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Abstract: Managing access between large numbers of distributed medical devices has become a
crucial aspect of modern healthcare systems, enabling the establishment of smart hospitals and
telehealth infrastructure. However, as telehealth technology continues to evolve and Internet of
Things (IoT) devices become more widely used, they are also increasingly exposed to various types
of vulnerabilities and medical errors. In healthcare information systems, about 90% of vulnerabilities
emerge from medical error and human error. As a result, there is a need for additional research
and development of security tools to prevent such attacks. This article proposes a zero-trust-based
context-aware framework for managing access to the main components of the cloud ecosystem,
including users, devices, and output data. The main goal and benefit of the proposed framework is to
build a scoring system to prevent or alleviate medical errors while using distributed medical devices
in cloud-based healthcare information systems. The framework has two main scoring criteria to
maintain the chain of trust. First, it proposes a critical trust score based on cloud-native microservices
for authentication, encryption, logging, and authorizations. Second, a bond trust scoring system is
created to assess the real-time semantic and syntactic analysis of attributes stored in a healthcare
information system. The analysis is based on a pre-trained machine learning model that generates
the semantic and syntactic scores. The framework also takes into account regulatory compliance and
user consent in the creation of the scoring system. The advantage of this method is that it applies to
any language and adapts to all attributes, as it relies on a language model, not just a set of predefined
and limited attributes. The results show a high F1 score of 93.5%, which proves that it is valid for
detecting medical errors.

Keywords: access management; zero-trust; distributed medical devices; cloud; health information
system; medical errors; IoT

1. Introduction

Problem statement: This article proposes a zero-trust access management framework
for healthcare information systems. We also conducted a case study on medical errors to
verify the proposed framework’s viability.

Medical errors in health care are defined as circumstances that lead to a wrong medical
decision. Such a decision may lead to prescribing the wrong drug [1,2], issuing the wrong
report, or making a false diagnosis. Medical errors are very critical, as they may be
caused by normal users, not just by fraud. In healthcare, 90% of vulnerabilities are due to
medical error or human error. This is difficult to detect, as it is caused by authorized and
authenticated users. In the era of generative AI assistance, biased, discriminated, or even
wrong medical reports could be generated [3]. Medical errors could be caused by either
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human or AI assistant systems. The proposed framework is designed to create a scoring
system for any type of user, data, or device.

Controlling access to devices and their users (either human or AI robots) in healthcare
systems, along with the associated data, represents a major challenge for any service
provider. While promoting the idea of smart hospitals and telehealth, it is required to
look deeply into the existing regulation and access control systems in order to ensure their
validity in the context of technologies such as Internet of Things (IoT) devices, cloud [4],
AI [5,6], blockchain [7,8], quantum computing [9,10], and 5G networks [11]. There are
many different types of medical devices used within distributed or cloud-based healthcare
information environments. Examples of these devices include patient monitoring devices,
handheld and portable devices, telehealth consulting, medical imaging systems, robotics,
and virtual reality.

The main challenges facing the cloud-based healthcare infrastructure involve manag-
ing access to these devices while guaranteeing that the received data are secure, clean, and
clinically valid. The stressful environment and complex technology in healthcare settings
means that serious attention and advanced skills are required to operate such systems.
At the same time, both devices and the data should be monitored in real-time in order to
intercept any abnormalities in data or wrong reports sent by healthcare practitioners. Such
a system should control users, data, and output.

Constraints: The healthcare industry is subject to strict regulations regarding the
use of patient information. In the United States, the Health Insurance Portability and
Accountability Act (HIPAA) governs patient information compliance. Similarly, in Canada
Bill (C-27) regulates the healthcare information system, and Health Canada also plays
a role. Bill (C-27) is a new law that replaces the Personal Information Protection and
Electronic Document Act (PIPEDA), and has enacted three regulations: the Consumer
Privacy Protection Act (CPPA), the Personal Information and Data Protection Tribunal
Act (PIDPTA), and the Artificial Intelligence and Data Act (AIDA). In Europe, compliance
with the General Data Protection Regulation (GDPR) regulates the sharing of information
in healthcare.

Proposed solution: In order to adapt to new advances in technology and strict compli-
ance requirements, this paper proposes a zero-trust context-aware access control framework
for medical IoT devices to manage the patient information system within the complex struc-
ture of healthcare systems. The proposed framework consists of a set of practices, policies,
and attributes for enhancing and managing the security of access control systems for any
healthcare infrastructure. The framework mainly focuses on preventing medical errors in
the healthcare industry. These cases are complex and difficult to detect, as they are sent by
authorized and authenticated users. The proposed context-aware system can alleviate user
errors by analyzing the complex metadata of the user, device, and output. The proposed
context-aware framework ensures that the data are relevant, consistent, authenticated,
and only sent by authorized users to the designated destination at the endpoint devices
and users.

