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Abstract: System perception of the environment becomes more important as the level of automation
increases, especially at the higher levels of automation (L3+) of Automated Driving Systems. As a
consequence, scenario-based validation becomes more important in the overall validation process
of a vehicle. Testing all scenarios with potential triggering conditions that may lead to hazardous
vehicle behaviour is not a realistic approach, as the number of such scenarios tends to be unmanage-
able. Therefore, another approach has to be provided to deal with this problem. In this paper, we
present our approach, which uses the injection of perception performance insufficiencies instead of
directly testing the potential triggering conditions. Finally, a use case is described that illustrates the
implementation of the proposed approach.

Keywords: SOTIF; scenario-based validation; performance insufficiencies; triggering conditions;
ADS

1. Introduction

Automated Driving Systems present a new challenge in the field of safety argu-
mentation due to the complexity of validation, because this requires covering not only
malfunctions but also scenario conditions and complex algorithms, greatly increasing the
effort involved in obtaining quantitative evidence that ensures the safety of systems. The
validation of ADAS/AD functions is shifting from component-based validation to a more
scenario-based validation. Unlike component-based validation, which ensures that all com-
ponents are working properly (i.e., no faults or malfunctioning), scenario-based validation
adds the focus in cases when everything works as intended but different situations and
components of the scenario could create a situation that may lead to hazardous behaviour.

1.1. Safety Validation

New regulations [1] require the provision of evidence from the validation process
to obtain authorisation for driving on public roads and, more importantly, to avoid acci-
dents [2–5] that occurred in the past. To obtain a better picture of safety and validation
processes in the domain of autonomous vehicles, the authors [6,7] give an overview of
the current situation, describing the main requirements and concepts. Standards such as
UL4600 [8] also provide a list of all the required evidence to ensure the validation of a
system. Other standards are being defined to explain this new safety domain in which
scenarios are much more relevant. The Safety Of The Intended Functionality (SOTIF) is
defined in the standard ISO21448:2022 [9] and covers the validation of hazards that are not
initiated by a malfunction in the system but by misuse and technical shortcomings. The
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standard introduces the concept of potential triggering conditions, which are the conditions
from a scenario that could cause the system to exhibit hazardous behaviour. As part of a
SOTIF validation, potential triggering conditions must be covered, but the huge number of
possible scenario situations makes testing all possible potential triggering conditions an
unmanageable task. In order to fully understand the work described here, some concepts
and terminology need to be clarified. A triggering condition is defined in [9] as a specific
condition of a scenario that starts a reaction in the system contributing to hazardous be-
haviour. Potential could be included as a prefix when it is not yet validated, but experts
see evidence that it could turn out to be a triggering condition in the end. A functional
insufficiency is defined as an insufficiency of specification or performance insufficiency.
The scope of the work is only focused on performance insufficiencies; therefore, the insuffi-
ciencies of specification, which are the initiators of unintentional misuse, are not considered
in this publication. A performance insufficiency is defined as a limitation of technical
capability contributing to hazardous behaviour when activated by one or more triggering
conditions. An output insufficiency is an insufficiency on a functional level and, like the
other insufficiency, can be activated by one or more functional insufficiencies or triggering
conditions. Hazardous behaviour is defined as the behaviour of a system that is not within
the specified acceptance criteria. The acceptance criteria could be defined on the basis of
different Key Performance Indicators (KPIs) or, in the case of safety, Safety Performance
Indicators (SPIs). An overview of the currently available metrics to define these criteria is
given in [10]. Additionally, the authors in [11] present a survey of the current standards
related to safety in the automated driving domain, including the definition of common
perception failures and relevant metrics to evaluate perception systems. Other authors [12]
also give an overview of the current standards but focus on SOTIF. This research work
shows the relationship between SOTIF and other standards as well as its implementation
in the verification and validation process. Another safety standards overview is provided
in [13] with a focus on object-based environment perception. The relationship between
these concepts is shown in Figure 1, which illustrates how a triggering condition may start
in a potential triggering condition (heavy fog) and lead to hazardous behaviour (unin-
tended braking). Another example could occur if a vehicle leaves a tunnel. If an ADS only
relies on a camera as a perception sensor, this camera has some moments with extremely
high-contrast images that may impact the behaviour of the ADS. In an attempt to cover
the topic of triggering conditions, the authors in [14] present a systematisation and identifi-
cation of triggering conditions, providing a categorisation to better handle them, which
also gives us a better understanding of the concept in this context. This topic was also
covered in our previous work [15], where the process of testing the triggering conditions
was explained, but the realisation of the impossibility of covering all triggering conditions
made us change the direction of our research to validate an ADS by using perception
performance insufficiencies instead.

Accounting for the scenario side, one of the main goals of the SOTIF is to minimise the
scenarios that could be hazardous. Unlike ASIL methodology from the Functional Safety
Standard (ISO26262) [16], a SOTIF validation does not provide a classification according
to a specific metric. In SOTIF, the validation of the ADS should improve in each iteration
due to minimising the already known hazardous scenarios or discovering new hazardous
scenarios, which change with every iteration. Figure 2 shows how the scenarios are divided
into four main areas: from safe and known scenarios to the worst-case scenario, unsafe
and unknown scenarios. As depicted in this figure, each validation iteration must reduce
the number of unsafe unknown scenarios, firstly validating the already known unsafe and
safe scenarios and secondly discovering new scenarios that could be unsafe and unknown.
Unfortunately, the area of hazardous unknown scenarios cannot be completely accounted
for, as such scenarios can always occur. The rest have to be treated as a residual risk of ADS.
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Figure 1. Cause and effect model between potential functional insufficiencies and triggering conditions.

