What is a mega-tsunami? Mar. Geol. 2014, 358, 12–17. [Google Scholar] [CrossRef]
- Naranjo, J.A.; Arenas, M.; Clavero, J.; Muñoz, O. Mass movement-induced tsunamis: Main effects during the Patagonian Fjordland seismic crisis in Aisén (45°25′S), Chile. Andean Geol. 2009, 36, 137–145. [Google Scholar] [CrossRef]
- Rabinovich, A.B.; Eblé, M.C. Deep-ocean measurements of tsunami waves. Pure Appl. Geophys. 2015, 172, 3281–3312. [Google Scholar] [CrossRef]
- Soloviev, S.L.; Go, C.N. Catalogue of Tsunamis on the Western Shore of the Pacific Ocean (173–1968); Nauka Publishing House: Moscow, Russia, 1974; Translated to English by Canadian Institute for Science and Technical Information, Canadian Translation of Fisheries and Aquatic Sciences, 1984, No. 5078, p. 439. [Google Scholar]
- Soloviev, S.L.; Go, C.N. Catalogue of Tsunamis on the Eastern Shore of the Pacific Ocean (1513–1968); Nauka Pub. House: Moscow, Russia, 1975; Translated to English by Canadian Institute for Science and Technical Information, Canadian Translation of Fisheries and Aquatic Sciences, 1984, No. 5078, p.293. [Google Scholar]
- Merrifield, M.A.; Firing, Y.L.; Aarup, T.; Agricole, W.; Brundrit, G.; Chang-Seng, D.; Farre, R.; Kilonsky, B.; Knight, W.; Kong, L.; et al. Tide gauge observations of the Indian Ocean tsunami, 26 December 2004. Geophys. Res. Lett. 2005, 32, L09603. [Google Scholar] [CrossRef]
- NOAA-NGDC/WDS. Available online: https://www.ngdc.noaa.gov/hazard/tsunami-db-intro.html (accessed on 9 January 2024).
- Intergovernmental Oceanographic Commission—UNESCO. International Tsunami Survey Team (ITST) Post-Tsunami Survey Field Guide, 2nd ed.; IOC Manuals and Guides 37; UNESCO: Paris, France, 2014; 114p, Available online: https://unesdoc.unesco.org/ark:/48223/pf0000229456 (accessed on 15 June 2024).
- Lander, J.F. Tsunamis Affecting ALASKA 1737–1996; NGDC Key to Geophysical Research Documentation No. 31; NOAA: Boulder, CO, USA, 1996; 205p. [Google Scholar]
- Synolakis, C.E.; Okal, E.A. 1992–2002: Perspective on a Decade of Post-Tsunami Surveys. In Tsunamis: Case Studies and Recent Developments; Satake, K., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 1–29. [Google Scholar]
- Atwater, B.F.; Cisternas, M.; Yulianto, E.; Prendergast, A.L.; Jankaew, K.; Eipert, A.A.; Starin Fernando, W.I.; Tejakusuma, I.; Schiappacasse, I.; Sawai, Y. The 1960 tsunami on beach-ridge plains near Maullín, Chile: Landward descent, renewed breaches, aggraded fans, multiple predecessors. Andean Geol. 2013, 40, 393–418. [Google Scholar] [CrossRef]
- Lavigne, F.; Paris, R.; Grancher, D.; Wassmer, P.; Brunstein, D.; Vautier, F.; Leone, F.; Flohic, F.; de Coster, B.; Gunawan, T.; et al. Reconstruction of tsunami inland propagation on 26 December 2004 in Banda Aceh, Indonesia, through field investigations. Pure Appl. Geophys. 2009, 166, 259–281. [Google Scholar] [CrossRef]
- Shibayama, T.; Okayasu, A.; Sasaki, J.; Wijayaratna, N.; Suzuki, T.; Jayaratne, R.; Ariff, Z.; Matsumaru, R. Disaster Survey of Indian Ocean Tsunami in South Coast of Sri Lanka and Aceh, Indonesia. In Proceedings of the International Conference on Coastal Engineering, ICCE, San Diego, CA, USA, 3–8 September 2006; pp. 1469–1476. [Google Scholar] [CrossRef]
- Tsuji, Y.; Tanioka, Y.; Matsutomi, H.; Nishimura, Y.; Kamataki, T.; Murakami, Y.; Sakakiyama, T.; Moore, A.; Gelfenbaum, G.; Nugroho, S.; et al. Damage and height distribution of Sumatra earthquake-Tsunami of 26 December 2004, in Banda Aceh City and its environs. J. Disaster Res. 2006, 1, 103–115. [Google Scholar] [CrossRef]
- Hatori, T. Study on distant tsunamis along the coast of Japan. Part 2, Tsunamis of South American origin. Bull. Earthq. Res. I. Tokio 1968, 46, 345–359. [Google Scholar]
- Sievers, H.A.; Villegas, G.; Barros, G. The seismic sea wave of 22 May 1960 along the Chilean coast. Bull. Seismol. Soc. Am. 1963, 53, 1125–1190. [Google Scholar] [CrossRef]