The research goals and contributions of this article are listed in the following itemized
points and linked to each related section:

• We propose a zero trust context-aware management framework to minimize medical
errors by maintaining the trust cycle between the user (x), hardware (y), and output
data (z); see Sections 3.1 and 3.2.

• We evaluate the trust score by deriving two main trust criteria: critical trust and bond
trust. Critical trust is based on a set of cloud-native microservices, while bond trust
is used to evaluate the mutual relationship between the user (x), hardware (y), and
data (z) using syntactic and semantic analysis; see Section 3.3.

• We construct a decision-making engine to grant a final decision that considers the
complex nature of the healthcare system by count for regulatory compliance, access
constraints, access level, and access operations; see Sections 3.4 and 3.5.
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• We validate the proposed framework by utilizing the Word2Vec language model to
conduct syntactic and semantic analysis of the framework using a synthetic dataset;
see Section 4.

The rest of this article is organized as follows: Section 2 provides a background of the
current access control work; Section 3 explain the proposed framework in detail; Section 4
report and discuss the experiment results; and Section 5 concludes the paper.

2. Background and Related Work

Processing large volumes of data within the healthcare ecosystem makes medical
report automation challenging and error-prone. To validate the input and output for
the healthcare system data flow, it is necessary to ensure confidentiality, availability, and
integrity. Implementing efficient access management is essential for data confidential-
ity. At the same time, an AI-based context-aware system can be used to validate data
integrity [12,13]. While a resilient system [14] is important to make the system available
when it is needed, a cloud-based system could be the recommended solution.

The existing healthcare information systems rely on the HL7FHIR standards [15] to
define the communication and security access control system in healthcare. There are three
main subsystems within the HL7FHIR:

1. Authentication: Verifies the user.
2. Access control engine: Decides which FHIR controls are allowed for the user using

the CRUD method (Create, Read, Update, Delete).
3. Audit log: records actions and any suspicious system intrusions.

At the organizational level, the access control system has three main common types
within the health information system:

• RBAC: Role-based access control [16,17].
• ABAC: Attribute-based access control [18,19].
• CML: Modern cloud-based machine learning access control [20–22].

RBAC and ABAC are the standard access control systems in healthcare. They are
used widely in the traditional healthcare infrastructure setup for managing access control
within the hospital perimeter. RBAC manages access based on the user’s role and grants
permission based on the CRUD or HTTP method. RBAC is complex, and considers dif-
ferent factors such as users (operator, patient), roles, permissions, resources objects, and
context of the data access [15,23]. Please refer to Table A1 in Appendix A for more informa-
tion on the role-based access system factors. The role-based access management system
has limitations that make it less effective in complex modern healthcare environments.
RBAC is time-consuming and requires manual work to adjust rules and policies, making it
less effective for real-time access management, which has too many factors in a complex
cloud-based environment.

ABAC [24,25] is based on predefined policies and conditions, and grants access to
system resources or objects based on specific data attributes. For instance, in compliance
with regulations, patient identification information cannot be accessed without having the
patient consent attribute to process the data. On the other hand, ABAC has a considerable
amount of challenges. It is not efficient at big-data applications, which limits its scalability.
It is also time consuming and requires a considerable amount of resources, making it
inefficient in dynamic and today’s globally distributed healthcare systems.

In traditional access control for healthcare information system, the user typically sends
a request to the server through the REST API gateway. The server then sends a request for
the REST API to verify the user information in order to grant the required CRUD operations
based on the predefined rules and policies.

Modern cloud-based access control systems mainly rely on the zero trust principle,
which analyzes everything in the network and does not grant trust to any entity for data
access, either user or device, without first passing a set of conditions that are defined by
the organization policy. However, the main challenge is to identify what attributes or
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data context will be considered in the policy without compromising the quality of the
provided service. Mitigating the risk within the network is also essential in evaluating
access decisions [26].

Defining attributes and enabling zero-trust features requires the utilization of ad-
vanced AI algorithms [27]. Among these algorithms, computer vision is essential for
analyzing medical imaging [28,29]. It has been used for different applications, for instance,
ophthalmology [30]. Natural language processing (NLP) is useful for understanding lin-
guistic details and predicting diseases [31]. NLP is also an effective tool for medical report
processing [32]. NLP is attracting more attention in the area of privacy preservation and
anonymization of medical reports [33].

Voice recognition is another part of the digital transformation and automation of
healthcare. Sound processing is vital for building context-aware systems to validate data
integrity. Speech can be used in anomaly detection applications and emotion recognition
for people with special considerations and elderly people [34,35].

