Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Robotic Workflow
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fairag, M.; Almahdi, R.H.; Siddiqi, A.A.; Alharthi, F.K.; Alqurashi, B.S.; Alzahrani, N.G.; Alsulami, A.; Alshehri, R. Robotic Revolution in Surgery: Diverse Applications Across Specialties and Future Prospects Review Article. Cureus 2024, 16, e52148. [Google Scholar] [CrossRef]
- Reddy, K.; Gharde, P.; Tayade, H.; Patil, M.; Reddy, L.S.; Surya, D. Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus 2023, 15, e50415. [Google Scholar] [CrossRef]
- Rivero-Moreno, Y.; Echevarria, S.; Vidal-Valderrama, C.; Pianetti, L.; Cordova-Guilarte, J.; Navarro-Gonzalez, J.; Acevedo-Rodriguez, J.; Dorado-Avila, G.; Osorio-Romero, L.; Chavez-Campos, C.; et al. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus 2023, 15, e42370. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fang, Y.; Jin, Z.; Wang, Y.; Yu, M. The impact of robot-assisted spine surgeries on clinical outcomes: A systemic review and meta-analysis. Int. J. Med. Robot. 2020, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ong, V.; Swan, A.R.; Sheppard, J.P.; Ng, E.; Faung, B.; Diaz-Aguilar, L.D.; Pham, M.H. A Comparison of Spinal Robotic Systems and Pedicle Screw Accuracy Rates: Review of Literature and Meta-Analysis. Asian J. Neurosurg. 2022, 17, 547–556. [Google Scholar] [CrossRef]
- Benech, C.A.; Perez, R.; Benech, F.; Shirk, T.; Bucklen, B.S. A quantitative accuracy assessment of the use of a rigid robotic arm in navigated placement of 726 pedicle screws. BMC Surg. 2022, 22, 385. [Google Scholar] [CrossRef]
- Wallace, D.J.; Vardiman, A.B.; Booher, G.A.; Crawford, N.R.; Riggleman, J.R.; Greeley, S.L.; Ledonio, C.G. Navigated robotic assistance improves pedicle screw accuracy in minimally invasive surgery of the lumbosacral spine: 600 pedicle screws in a single institution. Int. J. Med. Robot. 2020, 16, e2054. [Google Scholar] [CrossRef] [PubMed]
- Garg, B.; Mehta, N.; Malhotra, R. Robotic spine surgery: Ushering in a new era. J. Clin. Orthop. Trauma. 2020, 11, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Cho, D.C.; Kim, K.T. Navigation-Guided/Robot-Assisted Spinal Surgery: A Review Article. Neurospine 2024, 21, 8–17. [Google Scholar] [CrossRef]
- Medtronic Spine & Orthopaedic Products—Mazor, X. Available online: https://www.medtronic.com/us-en/healthcare-professionals/therapies-procedures/spinal-orthopaedic/spine-robotics.html (accessed on 22 August 2024).