Figure 2. Evolution of the scenario categories through the SOTIF validation iterations.

This approach is not only focused on the performance insufficiencies injection but
also on finding a way to discover and identify edge scenarios. A further classification of
scenarios [17] is also given according to their occurrence or hazardous level. For example,
corner scenarios are scenarios that occur in rare conditions with normal operational param-
eters (e.g., low sun angle, ice-covered road, etc.). On the other hand, an edge case is also a
scenario that occurs in rare situations but with the presence of extreme values. Thus, not
all corner cases are edge cases and vice versa. A nominal scenario means a traffic scenario
containing situations that reflect regular and non-critical driving manoeuvres according
to [18], which also defines a critical scenario as one that needs an emergency manoeuvre to
avoid harm or react to a system failure.

A key concept arises in scenario-based validation, where the description of the sce-
nario as well as the domain in which the system works properly has to be defined. In this
context, the Operational Design Domain (ODD) defines all scenario situations in which
an ADS is designed to work safely. ISO34502 [19] provides the principles to define an
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ODD, where a fine-grained description of the scenario plays a crucial role in this task.
Many taxonomies [20,21] together with the previously cited [9,19] have tried to reduce the
gap presented by this issue, describing various aspects from different levels of weather
conditions (wind, snow, etc.) to road topologies. The authors in [22,23] describe how to
maximise ODD coverage in the scenario validation process. The Pegasus project [24] pro-
posed the six-layer scenario model, which categorises each scenario into layers according to
the kind of actors and their functionality in each case. Furthermore, ASAM OpenODD [25]
provides the necessary syntax to include a defined ODD in the software simulations and be
able to carry out the validation. The syntax also allows different definitions to be reused,
shared and combined, providing greater flexibility and collaboration between partners in
the development of ADS as required.

1.2. Sensor Models

Although there are many Hardware-In-Loop (HIL) platforms [26,27] for collecting
data to validate Automated Driving Systems, two main questions arise when using this
approach. The first one is starting to think how much real-world data would be enough
to validate the ADS [28]; the second is the impossibility of collecting data for all types
of possible scenarios, such as different types and levels of weather conditions [29,30].
Therefore, virtual validation is the more feasible way to validate an ADS. Typically, an
Automated Driving System is built on three main blocks: sense, plan, and act. Figure 3
shows each block and the relationship between them. The sense block carries out the
perception of the environment using sensors such as cameras, lidar or radar to perceive
what is happening in the current environment. In our approach, the sense block is also split
into two different sub-blocks: the perception and algo blocks. The sense-perception block
models the observed reality (e.g., the environment) based on sensor inputs. For example,
the point cloud generated by a lidar sensor is based on the perceived environment. On
the other hand, the sense-algorithm block is responsible for extracting information from
the input of the perception block (e.g., an object list from the generated point cloud). The
plan block is in charge of the decision making according to the input from the perception
sensors and the defined functionality, triggering the necessary actions according to the
situation. Finally, the act block executes the actions decided upon, for example, braking
or turning. This model is also referred to by different names such as Sense–Decide–Act or
Perception–Decision–Actuation, but the meaning of each block remains the same.

Figure 3. Sense—Plan—Act Model.

There are many research works focused on the study of the behaviours of diverse
sensor technologies in different harsh environments. The authors in [31] present the current
state of sensor models for virtual validation, including an explanation of the different
types of sensor model fidelities. In this context, many research works have focused on the
behaviour of different sensor technologies and on developing error models that model
sensor performance in harsh environments. For example, the authors in [32–34] provide an
in-depth analysis of the performance of camera and lidar technologies in adverse weather
conditions such as foggy environments. A fog error model for a point cloud generated
by lidar sensors was developed in [35]. The same authors have continued the work by
modelling lidar performance insufficiencies in snowfall conditions [36]. Another example
can be found in the following work [37], where the author develops a library to edit the
point cloud generated by a lidar, including effects such as cropping or added reflection.
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This research is also developed in the context of security, as these additions can be used
as a spoofing attack by external actors. Machine learning has also been used to develop
sensor error models, as shown by [38]. The authors explain their process for incorporating
rain into the image frames produced by a camera. The aforementioned research works and
tools could be used as a component of our approach to include perception performance
insufficiencies into the system to be validated. One of the issues of using high-fidelity
models is the increased computing demand of the simulation; the proposed approach
in [39] mitigates this problem, albeit by using low-fidelity models, that show similar
behaviour with lower computing costs. Andrea Piazzoni et al. in [40–42] conduct extensive
research regarding perception error models. Similar to this paper, the authors remark on
the importance of considering perception errors in the virtual validation process and its
absence in current techniques. They proposed a perception error model and the guidelines
to be included in the simulation pipeline. Moreover, the model is implemented using
different sensor configurations, showing how each configuration is related to system safety.
Perception errors are also utilised for virtual validation by using adversarial attacks [43] in
the approach proposed in [44], concluding that these attacks, although seemingly harmless,
have an impact on the final behaviour of the system. Another approach of RGB-camera
perception error models is proposed in [45] to estimate rare failure probabilities used to
learn high-likelihood failure trajectory distributions.