Recently, large foundational models that include huge datasets for image, text, and
sound have been developed. Most of the current research involves building multi-modality
systems. This type of model can help in processing complex unstructured data. Using
large language models for healthcare queries was evaluated in [36]. Models for ingesting
and analyzing electronic health records (EHR) were investigated in [37]. Several language
models used in healthcare information systems were surveyed in [38] from the standpoints
of technology and ethical practice. LLaMA and GPT-4 are the two most common general-
purpose language models. In the medical field, the accuracy of a specialized language
model is vital. Med-PaLM [39], introduced by Google and trained on high-quality medical
data, meets the expert level for answering medical questions. Large models trained on
high-quality data are taking their place in the healthcare industry, as they can alleviate cost
burdens while minimizing both technical and human-related error.

Within the healthcare information system, different data sources used in the decision
engine act as a brain for the centralized healthcare information system. Medical images are
typically stored in the Digital Imaging and Communications in Medicine (DICOM) format.

To store DICOM images, the Picture Archiving Communication System (PACS) is used
to further process the raw data. Patient records are stored in Electronic Health Records
(EHR). EHRs communicate with other devices through the High-Level Seven (HL7) and
Fast Healthcare Interoperability Resources (FHIR) communication protocols. For other
medical devices, which can be either portable, handheld, or hospital-based IoT devices,
the cloud-based infrastructure processes them in real time or through batch processing
mechanisms. Figure 1 illustrates the main data sources that act as the backbone of a cloud-
based healthcare information system and can be utilized for minimizing medical errors.

Figure 1. Visualization of the main sources of healthcare-related information within the cloud-based system.
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3. Method

In this section, the research methodology is explained in several sub-sections: Section 3.1
provides an overview of the high-level architecture for the zero-trust context-aware system;
Section 3.2 highlights the main pillars of the trust cycle for the zero-trust system; Section 3.3
evaluates the trust between different trust cycle attributes; finally, Section 3.4 explains the
hierarchical process of the decision engine.

3.1. Overview of the Proposed Zero-Trust Framework for Access Management

The architecture design for the proposed context-aware access management frame-
works is depicted in Figure 2. The proposed access control system considers the zero-trust
context-aware system to manage and analyze the data journey from the user of medical IoT
device endpoints to the cloud resource destination.

The proposed framework is classified into three main layers, as listed below:

• Cloud input sources: This layer is the front-end gateway for the main input source
from users, device metadata, and the context of data output either stored in the
database or ingested in real-time streaming.

• Cloud decision engine: This is the centralized layer, acting as a brain for the decision
engine. A chain of trust is built for each component based on the trust scores. There
are two scores: critical trust (CT) and bond trust (BT). The engine encodes the context
attributes for further analysis at a hierarchical level. In the end, it grants the final
access decision, operations, and constraints based on this analysis.

• Cloud resources: This is the back-end layer for the zero-trust ecosystem. The main
components contain the cloud computing and storage resources that are used to
process and store the metadata in the healthcare database.

Cloud Input Sources

IoT Device

(User) (x)

IoT Device

(Hardware) (y)

IoT Device

(Data Output) (z)

Policy / Permissions
Hardware Authentication

(PUF, FPGA, Network, UID) Output and Pattern 


Analysis

Storage 
resources

PACS

HIS/ EHR

HL7/ FHIR

DICOM


Cloud Decision 
Engine For Access 

Permissions

and Data Exchange

Compute

resources

Image Storage

Health Records

Figure 2. Representative image of the proposed access control functional diagram within the health-
care cloud–AI ecosystem.

The following subsections explain the components of the proposed framework in detail.
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3.2. Trust Cycle Pillars

The proposed system harnesses the zero trust context-aware system to manage access
from the cloud input sources. The zero trust principle is based on utilizing all available data
points for access management, including user identity, location, device health, services,
workload, and data classification. There are three main components for the context-aware
cycle that consider the context of the five zero-trust elements. Figure 3 depicts the three
components of the trust cycle, namely: who is the user? which device is used? and what is
the output?

Figure 3. Trust cycle of the proposed access control framework.

The trust cycle has the following five elements, which are pillars of the proposed
zero-trust principle:

1. User (identity)
2. IoT device (hardware)
3. Network (device connection)
4. Application workload (output patterns and scale)
5. Data (output transaction context).

The identity relates to the user component, while the IoT device and network relate to
the hardware component. Finally, the application workload and transaction context relate
to the output component.

3.3. Trust Assessment

Building a zero-trust system requires defining a set of attributes from different cat-
egories to verify the trust cycle. The zero-trust ecosystem needs to be verified through
a continuous trust cycle by implementing a series and chain of trust in order to assess
semantic and syntactic relationships between the cloud input sources from users, devices,
and output data. The chain of trust is important for deciding what level of access can
be granted and denying access if the connection is below the threshold of an acceptable
trust score.

Figure 4 illustrates the chain of trust and the assessment scoring criteria within the
cloud ecosystem. The proposed framework constructs two assessment scoring criteria to
manage the access of distributed medical devices. First is the critical trust (CT), which
relies on cloud-native microservices. Second is the bond trust (BT), which is a proposed
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scoring scheme to manage access control, as explained below. BT uses pre-trained machine
learning models to analyze the semantic and syntactic attributes from the trusted and
authorized change of the zero-trust cycle pillars see Section 3.2, related to users, devices,
and data output.