- Higman, B.; Shugar, D.H.; Stark, C.P.; Ekström, G.; Koppes, M.N.; Lynett, P.; Dufresne, A.; Haeussler, P.J.; Geertsema, M.; Gulick, S.; et al. The 2015 landslide and tsunami in Taan Fiord, Alaska. Sci. Rep. 2018, 8, 12993. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Tsunami History—Recorded. In The Sea, Vol 15: Tsunamis; Bernard, E.N., Robinson, A.R., Eds.; Harvard University Press: Cambridge, UK, 2009; pp. 23–53. [Google Scholar]
- Okal, E.A.; Synolakis, C.E. Source discriminants for near-field tsunamis. Geophys. J. Int. 2004, 158, 899–912. [Google Scholar] [CrossRef]
- Tappin, D.R. Submarine landslides and their tsunami hazard. Annu. Rev. Earth Planet. Sci. 2021, 49, 551–578. [Google Scholar] [CrossRef]
- Fryer, G.J.; Watts, P.; Pratson, L.F. Source of the great tsunami of 1 April 1946: A landslide in the upper Aleutian forearc. Mar. Geol. 2004, 203, 201–218. [Google Scholar] [CrossRef]
- Okal, E.A.; Plafker, G.; Synolakis, C.E.; Borrero, J.C. Near-field survey of the 1946 Aleutian tsunami on Unimak and Sanak Islands. Bull. Seismol. Soc. Am. 2003, 93, 1226–1234. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryan, H.F.; Haeussler, P.J.; Kayen, R.E.; Hampton, M.A.; Locat, J.; Suleimani, E.; Alexander, C.R. Reassessment of Seismically Induced, Tsunamigenic Submarine Slope Failures in Port Valdez, Alaska, USA. In Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 27, pp. 357–365. [Google Scholar] [CrossRef]
- Tappin, D.R.; Watts, P.; McMurtry, G.M.; Lafoy, Y.; Matsumoto, T. The Sissano, Papua New Guinea tsunami of July 1998—Offshore evidence on the source mechanism. Mar. Geol. 2001, 175, 1–23. [Google Scholar] [CrossRef]
- Fritz, H.M.; Mohammed, F.G.; Yoo, J. Lituya Bay landslide impact generated megatsunami 50th Anniversary. Pure Appl. Geophys. 2009, 166, 153–175. [Google Scholar] [CrossRef]
- Hermanns, R.L.; Blikra, L.H.; Naumann, M.; Nielsen, B.; Panthi, K.K.; Stromeyer, D.; Longva, O. Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Eng. Geol. 2006, 83, 94–108. [Google Scholar] [CrossRef]
- Mader, C. Modeling the 1958 Lituya Bay Mega-Tsunami. Sci. Tsunami Haz. 1999, 17, 12. [Google Scholar]
- Waldmann, N.; Vasskog, K.; Simpson, G.; Chapron, E.; Støren, E.W.N.; Hansen, L.; Loizeau, J.L.; Nesje, A.; Ariztegui, D. Anatomy of a catastrophe: Reconstructing the 1936 rock fall and tsunami event in Lake Lovatnet, Western Norway. Front. Earth Sci. 2021, 9, 671378. [Google Scholar] [CrossRef]
- Wang, J.; Ward, S.N.; Xiao, L. Numerical simulation of the 4 December 2007 landslide-generated tsunami in Chehalis Lake, Canada. Geophys. J. Int. 2015, 201, 372–376. [Google Scholar] [CrossRef]
- Gylfadóttir, S.S.; Kim, J.; Helgason, J.K.; Brynjólfsson, S.; Höskuldsson, A.; Jóhannesson, T.; Harbitz, C.B.; Løvholt. The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data. J. Geophys. Res. Oceans 2017, 122, 4110–4122. [Google Scholar] [CrossRef]
- Wang, J.; Ward, S.N.; Xiao, L. Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Eng. Geol. 2019, 256, 121–137. [Google Scholar] [CrossRef]
- Gusiakov, V.; Makhinov, A. 11 December 2018 Landslide and 90-m Icy Tsunami in the Bureya Water Reservoir. In Understanding and Reducing Landslide Disaster Risk, vol 5, Contribution to Landslide Disaster Risk Reduction; Sassa, K., Mikos, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 351–360. [Google Scholar] [CrossRef]
- Genevois, R.; Teca, P.R. The Vajont Landslide: State-of-the-Art. Ital. J. Eng. Geol.Environ. 2013, 15–39. [Google Scholar] [CrossRef]
- Evans, S.G.; Scarascia, G.; Strom, A.L.; Hermanns, R.L.; Ischuk, A.; Vinnichenko, S. Landslides from Massive Rock Slope Failure and Associated Phenomena. In Landslides from Massive Rock Slope Failure; Evans, S.G., Scarascia, G., Strom, A., Hermanns, R.L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 3–52. [Google Scholar]