1.3. Risk Evaluation for Autonomous Vehicles

With regard to quantitative risk assessment, there have been recent approaches in
this area. The first related work is proposed in [46], which includes a well-described list
of deficiencies in the standard and possible corrections. It also gives a brief idea of how
they could use a statistical approach for SOTIF validation. The authors in [47] propose
an approach in which they can give quantitative values to each category of the HARA
analysis (exposure, controllability and severity) from ISO26262 and calculate the risk of
the ADS. Based on these values and statistical approaches, they can define the probability
of risk of some extracted scenarios with and without triggering conditions. Unlike our
approach, which is focused on full virtual validation, this approach focuses on using
real-world data for validation. Another approach to calculating the risk is given in [48],
where the authors use a fault tree analysis and HARA to provide a quantitative metric of
an ADS. The approach given in [49] uses one-side binomial and Poisson distribution, but
the authors recognise that the given analysis is greatly simplified to a model of a specific
ADS. Moreover, no false positive or perception triggering conditions are included. In
addition to the benefits of facilitating modular design, this approach makes it possible to
demonstrate that sufficient safety conditions are met at the component level, using data sets
of reduced size and therefore cost compared with those required for validation by vehicle-
level road tests. As a disadvantage, the very specific scenario complicates the inclusion
of the methodology beyond the described scenario. This paper [50] proposes another
statistical validation method that uses reinforcement learning to identify the scenarios that
lead to a system outcome outside the acceptance criteria. This approach reduces the number
of necessary scenario simulations needed to validate the collision avoidance system from
the publication. A perception validation methodology using failure rate probabilities is
given in [51]. Similar to our approach, it uses the Responsibility-Sensitive Safety (RSS) [52]
area as a main area to focus on in validation, but the approach only takes into account the
perception component and not the impact in the complete system. Another research work
in this field is [53]. The authors in this publication develop a system to monitor, quantify
and mitigate SOTIF risks. The methodology is validated through an HIL platform that uses
AI algorithms in the perception system.

1.4. Structure of the Article

The structure of the publication is as follows: Section 2 explains how perception
performance insufficiencies are implemented in our approach, providing a classification of
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these performance insufficiencies according to the impact on the system and the perception
technology. The next section describes the risk evaluation, where performance insufficiency
injection is used to provide a quantitative metric that can be used to evaluate the system.
Section 4 illustrates two use cases in which the proposed approach is put into practice. In
the first use case, the risk evaluation for a system with a visibility insufficiency is described,
showing how this insufficiency impacts the output of the function and the associated risk.
Additionally, the second use case shows the impact and the associated risk of an accuracy
insufficiency in the same system. Finally, Section 5 summarises the methodology proposed
in this publication and outlines the next steps of this research.

2. Perception Performance Insufficiencies Injection

As previously stated, validating all potential triggering conditions of the system is
an unmanageable task. Therefore, this work focuses on the performance insufficiencies
rather than the reasons behind them. The approach is centred on the impact on the ADS:
for example, validation of an ADS when a scenario includes a tunnel. The validation
strategy could involve generating test cases that involve all possible types of tunnels,
also accounting for sizes and materials. Based on this validation strategy, including all
definitions of tunnels and scenario conditions creates an almost infinite number of test
cases, making the validation infeasible. Therefore, our approach goes directly to the impact
that triggering conditions could generate in the system: extremely high-contrast images
for a short period of time in a camera-based ADS. This strategy validates not only the
specific triggering condition but also the unknown scenarios that could affect it in a similar
way. This contributes to reaching one of the main goals of SOTIF, which is to minimise the
unknown scenarios that are both hazardous and non-hazardous.

The perception component of an ADS includes different sensors and technologies that
can vary the perceived reality. In our approach, performance insufficiencies are given at
a high level of abstraction. Therefore, when a performance insufficiency is injected, it is
related to the raw data that the sensor provides as input to the system. For example, if
a lidar performance insufficiency is implemented, it uses point cloud messages for the
injection, or image frames if a camera is used. The architecture of the approach is shown
in Figure 4, which shows that the injection is added to the raw data of the sensor before it
is included in the ADS system. Although in our approach only perception performance
insufficiencies are considered, the effect of the injection could appear in any block of the
ADS of Figure 3: sense, decision and actuation.

Figure 4. Architecture of the injection approach.

To implement this approach, a classification of performance insufficiencies is defined
first, with a main category defining the general impact of the insufficiency. Then, each of
these categories serves as a parent of the performance insufficiencies defined by a specific
technology as well as the insufficiencies modelled for specific triggering conditions. Thus,
the performance insufficiencies in our approach are classified as follows:
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• Generic Performance Insufficiency (GPI): This refers to a general performance insuf-
ficiency that is not related to any specific sensor technology but rather the impact
on sensor perception. It is used as a general category for performance insufficien-
cies. Table 1 shows an excerpt of some identified performance insufficiencies, also
describing their impact on the sensor.