Figure 4. Proposed framework for a continuous chain of trust based on the accumulated trust score
of each zero-trust access management component.

Critical Trust (CT): CT is the initial evaluation and scoring criteria used to grant access
to the cloud ecosystem. This assessment grant is preliminary and not for direct connection
to the back-end resources for storage and computation. CT is important because it acts
as an additional layer of security to separate user access control from the actual dataset
resources. CT is evaluated using cloud-based microservices. There are four main attributes
for the critical trust score. Cloud-based microservices such as authorization, authentication,
logging, and encryption are digitized to derive the final CT score, as per Equation (1).

Each microservice attribute is assigned a logical value, i.e., 1 or 0. Then, these mi-
croservices’ logical values are multiplied by a scoring factor (Si) based on their importance,
which can be set by the system administrator. The cloud decision engine grants access
status to allow for trusted authority, verify whether more information is needed, and deny
non-trusted access requests.

CT = S1 × A1 + S2 × A2 + S3 × A3 + S4 × A4 (1)

In the above equation, A1 is the authentication and its scoring factor is S1; A2 is
the authorization and its scoring factor is S2; A3 is the encryption and its scoring factor
is S3; and A4 is the logging, with a scoring factor of S4. Table 1 provides an example
of critical trust score evaluation using different scoring factors and logical values of the
micro-services.

Table 1. Examples of critical trust score assessment.

ID A1 S1 A2 S2 A3 S3 A4 S4 Critical Trust Score Access Status
D1 1 0.3 1 0.4 1 0.2 1 0.1 0.9999 Allow

D2 1 0.3 0 0.4 1 0.2 1 0.1 0.6 Verify

D3 0 0.3 0 0.4 0 0.2 0 0.1 0 Deny
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Bond Trust (BT): When a transaction passes the critical trust assessment, the bond
trust is used to evaluate the relationship to other resources in order to build a trust cycle,
ensuring that only authorized and highly trusted actors and designated people can access
data or resources based on the organizational policy or rules. Calculating bond trust is
more complex, and depends on several different aspects. BT has two main assessment
criteria. The first is BTA, which assesses the semantic relationship between each individual
attribute stored in the health care information system. The second is BTB, which assesses
the syntactic relationship between the set of candidates in a generated health report. The
reason for using these two measures is, first, that it is essential for each attribute to have
meaning and to be related to similar attributes as compared to the pretrained one; second;
it is essential to guarantee that the attributes in the generated report are in keeping with
the context of the patient’s history to ensure that the report is highly likely to be related to
the same patient, avoiding false diagnoses due to having the wrong case.

The proposed assessment of BTA uses an Attribute2Vec representation based on a
pretrained Word2Vec model [40,41]. Attribute2Vec is used to map the attributes and
their synonyms to words that have the same context from the user (x), hardware (y), and
output (z) attributes stored in their electronic health records. The skip-gram methodology
[42] is used to derive the attributes with the same context; in this framework, we suggest
using the first three words with the highest context probability. The advantage of using this
assessment technique is to generalize the model by accepting a wide variety of attribute
descriptions in a global context. Word2Vec is valid for different languages and dialects;
for example, it was used by Altibbi.com [43] to train 1.5 million medical consultation
questions in the Arabic language. We recommend using a matching engine on the Vertex
AI platform at Google Cloud to ensure that the word embedding and vector similarity
matching processes are efficient and reliable.

Figure 5 depicts the process of assessing bond trust. The input has three attributes:
users, devices, and output. The hidden layer extracts features and the So f tMax layer is
used to predict the probability and extract the set of similar attributes that has the highest
probability. In this research, we selected the three highest attributes. Eventually, the cosine
similarity is used to predict the relationship between attributes from different categories
(x, y, and z). Then, bond trust scoring is used to derive the final score to decide whether to
accept or reject the attributes based on the predefined threshold.

Figure 5. Semantic trust assessment using Attribute2Vec, based on the Word2Vec model; here, BTA(1),
BTA(2), and BTA(3) are the set of bond trust between the three input sources, respectively x, y, and z,
while BT is the final bond trust score.

The cosine distance is used in Equation (2) to predict the similarity probability of the
context of attributes of x, y, and z:
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Similarity (A,B) = cos(θ) =
A⃗ · B⃗∥∥∥A⃗
∥∥∥∥∥∥B⃗

∥∥∥ (2)

where A⃗ · B⃗ = ∑N
i=1(Ai × Bi) is the dot product between two vector attributes A⃗ and B⃗,

while
∥∥∥A⃗

∥∥∥ =
√

∑N
i=1(Ai)2,

∥∥∥B⃗
∥∥∥ =

√
∑N

i=1(Bi)2 are the respective L2-norms of attributes A⃗

and B⃗ and θ is the angle between the two vectors.
The attribute vectors with the highest probability between x, y, and z are then used

to derive the bond or semantic mutual relationship in three bond trust scores sets: BTA(1),
BTA(2), and BTA(3) for the relationships between xy, xz, and yz, where is the BTA(i) is the
bond trust set, which is derived using the two inputs described below.