- Fritz, H.M.; Hager, W.H.; Minor, H.-E. Near field characteristics of landslide generated impulse waves. J. Waterw. Port Coast. Ocean. Eng. 2004, 130, 287–302. [Google Scholar] [CrossRef]
- Huang, B.L.; Wang, S.C.; Zhao, Y.B. Impulse waves in reservoirs generated by landslides into shallow water. Coast Eng. 2017, 123, 52–61. [Google Scholar] [CrossRef]
- Crosta, G.B.; Imposimato, S.; Roddeman, D. Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech. Rock Eng. 2016, 49, 2413–2436. [Google Scholar] [CrossRef]
- Du, J.; Yin, K.; Glade, T.; Woldai, T.; Chai, B.; Xiao, L.; Wang, Y. Probabilistic hazard analysis of impulse waves generated by multiple subaerial landslides and its application to Wu Gorge in Three Gorges Reservoir, China. Eng. Geol. 2020, 276, 105773. [Google Scholar] [CrossRef]
- Heller, V.; Spinneken, J. On the effect of the water body geometry on landslide–tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast. Eng. Div. ASCE 2015, 104, 113–134. [Google Scholar] [CrossRef]
- Heller, V.; Hager, W.H. A universal parameter to predict subaerial landslide tsunamis? J. Mar. Sci. Eng. 2014, 2, 400–412. [Google Scholar] [CrossRef]
- Cheng, S.; Zeng, J.; Liu, H. A comprehensive review of the worldwide existing tsunami databases. J. Earthq. Tsunami 2020, 14, 2040003. [Google Scholar] [CrossRef]
- Pranantyo, I.R.; Cummins, P.R. The 1674 Ambon Tsunami: Extreme run-up caused by an earthquake-triggered landslide. Pure Appl. Geophys. 2020, 177, 1639–1657. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Two Great Kamchatka Tsunamis, 1737 and 1952. IUGG Tsunami Commission. Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division, Russian Academy of Sciences. Paper. 2000. Available online: https://bibliotecadigital.ciren.cl/handle/20.500.13082/28986 (accessed on 28 November 2023).
- Iida, K.; Cox, D.C.; Pararas-Carayannis, G. Preliminary Catalog of Tsunamis Occurring in the Pacific Ocean; Data Report No. 5, HIG-67-10; University of Hawaii: Honolulu, HI, USA, 1967; 261p, Available online: http://www.soest.hawaii.edu/Library/Tsunami%20Reports/Iida_et_al.pdf (accessed on 15 June 2024).
- Iida, K. Catalog of Tsunamis in Japan and Its Neighboring Countries. Aichi Institute of Technology, Special Report: Toyota-shi, Japan, 1984. 52p. Available online: https://tsunami-dl.jp/document/111 (accessed on 13 May 2023).
- Harris, R.; Major, J. Waves of Destruction in the East Indies: The Wichmann Catalogue of Earthquakes and Tsunami in the Indonesian Region from 1538 to 1877. In Geohazards in Indonesia: Earth Science for Disaster Risk Reduction; Cummins, P.R., Meilano, I., Eds.; The Geological Society of London, Special Publication: London, UK, 2016; Volume 441, pp. 9–46. [Google Scholar] [CrossRef]
- McCoy, F.W.; Heiken, G. Tsunami generated by the Late Bronze age eruption of Thera (Santorini), Greece. Pure Appl. Geophys. 2000, 157, 1227–1256. [Google Scholar] [CrossRef]
- Dominey-Howes, D. A re-analysis of the Late Bronze Age eruption and tsunami of Santorini, Greece, and the implications formthe volcano-tsunami Hazard. J. Volcanol. Geotherm. Res. 2004, 130, 107–132. [Google Scholar] [CrossRef]
- Antonopoulos, J. The great Minoan eruption of Thera volcano and the ensuing tsunami in the Greek Archipelago. Nat. Hazards 1992, 5, 153–168. [Google Scholar] [CrossRef]
- Pararas-Carayannis, G. The tsunami generated from the eruption of the volcano of Santorin in the Bronze Age. Nat. Hazards 1992, 5, 115–123. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Tsunamis on the Russian Pacific coast: History and current situation. Russ. Geol. Geophys. 2016, 57, 1259–1268. [Google Scholar] [CrossRef]
- Chuyan, G.N.; Bykasov, V.E. The height of the 1737 tsunami on Bering Island revisited. Her. Russ. Acad. Sci. 2013, 83, 134–139. [Google Scholar] [CrossRef]