• Technology Performance Insufficiency (TPI): In these insufficiencies, the defined
generic performance insufficiencies are modelled for a specific technology. For exam-
ple, the reduction of field of view performance insufficiency from the GPI table could
be defined for the lidar technology as cropping in the point cloud message provided
by the lidar sensor function. Thus, if the visibility of the sensor is limited to a specified
distance, the injector will remove the points farther than this distance. Table 2 shows
an excerpt of the performance insufficiencies for the lidar technology and how they
are modelled in the system.

• Triggering Condition Performance Insufficiency (TCPI): This is a performance insuffi-
ciency that was modelled for a specific triggering condition and technology, such as
the lidar snowfall modelling from [36] or camera rain models from [38]. This category
also includes the defined taxonomies from the standards (SAE [54], BSI [21], SOTIF [9],
etc.) that could be set as triggering conditions in the validation process. For example,
visibility in a heavy snow scenario is limited to 500 m according to the SAE [54].
Note that these performance insufficiencies are not system-independent; therefore,
they have to be included in all available sensors simultaneously. In this context, if a
triggering condition is validated for ADS, then this includes a radar, camera, and lidar
sensor; all performance insufficiency injections for all sensors must be included at the
same time and at the same fidelity level to avoid inaccurate results.

A test case function ( fTC) is defined without any performance insufficiency injection,
resulting in values that fall within the acceptance criteria as fTC() ∈ ϵacceptance−criteria.
The same function, including the performance insufficiency (PI) injector, is defined in
Equation (1) for all insufficiency levels (S).

fTC(PIi) ∀ 1 ≤ i ≤ S (1)

If many performance insufficiencies (N) are validated at the same time, the previous
equation could be expressed as Equation (2), where each added performance insufficiency
(PIj) is included independently of from each other and with different levels of intensity (S)
(e.g., in cases when limited visibility and illuminance is validated at the same time in
the system).

fTC(PIji) ∀ 1 ≤ i ≤ S and 1 ≤ j ≤ N (2)

As discussed in [55], a triggering condition could be defined by one or many perfor-
mance insufficiencies. For example, a heavy fog triggering condition could not be only
parameterised by a visibility performance insufficiency as defined in [21], but also by
illuminance and accuracy insufficiencies. Therefore, these three insufficiencies should be in-
jected into the system at the same time. Consequently, a Triggering Condition Performance
Insufficiency (TCPI) is defined as one or many performance insufficiencies that are injected
at the same time and insufficiency level. This can then be formalised as

fTC(TCPI) = fTC(PI1i, PI2i, ..., PIji) ∀ 1 ≤ i ≤ S and 1 ≤ j ≤ N (3)

Consequently, the equation to inject one or many TCPIs (M) into the test case is defined
as follows:

fTC(TCPIk) ∀ 1 ≤ k ≤ M (4)
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Table 1. Generic performance insufficiencies excerpt list.

GPI ID Generic Performance
Insufficiency (GPI) Impact

PI-01 Reduction of Field of
View (FoV)

The visual range of the sensor is reduced from the
nominal sensor performance.

PI-02 Light disturbance An external light source affects the
sensor perception.

PI-03 Misalignment The position of the sensor was changed from the
calibrated sensor position.

PI-04 Reduction of resolution Sensor resolution is reduced according to the
nominal performance provided by the manufacturer.

PI-05 Reduction of accuracy Sensor accuracy decreases according to the
nominal performance.

PI-06 Reduction of
luminous intensity

The luminous intensity of the sensor is reduced
according to the technical specifications.

PI-07 Slower processing time Sensor processing time is slower than the maximum
processing time in nominal conditions.

Table 2. Lidar technology performance insufficiency excerpt list.

Technology Performance
Insufficiency (TPI)

Parent Generic Performance
Insufficiency (GPI)

Potential Triggering
Conditions

Performance Insufficiency
Injection

Reduction of Field of
View (FoV) PI-01 Snowfall, fog conditions, etc.

Crop the raw point cloud
(vertical and horizontal
cropping) generated by

the lidar sensor.

Light Disturbance PI-02 Mirrors, water on the
street, etc.

Add random points into the
point cloud message.

Misalignment PI-03 Wrong calibration, earthen or
gravel roads, potholes, etc.

Change the position of
the sensor.

Reduction of accuracy PI-05 Sensor cover, housing
dirtiness, occlusion, etc.

Include noise into the point
cloud message.

Slower Processing Time PI-07 Driving in urban areas, etc. Include random objects into
the point cloud message.

3. Risk Quantification

It is essential to perform a quantitative evaluation to ensure objective validation of
the function. Thus, the next stage of our methodology involves quantifying the risk for
validating the ADS, which enables a comparison of the results with newer iterations of the
ADS to introduce improvements. Figure 5 demonstrates the correlation between risk and
cause and effect in accordance with the SOTIF standard. ISO26262 [16] defines exposure,
controllability and severity as part of the Hazard Analysis and Risk Assessment (HARA)
methodology. The HARA methodology assigns a safety level to each defined hazard called
the Automotive Safety Integrity Level (ASIL). The calculated ASIL of a hazard is based on
three main variables:

• Severity (S): the level of injury to the driver and passengers.
• Controllability (C): if the hazard could be controlled by the driver.
• Exposure (E): how often the hazard occurred during the driving time.
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Figure 5. Risk quantification from our approach and compared with ISO21448.