A. Cosine similarity logical evaluation: Algorithm 1 is used to assign a logical value
to the cosine similarity between two attributes, taking an assigned value of either one or
zero based on the relationship between attributes x, y, and z. The value is assigned based
on the threshold of the angle θ between the two attributes. Equation (2) is used to derive
θ using the cosine similarity between the attribute vector product for the given index i or
position for similar context attributes. The algorithm produces a set of three logical values
SimA(x⃗i, y⃗i), SimB(x⃗i, z⃗i), and SimC (⃗yi, z⃗i) for each given index i.

Algorithm 1 Algorithm for the proposed cosine similarity logical evaluation process
Input: User (x), Device (y) , Output data (z), Angle threshold (Thθ)

1: if θxy ≥ Thθ then
2: SimA(x⃗i, y⃗i) = 1
3: else if θxy < Thθ then
4: SimA(x⃗i, y⃗i) = 0
5: end if
6: if θxz ≥ Thθ then
7: SimB(x⃗i, z⃗i) = 1
8: else if θxy < Thθ then
9: SimB(x⃗i, z⃗i) = 0

10: end if
11: if θyz ≥ Thθ then
12: SimC (⃗yi, z⃗i) = 1
13: else if θyz < Thθ then
14: SimC (⃗yi, z⃗i) = 0
15: end if
16: Output: SimA(x⃗i, y⃗i), SimB(x⃗i, z⃗i), SimC (⃗yi, z⃗i)

B. Weight: The weight is calculated using the GloVe word embedding model [44] to
consider the co-occurrence of the attributes in a global representation context of the health-
care database. The weight is based on the conditional probability of attribute occurrence or
importance, as shown in Equation (3):

wi =
PBA
PB

(3)

where wi is the probability of word B occurring in the context of word A in a given index i
of two semantic or syntactically similar attributes.

The three scaler values of BTA(1), BTA(2), and BTA(3) are stored in BTA, as shown in
Equation (4), where BTA is a 1 × 3 vector:

BTA = [BTA(1), BTA(2), BTA(3)]. (4)

In the above equation, BT1 is the relationship score between the user (x) and hardware (y),
and is derived using Equation (5); BT2 is the relationship score between the user (x) and
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output (z), and is derived using Equation (6); and BT3 is the relationship score between the
output (z) and hardware (y), and is derived using Equation (7):

BTA(1) =
N

∑
i=1

(wi)xy · SimA(x⃗i, y⃗i) (5)

BTA(2) =
N

∑
i=1

(wi)xz · SimB(x⃗i, z⃗i) (6)

BTA(3) =
N

∑
i=1

(wi)yz · SimC (⃗yi, z⃗i) (7)

where wi is a scalar weight that is used to scale the bond score for each attribute based
on the importance of the feature at given i and derived by Equation (3) and N is the
sequence number of attributes, which are numbered based on the probability of their
context relationship. Only each similar class attribute of user, devices, and output is
multiplied by each other; if they belong to the same category, the algorithm assigns them a
similarity score of either 0 or 1, then multiplies them by the scalar weight for that attribute.
This step is repeated for all attributes. The final multiplication is then aggregated to obtain
a final scalar number that resembles the combined similarity score for BTA(i).

The BTA(i) vector is normalized in Equation (8) using the So f tMax function. The
normalization process produces a new vector BTN of dimension 1 × 3.

BTNi = SoftMax(BTA(i)) =
exp(BTA(i))

∑j exp(BTA(j))
(8)

The result is stored in Equation (9), and has three scalar values that are between zero
and one.

BTNi = [BTN1, BTN2, BTN3] (9)

The first part of the bond score is calculated in Equation (10) by aggregating the three
normalized scores, BTN1, BTN2, and BTN3:

BTA = BTN1 + BTN2 + BTN3 (10)

where BTA takes a value between zero and one, where zero indicates completely non-
matched attributes and one indicates the highest attribute similarity match. Any number
between zero and one requires an additional trust verification and reassessment.

At the same time, BTB is used to assess the similarity in the generated report text by
evaluating the syntactic performance of the candidate report generated from the stored
data in the healthcare information system. Unlike semantic analysis, syntactic analysis is
effective for evaluating a full report, not just the meaning of a single word; on the other
hand, semantic analysis provides a wider contextual analysis using various probabilistic-
related attributes. BTB is inspired by the BLEU score [45], which was originally designed
by IBM for scoring machine translation evaluations, as shown in Equation (11):

BTB = min(1, exp(1 − re f erence − length
output − length

))(Πn
i=1 precisioni)

1/n (11)

where it can be seen that BTB has two parts; the first is the brevity penalty, which com-
pensates for the length of a short generated report, while the second is the precision for
the n-gram candidates. Here, n refers to the number of candidates used to evaluate the
score; the notation n is typically 4 and can be increased to include more restrictions around
identifying medical errors. In the case of n = 4, the BLEU score requires the candidate
report to match the reference template by at least four attributes.