- Stover, C.W.; Coffman, J.L. Seismicity of the United States, 1568–1989 (Revised); U.S. Geological Survey Prof. Paper 1527; USGS: Denver, CO, USA, 1993; 427p. [Google Scholar]
- Satake, K. Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth Planets Space 2007, 59, 381–390. [Google Scholar] [CrossRef]
- Abercromby, R.; Archibald, E.D.; Bonney, T.G.; Evans, F.J.; Geikie, A.; Judd, J.W.; Lockyer, J.N.; Russell, F.A.; Scott, R.H.; Stokes, G.G.; et al. The Eruption of Krakatoa and Subsequent Phenomena. Report of the Krakatoa Committee of the Royal Society; Symons, G.J., Ed.; Trübner & Co.: London, UK, 1888; 494p. [Google Scholar]
- Karstens, J.; Berndt, C.; Urlaub, M.; Watt, S.F.L.; Micallef, A.; Ray, M.; Klaucke, I.; Muff, S.; Klaeschen, D.; Kühn, M.; et al. From gradual spreading to catastrophic collapse—Reconstruction of the 1888 Ritter Island volcanic sector collapse from high-resolution 3D seismic data. Earth Planet Sci. Lett. 2019, 517, 1–13. [Google Scholar] [CrossRef]
- Okamura, Y.; Nishizawa, A.; Fujii, Y.; Yanagisawa, H. Accretionary prism collapse: A new hypothesis on the source of the 1771 giant tsunami in the Ryukyu Arc, SW Japan. Sci. Rep. 2018, 8, 13620. [Google Scholar] [CrossRef]
- Nakamura, M. Source fault model of the 1771 Yaeyama Tsunami, southern Ryukyu Islands, Japan, inferred from numerical simulation. Pure Appl. Geophys. 2006, 163, 41–54. [Google Scholar] [CrossRef]
- Goto, K.; Kawana, T.; Imamura, F. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth Sci. Rev. 2010, 102, 77–99. [Google Scholar] [CrossRef]
- Matsumoto, T. Re-estimation of a plausible model of the earthquake fault as the source of the 1771 Great Meiwa tsunami based on the assessment of the run-up height by Okinawa Prefecture, Japan. Open J. Geol. 2020, 10, 1250–1261. [Google Scholar] [CrossRef]
- Moore, A.L.; Imamura, F.; Yoshida, I.; Hayakawa, T. Reappraisal of the maximum runup of the 1771 Meiwa tsunami on Ishigakijima. Tsunami Eng. 2001, 18, 53–60. Available online: https://www.tsunami.irides.tohoku.ac.jp/hokusai3/J/publications/pdf/vol.18_7.pdf (accessed on 10 December 2023).
- Matsumoto, T.; Kimura, M.; Nakamura, M.; Ono, T. Large-scale slope failure and active erosion occurring in the southwestern Ryukyu fore-arc area. Nat. Hazards Earth Sys. Sci. 2001, 1, 203–211. [Google Scholar] [CrossRef]
- Davies, J.; Sykes, L.; House, L.; Jacob, K. Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence for high seismic potential. J. Geophys. Res. 1981, 86, 3821–3855. [Google Scholar] [CrossRef]
- Soloviev, S.L. The Sanak-Kodiak tsunami of 1788. Sci. Tsunami Haz. 1990, 8, 34–38. [Google Scholar]
- Sandøy, G. Back-analysis of the 1756 Tjellefonna Rockslide, Langfjorden. Master Thesis, Earth Sci. and Petroleum Eng. Norwegian University of Science and Technology, Trondheim, Norway, 2012. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/236050 (accessed on 4 October 2023).
- Sandøy, G.; Oppikofer, T.; Nilsen, B. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway. Geomorphology 2017, 289, 78–95. [Google Scholar] [CrossRef]
- Mori, N.; Takahashi, T.; Yasuda, T.; Yanagisawa, H. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 2011, 38, L00G14. [Google Scholar] [CrossRef]
- Tsuji, Y.; Satake, K.; Ishibe, T.; Harada, T.; Nishiyama, A.; Kusumoto, S. Tsunami heights along the Pacific Coast of northern Honshu recorded from the 2011 Tohoku and previous great earthquakes. Pure Appl. Geophys. 2014, 171, 3183–3215. [Google Scholar] [CrossRef]
- Evans, S.G. The 1946 Mount Colonel Foster rock avalanche and associated displacement wave, Vancouver Island, British Columbia. Can. Geotech. J. 1989, 26, 447–452. [Google Scholar] [CrossRef]
- Expédition de La Pérouse en 1786. Available online: https://fr.wikipedia.org/wiki/Baie_Lituya (accessed on 25 August 2023).