- Khan, A.; Soliman, M.A.R.; Lee, N.J.; Waqas, M.; Lombardi, J.M.; Boddapati, V.; Levy, L.C.; Mao, J.Z.; Park, P.J.; Mathew, J.; et al. CT-to-fluoroscopy registration versus scan-and-plan registration for robot-assisted insertion of lumbar pedicle screws. Neurosurg. Focus. 2022, 52, E8. [Google Scholar] [CrossRef] [PubMed]
- Avrumova, F.; Sivaganesan, A.; Alluri, R.K.; Vaishnav, A.; Qureshi, S.; Lebl, D.R. Workflow and Efficiency of Robotic-Assisted Navigation in Spine Surgery. HSS J. 2021, 17, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.L.; Zheng, F.; Shin, M.; Liu, X.; Oh, D.; D’Attilio, D. CUSUM learning curves: What they can and can’t tell us. Surg. Endosc. 2023, 37, 7991–7999. [Google Scholar] [CrossRef] [PubMed]
- Woodall, W.H.; Rakovich, G.; Steiner, S.H. An overview and critique of the use of cumulative sum methods with surgical learning curve data. Stat. Med. 2021, 40, 1400–1413. [Google Scholar] [CrossRef]
- Volk, V.L.; Steele, K.A.; Cinello-Smith, M.; Chua, R.V.; Pollina, J.; Poulter, G.; Shafa, E.; Busselberg, P.; Fitzpatrick, C.K. Pedicle Screw Placement Accuracy in Robot-Assisted Spinal Fusion in a Multicenter Study. Ann. Biomed. Eng. 2023, 51, 2518–2527. [Google Scholar] [CrossRef]
- Antonacci, C.L.; Zeng, F.; Block, A.; Davey, A.; Makanji, H. Robotic-assisted spine surgery-a narrative review. J. Spine Surg. 2024, 10, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.J.; Zuckerman, S.L.; Buchanan, I.; Boddapati, V.; Park, P.; Leung, E.; Mathew, J.; Buchholz, A.L.; Pollina, J.; Khan, A.; et al. P132. How does the Mazor X stealth edition compare with the Mazor X for robot-assisted spine surgery? A multicenter, propensity matched analysis of 2,800 screws and 372 patients. Spine J. 2021, 21, S205–S206. [Google Scholar] [CrossRef]
- Asada, T.; Subramanian, T.; Simon, C.Z.; Singh, N.; Hirase, T.; Araghi, K.; Lu, A.Z.; Mai, E.; Kim, Y.E.; Tuma, O.; et al. Level-specific comparison of 3D navigated and robotic arm-guided screw placement: An accuracy assessment of 1210 pedicle screws in lumbar surgery. Spine J. 2024, 24, 1872–1880. [Google Scholar] [CrossRef]
- Yu, T.; Jiao, J.H.; Wang, Y.; Wang, Q.Y.; Jiang, W.B.; Wang, Z.H.; Wu, M.F. Robot-assisted versus navigation-assisted screw placement in spinal vertebrae. Int. Orthop. 2023, 47, 527–532. [Google Scholar] [CrossRef]
- Shafi, K.A.; Pompeu, Y.A.; Vaishnav, A.S.; Mai, E.; Sivaganesan, A.; Shahi, P.; Qureshi, S.A. Does robot-assisted navigation influence pedicle screw selection and accuracy in minimally invasive spine surgery? Neurosurg. Focus. 2022, 52, E4. [Google Scholar] [CrossRef] [PubMed]
- Shahi, P.; Vaishnav, A.; Araghi, K.; Shinn, D.; Song, J.; Dalal, S.; Melissaridou, D.; Mai, E.; Dupont, M.; Sheha, E.; et al. Robotics Reduces Radiation Exposure in Minimally Invasive Lumbar Fusion Compared With Navigation. Spine 2022, 47, 1279–1286. [Google Scholar] [CrossRef]
- Khan, A.; Meyers, J.E.; Yavorek, S.; O’Connor, T.E.; Siasios, I.; Mullin, J.P.; Pollina, J. Comparing Next-Generation Robotic Technology with 3-Dimensional Computed Tomography Navigation Technology for the Insertion of Posterior Pedicle Screws. World Neurosurg. 2019, 123, e474–e481. [Google Scholar] [CrossRef] [PubMed]
- Al-Naseem, A.O.; Al-Muhannadi, A.; Ramadhan, M.; Alfadhli, A.; Marwan, Y.; Shafafy, R.; Abd-El-Barr, M.M. Robot-assisted pedicle screw insertion versus navigation-based and freehand techniques for posterior spinal fusion in scoliosis: A systematic review and meta-analysis. Spine Deform. 2024, 12, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Han, J.; Shahsavarani, S.; Abbas, A.M.; Echevarria, A.C.; Carrier, R.E.; Ngan, A.; Katz, A.D.; Essig, D.; Verma, R. Robotic-Assisted Versus Fluoroscopic-Guided Surgery on the Accuracy of Spine Pedicle Screw Placement: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e54969. [Google Scholar] [CrossRef]