Each variable is assigned a value ranging from 0 (mildest) to 4 (worst). The sum of
these three variables (e.g., S0 + C2 + E1) is used to determine the ASIL level. ASIL A
is assigned to the lowest risk, while ASIL D is assigned to the highest risk. In contrast,
ISO21448 [9] defines risk as the product of controllability and severity. Thus, the primary
objective is to reduce controllability and severity to prevent harm or achieve the safety
goal, considering a previously defined residual risk. In ideal scenarios, controllability and
severity should be zero (C = 0 or S = 0) to achieve optimal outcomes.

Risk = PF ∗ P(PI) ∗ P(I) (5)

This approach calculates the risk based on Equation (5). This equation is based on two
different probabilities. P(PI) represents the likelihood that a performance insufficiency
may have an impact on the nominal performance of the system. This means that the results
once the performance insufficiency is injected are outside a defined acceptable window.
Nominal performance is calculated based on the values from Montecarlo simulations of
the same scenario without the injection of any performance insufficiency. The tolerable
window is calculated based on the standard deviation of this simulation and a given factor.
As Figure 5 shows, if P(PI) is greater than zero, this implies that the ADS is susceptible to
the injected insufficiency and it is also uncontrolled by ADS and, therefore, it is relevant for
the system. On the other hand, P(I) is considered the probability of injury. It is assumed
that both probabilities are independent for the sake of simplicity; however, dependent
probabilities will be considered in further research to achieve more accurate quantification
results. The probability of P(I) is determined using the methodology explained in [47,56].
The authors employ the model developed by Kusano and Gabler [57] to calculate the
likelihood of injury. This model assesses the probability of injury as being greater when the
injury level is equal to or greater than level 2 according to the Maximum Abbreviated Injury
Scale (MAIS) [58]. MAIS level 2 is defined by moderate injuries with a low probability of
death (1–2%). This value is considered in our approach as severity greater than zero (S > 0)
and, therefore, takes the risk into consideration. Otherwise, the probability of severity is
zero as well as the risk. In this case, although the performance insufficiency still affects the
system, SOTIF modifications may be applied in the ADS to enhance system reliability. The
model [59] utilised to calculate the probability of injury is defined as follows:

P(I) =

{
1

1+e−(β0+β1∆v+β2)
MAIS ≥ 2

0 MAIS < 2
(6)

A Plausibility Factor (PF) was also added to the risk calculation to adjust the differ-
ent levels of performance insufficiency injection. This factor decreases as the injection
level becomes more extreme. For instance, if the system experiences reduced visibility,
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it is more plausible that visibility is not drastically reduced than that sensor visibility is
almost lost. The plausibility coefficient has the same value as the probability of occurrence
when a triggering condition is injected. However, it is not the same when a performance
insufficiency is injected. Currently, the value of this factor is determined through expert
judgement; however, further research will be conducted to calculate this factor accurately
in the future. Finally, the equation that defines the risk for a performance insufficiency is
given in Equation (7) for all levels of injection (S).

RiskPI =
S

∑
i=0

PFi ∗ P(PIi) ∗ P(Ii) ∀ 1 ≤ i ≤ S (7)

Consequently, the risk evaluation of an ADS is obtained by summing all calculated
risks for the considered performance insufficiencies (N), as shown in Equation 8.

RiskADS =
N

∑
i=0

RiskPIj ∀ 1 ≤ j ≤ N (8)

The risk calculated by this methodology provides a quantitative metric that must
be evaluated by the stakeholder to determine if it is within the acceptance criteria for its
SOTIF evaluation. The As Low As Reasonably Practicable (ALARP) [60] principle or similar
should then be applied to reduce the risk to the lowest possible level. This also aligns with
one of the main goals of SOTIF, according to which each validation iteration improves the
system’s reliability and safety.

4. Use Case

This section presents two use cases to illustrate the proposed approach outlined
in previous sections. In the first use case, the ADS is subjected to a limited visibility
performance insufficiency by including a generic performance insufficiency with varying
levels of intensity. In the second use case, the lack of accuracy is included in the system as a
performance insufficiency, injecting different reflection levels. The environment simulator
used was the open-source CARLA Simulator [61] in which all elements of the map were
removed, leaving only the road and the vehicles (ego and target vehicles). The object
detection of the ADS is based on the cluster detection from the Autoware [62] software
stack. The ADS uses a lidar sensor located at the top of the vehicle as a unique perception
sensor. The vehicle controller of the ADS was developed in ROS [63]. Figure 6 depicts the
architecture for these use cases. It is assumed that the performance insufficiency injection
does not introduce a significant delay into the system and that it does not affect the results.
The scenario used is a deceleration scenario, where the ego vehicle (green) reduces speed
or stops to avoid a collision with the target vehicle (red) located in front. The waypoint is
straight without turning in any direction. The initial speed of the vehicles is zero with the
maximum speed reached by the ego vehicle being 80 km/h. The deceleration scenario is
shown in Figure 7. The top left picture shows the CARLA simulation; the top right shows
the visualisation from the vehicles. A logical view is given below these pictures.