- Ambraseys, N.N. The Seismic Sea Wave of July 9, 1956, in the Greek Archipelago. J. Geophys. Res. 1960, 65, 1257–1265. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Chalkis, B.J. Tsunamis observed in Greece and the surrounding area from antiquity up to the present times. Mar. Geol. 1984, 56, 309–317. [Google Scholar] [CrossRef]
- Cox, D.C.; Pararas-Carayannis, G. Catalog of Tsunamis in Alaska Revised 1976. Report SE-1; World Data Center for Solid Earth Geophysics, NOAA: Boulder, CO, USA, 1976; 56p. [Google Scholar]
- Tappin, D.R.; Grilli, S.T.; Harris, J.C.; Geller, R.J.; Masterlark, T.; Kirby, J.T.; Shi, F.; Ma, G.; Thingbaijam, K.K.S.; Mai, P.M. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar. Geol. 2014, 357, 344–361. [Google Scholar] [CrossRef]
- Nakamura, Y.; Fujiwara, T.; Kodaira, S.; Miura, S.; Obana, K. Correlation of frontal prism structures and slope failures near the trench axis with shallow megathrust slip at the Japan Trench. Sci. Rep. 2020, 10, 11607. [Google Scholar] [CrossRef]
- Kawamura, K.; Sasaki, T.; Kanamatsu, T.; Sakaguchi, A.; Ogawa, Y. Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation. Geophys. Res. Lett. 2012, 39, l05308. [Google Scholar] [CrossRef]
- von Huene, R.; Kirby, S.; Miller, J.; Dartnell, P. The destructive 1946 Unimak near-field tsunami: New evidence for a submarine slide source from reprocessed marine geophysical data. Geophys. Res. Lett. 2014, 41, 6811–6818. [Google Scholar] [CrossRef]
- Miller, J.J.; von Huene, R.; Ryan, H. The 1946 Unimak Tsunami Earthquake Area: Revised Tectonic Structure in Reprocessed Seismic Images and a Suspect Near-Field Tsunami Source; U.S. Geological Survey Open-File Report 2014-1024; 2014; 19p. Available online: https://pubs.usgs.gov/of/2014/1024/pdf/ofr2014-1024.pdf (accessed on 15 August 2023).
- Yamagishi, H. Recent Landslides in Western Hokkaido, Japan. Pure Appl. Geophys. 2000, 157, 1115–1134. [Google Scholar] [CrossRef]
- Shuto, N.; Matsutomi, H. Field survey of the 1993 Hokkaido Nansei-Oki earthquake tsunami. Pure Appl. Geophys. 1995, 144, 649–663. [Google Scholar] [CrossRef]
- Lander, J.F.; Whiteside, L.S.; Lockridge, P.A. Two decades of global tsunamis 1982–2002. Sci. Tsunami Haz. 2003, 21, 88. [Google Scholar]
- Titov, V.V.; Synolakis, C.E. Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophys. Res. Lett. 1997, 24, 1315–1318. [Google Scholar] [CrossRef]
- Abe, K. Estimate of Tsunami Run-up Heights from Earthquake Magnitudes. In Tsunami: Progress in Prediction, Disaster Prevention and Warning; Tsuchiya, Y., Shuto, N., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 21–35. [Google Scholar]
- Sibuet, J.C.; Rangin, C.; Le Pichon, X.; Singh, S.; Cattaneo, A.; Graindorge, D.; Klingelhoefer, F.; Lin, J.Y.; Malod, J.; Maury, T.; et al. 26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra. Earth Planet. Sci. Lett. 2007, 263, 88–103. [Google Scholar] [CrossRef]
- Haridhi, H.A.; Huang, B.S.; Wen, K.L.; Mirza, A.; Rizal, S.; Purnawan, S.; Fajri, I.; Klingelhoefer, F.; Liu, C.S.; Lee, C.S.; et al. Tsunami scenario triggered by a submarine landslide offshore of northern Sumatra Island and its hazard assessment. Nat. Hazards Earth Syst. Sci. 2023, 23, 507–523. [Google Scholar] [CrossRef]
- Akagi, Y. The tsunami height and damaged area of tsunami occurred in 1792 in Shimabara Peninsula. His. Geography 2001, 43, 4–19. (In Japanese) [Google Scholar]
- Semenza, E. La Storia del Vaiont Raccontata dal Geologo che ha Scoperto la Frana; Tecomproject: Ferrara, Italy, 2001; 276p. [Google Scholar]
- Plafker, G.; Kachadoorian, R.; Eckel, E.B.; Mayo, L.R. The Alaska earthquake, March 27, 1964: Effects on Communities; U.S. Geological Survey Professional Paper 542-G; USGS: Washington, DC, USA, 1969; 50p. [Google Scholar]
- Watt, S.F.L.; Pyle, D.M.; Naranjo, J.A.; Mather, T.A. Landslide and tsunami hazard at Yate volcano, Chile as an example of edifice destruction on strike-slip fault zones. Bull. Volcanol. 2009, 71, 559–574. [Google Scholar] [CrossRef]