In a case with no patient history, the BTB score is zero, making it less effective for
syntactic analysis. This scoring evaluation is more meaningful when the patient has a
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previous history in the EHR. The final bond trust normalizes the summation of BTA and
BTB to keep the value between zero and one in Equation (12).

BT =
BTA + BTB

2
(12)

3.4. Decision Engine Encoding and Hierarchy

The decision engine for similarity scoring is built through encoding and a hierarchical
process. There are two main stages for the hierarchical process. These stages are vital
to ensure that the final decision follows logical flow based on a set of constraints. The
encoding shown in Figure 6 visualizes the two stages of encoding and hierarchy process
for access control management.

Stage one: The decision engine performs the initial critical check for the end point
device or user requesting access from the server. The critical check is essential to guarantee
that the endpoint components have passed the regulatory compliance and critical trust
score thresholds; see Table 1. An example of one of the main regulatory compliance factors
that need to be considered is HIPAA, which lists 18 patient information identifiers [46] that
are restricted from being shared without consent from patients and meeting all security
guidelines within the healthcare information system, as shown in Table A2.

Stage two: The decision engine encodes the attributes from devices, output, users, and
critical trust in a 32-digit hexadecimal array. This 32-digit array is then analyzed to make
the final decision. The final decision is encoded to resemble the access level, operations,
access resources, and constraints; see Section 3.5.

Figure 6. Representative image of the access control engine’s decision hierarchy and the related encoding.
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Figure 7 illustrates an example of the encoding criteria for the three proposed zero-trust
components of user, device, and output based on different attributes. Each component has
a ten-digit hexadecimal value and a two-digit value for each one of the five attributes. The
importance of these attributes is to ensure that the access request belongs to the designated
group, has a predefined access level and type, and passes the bond trust threshold.

Figure 7. Example of access control encoding: (A) user encoding, (B) device encoding, and (C) output
encoding. PC stands for patient consent. The different colors used in the tables are only used for
arbitrary categories classes but are not scaled for measurable assessment.

3.5. Final Decision and Access Operations

The final decision has four main criteria and information, as listed below. Table 2
depicts the final decision encoding information using hexadecimal digits.

• Access level: Decides the access level for each transaction.
• Access resources: Decides which storage and computation resources will be used.
• Access constraints : Decide what the access constraints are, such as duration, location,

number of access trials, and size of data transferred.
• Access operations: Grants access based on the CRUD or HTTP method.

Table 2. Final decision encoding.

F Decision Hex Encoding Description
F1 Access Level 2 digits To specify the five access levels. Ex. 10 for access level L0.

F2 Access resources 6 digits The first three digits are for compute resources and the rest are for storage resources
metadata.

F3 Access constraints 16 digits 8 digits for time, and the other eight digits for other constraints. Ex. 6421EC5F for 2023 Y, 03
M, 27 D, 21 h, 19 mm, 59 ss.

F4 Access operations 1 digit For example, F is in hexadecimal to represent admin access of all operations

Algorithm 2 shows the logical process of the proposed framework. The framework has
three inputs: x, y, and z. The initial step requires passing the threshold for CT and BT that
is specified by the system admin. Typically, CT ≥ 99.99% , BT ≥ 0.7, where each attribute
in BTi ≥ θ. If the score of CT and BT is zero, then access is denied; for any value between
zero and the threshold, the access request should be verified again within a given time
interval. The final access decision is granted based on the assessment of the trust scores.
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Algorithm 2 Logical process of the proposed access management framework.
Input: User (x), IoT hardware (y) , IoT output data (z)
Trust assessment: Critical trust (CT), Bond trust (BT), Trust threshold (Th)

1: if CT = 0 , BT = 0 then
2: Deny access
3: end if
4: while Th ̸= 0 do
5: if CT ≥ Th , BT ≥ Th then
6: Initially accepts access
7: else if CT < Th , BT < Th then
8: Verify access again
9: end if

10: Output: Grant final access decision
11: end while

4. Experiments and Results
4.1. Dataset Information

The dataset used in this experiment contains a synthetically generated set of attributes
for users, medical IoT devices, and data. The generated data were synthesized using
Synthea [47]. The synthetic dataset was then used to fine-tune the Word2Vec model in
order to enhance the results within the healthcare information system. Figure 8 shows
some examples from the generated dataset, including attributes of the users, devices, and
data used to prevent medical errors.