Figure 6. Use cases architecture.
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Figure 7. Deceleration Scenario. Up-left: CARLA visualisation. Up-right: vehicle visualisation.
Down: logical view.

The nominal performance of the ADS is shown in Figure 8, where the distance travelled
is plotted on the x-axis over time. Black lines show the performance of the ADS of each
simulation with the mean value of the simulations also displayed with an overlapping
cyan line. The execution time tolerable window is shown with vertical blue lines. Similarly,
green lines are used to limit the tolerance window of the ADS distance travelled. The
tolerable window is calculated based on the mean value from the nominal performance
simulations in which the standard deviation is multiplied by a factor set to the upper and
lower limits. In this use case, one hundred simulations (B = 100) were performed to obtain
the probabilistic values. Whether execution time or distance travelled is outside the defined
tolerance window, this is considered hazardous behaviour.

Figure 8. Nominal performance results.

4.1. Performance Insufficiencies Injection

The initial aim is to translate the generic performance insufficiency into a technological
performance insufficiency. Since the perception sensor in this ADS is a lidar, the reduction
of the field of view has been modelled as the cropping of the point cloud generated from
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the lidar sensor. In order to increase the performance of the simulations and reduce the test
cases, only the Responsibility-Sensitive Safety (RSS) [52] area (ARSS) is considered in the
tests. This decision was made because, based on the model, only this area is relevant for
the safety of the vehicle. In our approach, the velocity of the target vehicle was set to zero
in the original RSS equation to be more conservative.

DRSS =

[
vrρ +

1
2

amax,accelρ
2 +

(vr + ρamax,accel)
2

2amin,brake

]
+

[x]+ := max{x, 0}
(9)

The meaning and the given value for each parameter of the formula are outlined
below:

• DRSS: Minimum distance to ensure that there is no crash with the obstacle.
• vr: Max ego vehicle velocity (m/s) in the test scenario. Value: 22.22 m/s (80 km/h).
• ρ: Response time in seconds: 0.5 s.
• amax,accel: Maximum acceleration of the robot (m/s2). Value: 5.5 m/s2.
• amin,brake: Minimum braking acceleration of the robot (m/s2). Value: 4.5 m/s2.

The minimum distance is only used for the longitude value; for the latitude value, the
standard width for a highway is applied instead, 3.75 m [64]. The RSS distance, calculated
using the given values, is 81.09 m (DRSS). Vehicle length is assumed to be five metres. The
area (ARSS) considered for analysis is depicted in Figure 9 and can be described as follows:

Vlength/2 < X < Vlength/2 + DRSS

−Rwidth/2 < Y < Rwidth/2
(10)

The reduced visibility levels for the limited visibility performance insufficiency injected
into the system are 80, 60, 45, 30, 20 and 15 m. Figure 10 shows the results of these injections.
In this use case, level 0 (80 m), level 1 (60 m) and level 2 (45 m) do not have any impact
on the output of the ADS. From level 3 (30 m) on, the injections do have an impact on the
system, resulting in collisions. At these levels, the difference between nominal performance
(cyan line) and the output with the injection is clear, with collisions shown as vertical red
lines. Collisions occur earlier in each injection, since detection of the target is delayed due
to visibility insufficiency, leading to delayed braking and, finally, a collision. Table 3 shows
the probabilities of hazardous behaviour and collision of each injection level. In this case,
all hazardous behaviours lead to a collision, although this behaviour does not always occur.
As shown in the charts, the impact of the performance insufficiency starts to be relevant
at level 3. At this level, two thirds of all simulations are outside of the tolerance windows
and lead to a collision. Then, the injections have a full impact on the outcome of the ADS.
These results follow the cause and effect model shown in Figure 1, where the visibility
reduction injected at the technical level leads to an output insufficiency at the functional
level. There is a late detection from the sensor block that generates a lag on the actuation
block, followed by a late braking at the vehicle level, which ends in hazardous behaviour.

Figure 9. Considered RSS area in the test cases.
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Figure 10. Results of the visibility performance insufficiency injections.

Table 3. Simulation results for each visibility performance insufficiency level.

PIvis Level (Meters) Hazardous
Behaviour P(HB) Collision P(C) P(PI)

Level 0 (80 m) 0.00 0.00 0.00

Level 1 (60 m) 0.00 0.00 0.00

Level 2 (45 m) 0.00 0.00 0.00

Level 3 (30 m) 0.66 0.66 0.66

Level 4 (20 m) 1.00 1.00 1.00

Level 5 (15 m) 1.00 1.00 1.00

4.2. Field of View Reduction
Quantitative Risk Evaluation

As previously described in Section 3, the risk depends on the Plausibility Factor (PF),
the probability of performance insufficiency (P(PI)), and the probability of injury (P(I)).
The Plausibility Factor was calculated based on the values from an exponential distribution
with a given lambda value (λ = 1) and a random variable (X) set by expertise judgement
for each level. The plausibility values for this use case for all levels are shown in Table 4.
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Table 4. Plausibility factor for the visibility performance insufficiency.