- Wiles, G.C.; Calkin, P.E. Reconstruction of a debris-slide-initiated flood in the southern Kenai Mountains, Alaska. Geomorphology 1992, 5, 535–546. [Google Scholar] [CrossRef]
- Waitt, R.B.; Major, J.J.; Hoblitt, R.P.; Van Eaton, A.R.; Clynne, M.A. Field Trip Guide to Mount St. Helens, Washington—Recent and Ancient Volcaniclastic Processes and Deposits; U.S. Geological Survey Scientific Investigations Report 2017–5022–E; USGS: Washington, DC, USA, 2019; 68p. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, B.; Wang, W.; Wei, Y.; Ma, X.; Ma, F.; Zhao, C. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China. J. Rock Mech. Geotech. Eng. 2016, 8, 577e595. [Google Scholar] [CrossRef]
- Dahl-Jensen, T.; Larsen, L.M.; Pedersen, S.A.S.; Pedersen, J.; Jepsen, J.F.; Pedersen, G.K.; Nielsen, T.; Pedersen, A.K.; Platen-Hallemund, F.V.; Weng, W. Landslide and tsunami 21 November 2000 in Paatuut, West Greenland. Nat. Hazards 2004, 31, 277–287. [Google Scholar] [CrossRef]
- Yin, Y.P.; Huang, B.; Chen, X.; Liu, G.; Wang, S. Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides 2015, 12, 355–364. [Google Scholar] [CrossRef]
- Froude, M. Landslides in Chile Part 5: Water Waves Triggered by Landslides and the Mentirosa Island Landslide Complex. American Geophysical Union (AGU) Website/Blog. 2016. Available online: https://blogs.agu.org/landslideblog/2016/02/02/mentirosa-island-landslide/ (accessed on 24 September 2023).
- Wang, J.; Xiao, L.; Ward, S.N.; Du, J. Tsunami Squares modeling of the 2007 Dayantang landslide generated waves considering the effects in slide/water interactions. Eng. Geol. 2021, 284, 106032. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I.; Domínguez-Morales, L. The San Juan de Grijalva Catastrophic Landslide, Chiapas, Mexico: Lessons Learnt. In Proceedings of the First World Landslide Forum, ICL/ISDR, Tokyo, Japan, 18–21 November 2008; Parallel Session Vol.. Casagli, N., Fanti, R., Tofani, V., Eds.; pp. 53–56. Available online: https://www.researchgate.net/publication/290889771_The_san_juan_de_grijalva_catastrophic_landslide_chiapas_Mexico_Lessons_learnt (accessed on 18 September 2024).
- Roberts, N.J.; McKillop, R.J.; Lawrence, M.S.; Psutka, J.F.; Clague, J.J.; Brideau, M.E.; Ward, B.C. Impacts of the 2007 Landslide Generated Tsunami in Chehalis Lake, Canada. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Heidelberg, 2013; Volume 6, pp. 133–140. Available online: https://link.springer.com/chapter/10.1007/978-3-642-31319-6_19 (accessed on 15 May 2024).
- Gauthier, D.; Anderson, S.A.; Fritz, H.M.; Giachetti, T. Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: Initial 3D observations. Landslides 2018, 15, 327–332. [Google Scholar] [CrossRef]
- Schiermeier, Q. Huge landslide triggered rare Greenland mega-tsunami. Nature/News 2017. Available online: https://www.nature.com/articles/nature.2017.22374 (accessed on 18 September 2024).
- Hu, Y.X.; Yu, Z.Y.; Zhou, J.W. Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha river. Landslides 2020, 17, 2317–2328. [Google Scholar] [CrossRef]
- Borrero, J.C.; Solihuddin, T.; Fritz, H.M.; Lynett, P.J.; Prasetya, G.S.; Skanavis, V. Field survey and numerical modelling of the December 22, 2018, Anak Krakatau tsunami. Pure Appl. Geophys. 2020, 177, 2457–2475. [Google Scholar] [CrossRef]
- Esteban, M.; Takabatake, T.; Achiari, H.; Mikami, T.; Nakamura, R.; Gelfi, M.; Panalaran, S.; Nishida, Y.; Inagaki, N.; Chadwick, C.; et al. Field survey of flank collapse and run-up heights due to 2018 Anak Krakatau tsunami. J. Coast. Hydraul. Struct. 2021, 1, 14. [Google Scholar] [CrossRef]
- Geertsema, M.; Menounos, B.; Bullard, G.; Carrivick, J.L.; Clague, J.J.; Dai, C. The 28 November 2020 landslide, tsunami, and outburst flood—A hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada. Geophys. Res. Lett. 2022, 49, e2021GL096716. [Google Scholar] [CrossRef]
- Matsushima, T.; (Institute of Seismology and Volcanology, Kyushu University, Japan). Personal communication, 2015.