Figure 8. Example of selected attributes from the generated data using Synthea and fine-tuned
Word2Vec pre-trained model. The figure is a snapshot from a multi-dimensional representation of a
large language model data that is represented in latent space. Each attribute is defined as a scalar
vector and the distance between each vector is measured by the cosine function.
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The synthetic dataset is not limited to only a small subset of attributes. These at-
tributes were extracted from large language models, and include all attributes related to
the healthcare information system for the three main categories of user, device, and data.
Some examples of these categories are listed in Table A3.

In order to evaluate the syntactic information, we generated a sample of different
patient reports based on a predefined template from the same set of attributes mentioned
before. The templates were used to generate all possible syntactically and semantically
similar reports that could be related to the patient based on their medical history. Figure 9
depicts the template used to generate the final report that includes information about users,
devices, and data.

Figure 9. Arbitrary example of generated text prompt from patient history record. The mentioned
names are arbitrary examples, and do not refer to any true identities.

4.2. Experimental Results and Discussion

The results of our ablation study were examined to evaluate the accuracy of identifying
medical errors using the proposed model by examining the relationship between different
attributes based on the critical and bond trust scoring. The study was conducted using
17,625 attributes for the user, medical IoT device, and data output categories. The F1-
score was 93.5%, which means that the proposed methodology is valid for identifying the
relationship between different attributes within the healthcare information system and
alleviating any medical errors that may produce false medical reports. Figure 10 depicts
the confusion matrix of the experiment results.

Figure 10. Confusion matrix for the ablation study on the accuracy of detecting medical errors by
identifying the relationship between selected attributes. TP is true positive, FP is false positive, FN is
false negative, and TN is true negative.

The evaluation of the final results uses different criteria for semantic and syntactic
information. Semantic information analysis is used to evaluate the relationship of each
word in the context of medical-related data, while syntactic information analysis is used to
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evaluate the corpus context of the newly generated report and compare it with the stored
data in a healthcare information system. Table 3 lists some examples of the evaluation of
the BTA for extracting semantic relationships from the healthcare information system for
different medical specialty classes.

Table 3. Precision, recall, and f1-score for evaluating BTA on a selected variety of specialty cases.

Speciality Class Precision Recall F1-Score
Radiology 0.880 0.880 0.880

Gynecology 0.773 0.840 0.805

Oncology 0.793 0.772 0.782

Dermatology 0.712 0.740 0.726

Cardiology 0.833 0.871 0.851

Urology 0.765 0.724 0.744

Emergency 0.865 0.834 0.849

Dentistry 0.79 0.77 0.779

Psychology 0.766 0.784 0.774

Table 4 shows the effect of syntactic analysis on the final decision when using different
measures. The table shows the 1-gram measure of the accuracy when detecting one word
compared to the context of reference length from the stored data in the healthcare system.
While it has high precision, it is not accurate for making decisions, as it does not account
for the relationship with other attributes. The decision confidence increases gradually with
reference to the n-gram rank, as it has a more meaningful meaning.

The BLEU score can be used for judging a corpus of attributes, but performs badly on
single entries. In the case of syntactic analysis, it is more efficient for scoring the generated
reports; however, it is not efficient for judging semantic information or detecting sentences
with grammatical errors.

The proposed method obtained the best results, as it accounts for both semantic and
syntactic information. The decision engine in the cloud generates different reports from the
stored data that account for different synonyms, words, or attributes related to the stored
data. It can also fix any grammatical errors in the entry and suggest an attribute within the
same context. This provides the method with a generalized capability to assess any new
report or data entry within the healthcare information system through distributed users,
devices, and sorted data. At the same time, the proposed method accounts for security
measures that require authentication, authorization, encryption, and logging. Table 4
compares the confidence score of the proposed method with other scoring metrics that are
used for syntactic analysis.

Table 4. Comparison of the proposed scoring method with other metrics for syntactic analysis.

Metric Decision Confidence Score
1-g 26%

2-g 33%

3-g 47%

4-g 66%

BLEU 71%

Proposed method 89%

The proposed framework focuses on the cloud–AI access control system by manag-
ing access to the cloud resources for users, devices, and data. This is accomplished by
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implementing a zero-trust context-aware system that always analyzes the data for each
transaction and for the uses of each of the users, devices, network, workload, and data. The
framework considers an information security model with three pillars of data confiden-
tiality availability. Regulatory compliance is another part of the proposed context-aware
access control. HIPAA is the most important compliance factor that identifies protected
health information data. Protected data cannot be used without following a series of secu-
rity and privacy protection guidelines, including patient consent, disclosure agreement,
de-identifications, data encryption, and a well-managed access control system.

The framework also takes advantage of cloud-native microservices to implement
critical trust assessment criteria. To build a chain of trust between different attributes for
each component, the framework proposes a bond trust evaluation approach inspired by
large language models.

Table 5 shows a sample of results for access management decisions based on evaluation
of the critical trust (CT) and bond trust (BT) assessments.

Table 5. Example of an access management decision based on scoring evaluation.