PIvis Level Visibility Limitation X Given PF

Level 0 80 m P(X≥0) PFvis80 = 1.00000

Level 1 60 m P(X≥1) PFvis60 = 0.36788

Level 2 45 m P(X≥2) PFvis45 = 0.13534

Level 3 30 m P(X≥3) PFvis30 = 4.979 × 10−2

Level 4 20 m P(X≥4) PFvis20 = 1.832 × 10−2

Level 5 15 m P(X≥5) PFvis15 = 6.74 × 10−3

Based on the risk calculation given in Section 3, the following equation shows the
evaluated risk for the lowest level of the reduced visibility performance level. The Plausi-
bility Factor for this injection is the maximum, PFvis80 = 1.0000, because it could occur with
a high probability in many scenarios: if this happens, its impact must not be minimised.
The probability of performance insufficiency is zero, which is expected since the reduced
visibility is close to the nominal field of view of the sensor. The probability of injury is also
zero, since there are no collisions. Consequently, the risk for this performance insufficiency
level is zero, as shown in Equation (11).

Riskvis80 = PFvis80 ∗ P(PIvis180) ∗ P(Ivis80) = 1.00 ∗ 0.00 ∗ 0.00 = 0.00 (11)

Unlike the risk evaluation previously calculated, the risk for level 3 of injection
(Riskvis30) is not zero. In this case, the given Plausibility Factor is more restrictive, as
this kind of performance insufficiency level does not occur as regularly. The probability of
this injection level is not zero, and it has an impact on two thirds of the simulations. The
probability of injury is not zero, since there are collisions that could cause moderate injuries
to drivers.

Riskvis30 = 0.04979 ∗ 0.66 ∗ 1.22966 × 10−2 (12)

As expected, the values of the probability of injury increase when stricter levels are
injected because there is less time for the vehicle to brake, and thus the crash velocity is
higher for each level. On the other hand, the overall risk for each level is not always higher
than the previous level because of the given Plausibility Factor. Finally, the quantitative
risk evaluation for this reduced visibility performance insufficiency based on the results
from Table 5 is as follows:

RiskPIvis = Riskvis80 + Riskvis60 + Riskvis45+

Riskvis30 + Riskvis20 + Riskvis15 = 1.36557 × 10−3 (13)

Table 5. Risk evaluation for each visibility performance insufficiency level.

PIvis Level
(Meters) PF P(PI) P(I) Risk

Level 0 (80 m) 1.00000 0.00 0.00 0.00

Level 1 (60 m) 0.36788 0.00 0.00 0.00

Level 2 (45 m) 0.13534 0.00 0.00 0.00

Level 3 (30 m) 0.04979 0.66 1.22966 × 10−2 4.04083 × 10−4

Level 4 (20 m) 0.01832 1.00 3.83674 × 10−2 7.02891 × 10−4

Level 5 (15 m) 0.00674 1.00 3.83675 × 10−2 2.58597 × 10−4
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This quantitative risk evaluation provides a reference point for the minimisation of
risk in subsequent iterations of the SOTIF validation. It is noted that these results could be
used to validate the function for specific triggering conditions defined in the standards. For
instance, the SAE standard [20] classifies fog into six levels based on system visibility.

• Level 5: 0 m ≤ visibility < 61 m
• Level 4: 61 m ≤ visibility < 244 m
• Level 3: 244 m ≤ visibility < 805 m
• Level 2: 805 m ≤ visibility < 1609 m
• Level 1: visibility ≥ 1609 m

Therefore, the system is validated for the SAE fog scale up to level 4 (visibility > 60 m),
ensuring zero risk at those levels in the system:

RiskPIvisSAELevel4 = Riskvis60 = 0.00 (14)

4.3. Accuracy Reduction

A reduction in the accuracy of the perception component is included in the system
based on the classification from Table 1 in this use case. The primary objective of this use
case is to demonstrate how reflections at different density levels can affect the system’s
object detection and resulting behaviour.

4.3.1. Performance Insufficiencies Injection

Table 2 shows how this performance insufficiency is modelled for lidar-specific tech-
nology in which random points are injected into the point cloud from the message. Similar
to the first use case, only the area (ARSS) from the RSS is considered because it is the
relevant safety area for the test case. Different levels of point density are injected in the
system, where density is calculated based on the number of points in the ARSS based
on sensor resolution and the number of injected points for this area (injection_density
= number_injected_points/number_ARSS_points).

Figure 11 shows two levels of injection from the vehicle perspective. The left picture
shows level 2 of injection, where we observe the false negatives produced by the random
reflections in the point cloud message. The right picture shows a higher level of injection,
where the amount of false detections makes the ego vehicle stop completely. The impact of
each injection level is shown in Figure 12. Levels 0 and 1 do not have any relevant impact
on the outcome of the function, but from level 3, the impact of the outcome is remarkable.
Level 2 makes the ADS still follow the path but with successive stops due to the false
negatives, while at levels 3 and 4, the ego vehicle remains stopped. Noteworthy is level
5, where the huge amount of reflections causes the target vehicle not to be considered
as an object, eventually leading to a collision. Unlike the previous use case, in this case,
hazardous behaviour does not always generate a collision, as Table 6 depicts.