- Tsuji, Y.; Hino, T. Damage and inundation height of the 1792 Shimabara landslide tsunami along the coast of Kumamoto Prefecture. Bull. Earthq. Res. Inst. 1993, 68, 91–176, (In Japanese with English Abstract). [Google Scholar]
- Sassa, K.; Dang, K.; Yanagisawa, H.; He, B. A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides 2016, 13, 1405–1419. [Google Scholar] [CrossRef]
- Lander, J.F.; Lockridge, P.A. United States Tsunamis (Including United States Possessions) 1690–1988; U.S. Dept. of Commerce, Pub. 41-2; NOAA: Boulder, CO, USA; NGDC: Boulder, CO, USA, 1989; 243p. [Google Scholar]
- Pararas-Carayannis, G. Near and far-field effects of tsunamis generated by the paroxysmal eruptions, explosions, caldera collapses and massive slope failures of the Krakatau volcano in Indonesia on august 26–27, 1883. Sci. Tsunami Haz. 2003, 21, 191–211. [Google Scholar]
- Heck, N.H. List of seismic sea waves. Bull. Seismol. Soc. Am. 1947, 37, 269–286. [Google Scholar] [CrossRef]
- Tarr, R.S.; Martin, L. The Earthquakes at Yakutat Bay, Alaska, in September, 1899; U.S. Geological Survey Prof. Paper 69; USGS: Washington, DC, USA, 1912; 135p. [Google Scholar] [CrossRef]
- Macdonald, G.A.; Shepard, F.P.; Cox, D.C. The Tsunami of April 1, 1946, in the Hawaiian Islands. Pac. Sci. 1947, 1, 21–37. Available online: http://scholarspace.manoa.hawaii.edu/handle/10125/12536 (accessed on 24 September 2023).
- Walker, D.A. Tsunami Facts; SOEST Technical Report 94-03; School of Ocean and Earth Science and Technology, University of Hawaii: Honolulu, HI, USA, 1994; Available online: http://www.soest.hawaii.edu/Library/Daniel_Walker.pdf (accessed on 15 December 2023).
- Ryan, H.F.; Lee, H.J.; Haeussler, P.J.; Alexander, C.R.; Kayen, R.E. Historic and Paleo-Submarine Landslide Deposits Imaged beneath Port Valdez, Alaska: Implications for Tsunami Generation in a Glacial Fiord. In Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research; Mosher, D.C., Shipp, R.C., Moscardelli, L., Chaytor, J.D., Baxter, C.D.P., Lee, H.J., Urgeles, R., Eds.; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2010; Volume 28, pp. 411–421. [Google Scholar]
- Voight, B.; Janda, R.J.; Glicken, H.; Douglas, P.M. Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Géotechnique 1983, 33, 243–273. [Google Scholar] [CrossRef]
- Xue, G. A Study of the 1985 Xintan Landslide in Xiling Gorge, Three Gorges Area, China. In Landslide Disaster Mitigation in Three Gorges Reservoir, China; Environmental Science and Engineering; Wang, F., Li, T., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2009; pp. 387–410. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Su, A.; Xiang, W.; Xiong, C.; Blum, P. Simulating landslide-induced tsunamis in the Yangtze River at the Three Gorges in China. Acta Geotech. 2021, 16, 2487–2503. [Google Scholar] [CrossRef]
- Nishimura, Y.; (Institute of Seismology and Volcanology, Hokkaido University, Japan). Personal communication, 2015.