N (Samples) CT (avg.) BT (avg.) Decision
402 0 0 Decline

267 0.99 0 Decline

224 0.99 0.5 Verify

259 0.99 0.9 Accept

110 0.99 0.83 Accept

479 0.99 0.79 Accept

While the zero-trust context-aware system is robust against different situations, there
are different challenges and limitations that apply when implementing it in the
healthcare industry:

• Data privacy and security: ML acts as a backbone of the zero trust access control
system, which requires training on a considerably large dataset; the size required
to obtain efficient results may be in the millions or even billions of parameters. In
addition, obtaining sensitive and accurate data is challenging due to privacy concerns
around health information regulatory compliance, which may limit the accuracy of
the system.

• Complexity: The complex healthcare IT infrastructure makes it difficult to implement
and manage a zero-trust context-aware access control system. These systems need to
be able to integrate with existing systems and applications, and they need to be able
to handle the large volume of data generated in healthcare settings.

• Cost: Implementing a zero-trust access control system requires an enormous invest-
ment in back-end infrastructure. The costs of implementing and maintaining these
systems need to be balanced against the potential benefits, such as improved data
security and reduced risk of data breaches, as compared to the cost of investment.

• Skills: Zero-trust principles rely on many factors. These factors should be aligned with
the current and most advanced technologies; this requires highly skilled professionals,
who are always in demand due to the absence of these skills in most employees.

Future considerations: The current research implements a zero-trust context-aware
system to minimize medical errors by analyzing the data context among users, devices,
and data. The current model utilizes a fine-tuned Word2Vec model to analyze different
attributes. To improve the current algorithm, it is recommended that future work should
consider more secure protocols such as data encryption, blockchain technology, and the use
of larger language models to improve accuracy. Using larger models such as GPT4, Gemini,
Mistral, Llama, or Claude could improve the accuracy of the current implementation.
In addition, utilizing these models could increase generalization capabilities as well, as



AI 2024, 5 1127

these models are trained on larger data sources. Additional recommended future work
for securing medical IoT devices involves employing the Physical Unclonable Function
(PUF) to authenticate the hardware used for telehealth distributed devices [48]. PUF is
attracting more legitimate attention and has even been adopted by the US Presidential
Administration as a recommended technology for securing IoT devices.

5. Conclusions

In this research, a zero-trust framework has been designed to alleviate medical errors
within healthcare information systems. The proposed framework implements a theoretical
scoring assessment criteria and uses a synthetic dataset derived from a de-identified
dataset. The scoring assessment uses critical trust based on cloud microservices and a
derived bond trust that assesses the trust cycle between the mutual relationship among
users, devices, and output data. The healthcare-related attributes were derived using a
pre-trained Word2Vec model. The language model allows for processing multilingual
datasets and provides a generalized capability to process healthcare information systems.
The designed zero-trust framework can be used in practical applications to enhance the
security of the healthcare system, and can also help to ensure that the generated medical
reports are consistent and safe for patients. The semantic and syntactic analyses also help
to protect healthcare professionals against medical errors, which can reduce the pressure,
time, and legal consequences for healthcare service providers. Future work should focus
on utilizing large language models trained on larger datasets.
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Appendix A. Access Control System Information

Appendix A.1. Role-Based Access Control System: Important Factors

Table A1. Examples of role-based access control system data source information.

Information Source Example of Data Source Information Factors
Client or operator User id, role, department, level of access, geographic location

Patient Patient ID, clinical condition, department, family doctor name, patient consent policy

Resources Confidentiality, sensitivity, type of data, date ranges covered by the data, author of the data

Data context System identity, transaction time, the expiration time of token data, the scope and purpose of the token,
security of transaction

Appendix A.2. HIPPA 18-Restricted Patient Identifiers

Table A2. HIPAA 18-protected patient identifiers [46].

Iden. Description Iden. Description
1 Names 10 IP address

2 SN (Social security number) 11 Medical records number

3 Geographic locations smaller than states 12 Biometrics identifiers

4 Telephone numbers 13 Health plan beneficiary numbers

5 Fax numbers 14 Full face photographs

6 Devices IDs and serial numbers 15 Account numbers

7 Email address 16 Any other unique identifying numbers

8 Web URLs 17 Certificate; license numbers

9 Vehicle identifiers (e.g., license plate) 18 All element of dates (Except years)

Appendix A.3. Data Category Examples

Table A3. Examples of some attributes from the generated dataset categories.

Attribute Example Category
Position User

Department User

Speciality User

ID User

Insurance number User

User access level User

User consent User

Password User

Manager ID User

MAC address Device

IP address Device

Device model Device

Device type Device

Device location Device

Device manufacture Device

Data category Data

Data encryption Data
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Table A3. Cont.

Attribute Example Category
Data storage location Data

Storage type (Ex. Container, SSD, VM. . . ) Data

Data sensitivity level Data

Data compliance Data
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