Table 6. Simulation results for each performance insufficiency level.

PIacc Level
(Injection Density

in %)

Hazardous
Behaviour P(HB) Collision P(C) P(PI)

Level 0 (0.15%) 0.00 0.00 0.0

Level 1 (0.30%) 0.00 0.00 0.00

Level 2 (0.75%) 1.00 0.00 1.00

Level 3 (1.49%) 1.00 0.00 1.00

Level 4 (2.99%) 1.00 0.00 1.00

Level 5 (5.97%) 1.00 1.00 1.00
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Figure 11. Reduced accuracy performance insufficiency simulation.

Figure 12. Results of the accuracy performance insufficiency use case.
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Table 6 displays the results of the injections. It is noteworthy that although this
injection has an impact on the system at many levels, the included reflections do not affect
the system at levels 0 to 2. However, levels 3 and 4 include false positives due to the injected
reflections, which activate the braking system and prevent the vehicle from following the
defined path. On the other hand, all hazardous behaviours lead to a collision at the most
restrictive level of injection.

4.3.2. Quantitative Risk Evaluation

After calculating the probability of performance insufficiency, the risk can be evaluated.
As with the previous use case, the Plausibility Factor was determined using an exponential
distribution and values based on expert judgement. Table 7 displays the risk values for each
level with only the final level posing a risk in the ADS due to the occurrence of collisions. It
is important to note that there are many injections where the performance insufficiency has
an impact on the behaviour of the system, but there are no collisions. Despite this, SOTIF
measures should be implemented to minimise the probability of hazardous behaviours.
For example, including a wide range of perception sensor technologies could be beneficial
as each sensor technology has its advantages and disadvantages in specific environmental
situations, which could help mitigate the impact of certain scenarios.

Table 7. Risk evaluation for each accuracy performance insufficiency level.

PIacc Level
(Injection

Density in %)
PF P(PI) P(I) Risk

Level 0 (0.15%) 1.00000 0.00 0.00 0.00

Level 1 (0.30%) 0.36788 0.00 0.00 0.00

Level 2 (0.75%) 0.13534 1.00 0.00 0.00

Level 3 (1.49%) 0.04979 1.00 0.00 0.00

Level 4 (2.99%) 0.01832 1.00 0.00 0.00

Level 5 (5.97%) 0.00674 1.00 1.26752 × 10−2 8.54309 × 10−5

The equation below shows the calculated risk for the reduction of accuracy, where only
the last injection has an impact on the final risk quantification for this performance insuffi-
ciency; even though most of the performance insufficiency injections have an impact on the
system output, only the last injection has an impact on the risk quantification. The aim is to
indicate that both risk and SOTIF modifications are relevant in the validation process.

RiskADS =
5

∑
i=0

RiskPIj = 8.54309 × 10−5 ∀ 0 ≤ j ≤ 5 (15)

5. Conclusions and Future Work

This document describes a methodology for validating perception performance insuf-
ficiencies in automotive driving systems. Due to the impossibility of validating all possible
triggering conditions of a scenario, the evaluation focuses on the impact of performance
insufficiencies in the perception component of the system and its effect on the output of the
entire system in order to determine whether it may lead to hazardous behaviour and, finally,
possibly cause harm. In the document, a classification of the performance insufficiencies
is given, showing the impact of the defined insufficiency in the system. Then, a model
for each perception insufficiency is used to inject the insufficiency into the system and
determine whether the specified performance insufficiency does have an impact on the
ADS output. Based on the results from the injections, a Plausibility Factor and a probability
of injury are calculated; when the injection leads to a collision, a quantitative risk could
be calculated. Since the risk is based on the severity of injuries, if there are no collisions
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or the injuries caused by a collision are light, the risk is set to zero. In these situations,
SOTIF measurement should be considered to minimise the probability of performance
insufficiency. The calculated risk provides us with a quantitative metric that serves as a
reference for improvement in further validation iterations. Finally, this text describes two
use cases that show how the proposed methodology can be applied. The first use case
validates a limited visibility performance insufficiency in which most of the hazardous
behaviours lead to risk due to collisions. The second use case validates a reduction in
accuracy, where most levels of injection do not result in a collision, indicating no risk, but
they still have an impact on the system. Therefore, SOTIF measures should still be applied
to improve the ADS against this type of performance insufficiency.

This research has raised several questions that require further investigation. Although
the risk evaluation provides a quantitative metric, it is not related to any specific measure,
such as the number of hours driven or kilometres travelled. Future research should ad-
dress this issue to better link the obtained metric with real-world measurements. Another
important question that needs to be addressed is how to determine when a performance
insufficiency has been fully validated, including accurate models for each performance
insufficiency. Additionally, a more effective approach to identifying edge cases in perfor-
mance insufficiency injection testing should be implemented in the future.
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HARA Hazard Analysis and Risk Assessment
HIL Hardware-In-Loop
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MDPI Multidisciplinary Digital Publishing Institute
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