- Mori, N.; Takahashi, T. The 2011 Tohoku earthquake tsunami Joint Survey Group. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast. Eng. J. 2012, 54, 1250001-1–1250001-27. [Google Scholar] [CrossRef]
- Higman, B.; Geertsema, M.; Shugar, D.; Lynett, P.; Dufresna, A. The 2015 Taan Fiord landslide and tsunami. Alsk. Park Sci. 2019, 18, 6–15. [Google Scholar] [CrossRef] [PubMed]
- William, R.; Rowley, P.; Garthwaite, M.C. Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology 2019, 47, 973–976. [Google Scholar] [CrossRef]
- Roberts, N.J.; McKillop, R.; Hermanns, R.L.; Clague, J.J.; Oppikofer, T. Preliminary Global Catalog of Displacement Waves from Subaerial Landslides. In Landslide Science for a Safer Geoenvironment; Sassa, K., Canuti, P., Yin, Y., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- NGI. Tsunami hazard analysis in Greenland—Tsunami Simulations in the Vaigat Sound; NGI Report. Doc. No.: 20210737-02-R; NGI: Trondheim, Norway, 2022; 38p. [Google Scholar]
- Berninghausen, W.H. Tsunamis and seismic seiches of southeast Asia. Bull. Seismol. Soc. Am. 1969, 59, 289–297. [Google Scholar]
Year | Hmax (m) | |
1771 | Japan | 85.4 |
1788(1) | Alaska | 30 |
1788(2) | Alaska | 88 |
1896 | Japan | 38.2 |
1956 | Greece | 30 |
1957 | Alaska | 32 |
1993 | Japan | 32 |
2004 | Indonesia | 50.9 |
2011 | Japan | 39.26 |
Date | Place/Name | Cause | Runup (m) | References |
---|---|---|---|---|
1674 | Ambon Island, Indonesia | SLEq | 100 | [25,67] |
1756 | Langfjord, Norway | L | >50 | [86] |
1771 | Ryukyu Islands, Japan | SLEq | 35 | [78,81,82] |
1788 | Unga and Sanak Is., Alaska | SLEq ** | ≥50 | [30,85] |
1792 | Kyushu Island, Japan | LV | 57 | [107] |
1853 | Lituya Bay, Alaska | L | 120 | [7] |
1883 | Krakatoa Island, Indonesia | LV | >40 | [76] |
1896 | Sanriku coast, Japan | SLEq ** | 55 | [88,89] |
1899 | Lituya Bay, Alaska | LEq | 61 | [7] |
1905 | Lovatnet Lake, Norway | L | 41 | [9,47] |
1905 | Disenchantment Bay, Alaska | L | 35 | [7,30] |
1934 | Tafjord, Norway | L | 62 | [47] |
1936 | Lovatnet Lake, Norway | L | 74 | [9,47] |
1936 | Lovatnet Lake, Norway | L | 40 | [9,49] |
1936 | Lituya Bay, Alaska | L | 150 | [7] |
1936 | Lovatnet Lake, Norway | L | >74 | [9] |
1946 | Unimak Island, Alaska | SLEq (8.6) | 42 | [42,43] |
1946 | Landslide Lake, Canada | LEq (7.3) | 51 | [90] |
1958 | Lituya Bay, Alaska | LEq (7.8) | 525 | [7,30] |
1963 | Vaiont Reservoir, Italy | L | 235 | [58,108] |
1964 | Port Valdez Bay, Alaska | SLEq (9.2) | 67 | [109] |
1965 | Cabrera Lake, Chile | L | 60 | [110] |
1967 | Grewingk Lake, Alaska | L | 60 | [111] |
1980 | Spirit Lake, USA | LV | 260 | [12,112] |
1985 | Yangtze River, China | L | 54 | [57,113] |
2000 | Vaigat Strait, Greenland | L | 50 | [114] |
2003 | Qinggang River, China | L | 39 | [113,115] |
2004 | Sumatra Island, Indonesia | SLEq (9.1) | ~50 | [33,34] |
2007 | Aisen Fjord, Chile | LEq (6.2) | 65 | [116] |
2007 | Shuibuya Reservoir, China | L | 50 | [117] |
2007 | Grijalva River, Mexico | L | >50 | [118] |
2007 | Chehalis Lake, Canada | L | 38 | [50,119] |
2011 | Sanriku coast, Japan | SLEq (9.1) | ~40 | [88,95] |
2014 | Askja Lake, Iceland | L | >60 | [51] |
2015 | Taan Fjord, Alaska | L | 193 | [38] |
2017 | Karrat Fjord, Greenland | L | 90 | [120,121] |
2018 | Jinsha River, China | L | 130 | [122] |
2018 | Bureya Reservoir, Russia | L | 90 | [53] |
2018 | Anak Krakatau, Indonesia | LV | 85 | [123,124] |
2020 | Elliot Lake, Canada | L | 114 | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, M.; González-de-Vallejo, L.I. Global Historical Megatsunamis Catalog (GHMCat). GeoHazards 2024, 5, 971-1017. https://doi.org/10.3390/geohazards5030048
Ferrer M, González-de-Vallejo LI. Global Historical Megatsunamis Catalog (GHMCat). GeoHazards. 2024; 5(3):971-1017. https://doi.org/10.3390/geohazards5030048
Chicago/Turabian StyleFerrer, Mercedes, and Luis I. González-de-Vallejo. 2024. "Global Historical Megatsunamis Catalog (GHMCat)" GeoHazards 5, no. 3: 971-1017. https://doi.org/10.3390/geohazards5030048