- Su, X.J.; Lv, Z.D.; Chen, Z.; Wang, K.; Zhu, C.; Chen, H.; Han, Y.C.; Song, Q.X.; Lao, L.F.; Zhang, Y.H.; et al. Comparison of Accuracy and Clinical Outcomes of Robot-Assisted Versus Fluoroscopy-Guided Pedicle Screw Placement in Posterior Cervical Surgery. Glob. Spine J. 2022, 12, 620–626. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Gao, S.; Cao, C.; Li, C.; He, L.; Ma, X.; Li, M. Comparison of accuracy and safety between robot-assisted and conventional fluoroscope assisted placement of pedicle screws in thoracolumbar spine: A meta-analysis. Medicine 2021, 100, e27282. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Z.; Li, D.; Tian, Y.; Yuan, S.; Wang, L.; Liu, X. Safety and accuracy of cannulated pedicle screw placement in scoliosis surgery: A comparison of robotic-navigation, O-arm-based navigation, and freehand techniques. Eur. Spine J. 2023, 32, 3094–3104. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Su, J.; Wang, Z.; Li, D.; Tian, Y.; Yuan, S.; Wang, L.; Liu, X. Comparison of the Accuracy of Pedicle Screw Placement Using a Fluoroscopy-Assisted Free-Hand Technique with Robotic-Assisted Navigation Using an O-Arm or 3D C-Arm in Scoliosis Surgery. Glob. Spine J. 2024, 14, 1337–1346. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Q.; Fan, M.X.; Han, X.G.; Liu, B.; Tian, W. Learning curves of robot-assisted pedicle screw fixations based on the cumulative sum test. World J. Clin. Cases 2021, 9, 10134–10142. [Google Scholar] [CrossRef] [PubMed]
- Torii, Y.; Ueno, J.; Iinuma, M.; Yoshida, A.; Niki, H.; Akazawa, T. The Learning Curve of Robotic-Assisted Pedicle Screw Placements Using the Cumulative Sum Analysis: A Study of the First 50 Cases at a Single Center. Spine Surg. Relat. Res. 2022, 6, 589–595. [Google Scholar] [CrossRef]
PRE-OPERATIVE STAGES | |
---|---|
Step 1 | CT imaging |
Step 2 | Planning of screw placement |
INTRA-OPERATIVE STAGES | |
Step 3 | Table mount (Jackson table) and draping of robot |
Step 4 | Patient mount (skin incision, PSIS pin, topographical scan) |
Step 5 | CT-fluoro merge (with antero-posterior/oblique C-arm image) |
Step 6 | Pedicle screw insertion |
Parameter | Total Number (n) | |
---|---|---|
Total no. of surgeries utilizing robotic assistance | 110 | |
No of. patients shortlised | 100 | |
Males | 40 | |
Females | 60 | |
Mean age | 69.6 (34–81) years | |
Diagnosis | Degenerative lumbar stenosis | 99 |
Trauma | 1 | |
Approach | Open | 12 |
Minimally invasive | 88 |
Pair No. | Robotic/Navigated | No. of Levels | Technique | Diagnosis | Decompression (Direct vs. Indirect) | Single or Dual Position | Duration (min) | p-Value |
---|---|---|---|---|---|---|---|---|
1 | Robotic | 1 (L5-S1) | MIS TLIF | Degenerative | Direct | Single | 293 | 0.21 |
Navigated | 235 | |||||||
2 | Robotic | 1 (L4-L5) | MIS TLIF | Degenerative | Direct | Single | 230 | |
Navigated | 195 | |||||||
3 | Robotic | 1 (L5-S1) | MIS TLIF | Degenerative | Direct | Single | 242 | |
Navigated | 180 | |||||||
4 | Robotic | 1 (L4-L5) | MIS TLIF | Degenerative | Direct | Single | 247 | |
Navigated | 220 | |||||||
5 | Robotic | 1 (L5-S1) | MIS TLIF | Degenerative | Direct | Single | 190 | |
Navigated | 197 | |||||||
6 | Robotic | 1 (L4-L5) | OLIF | Degenerative | Indirect | Single | 210 | |
Navigated | 225 | |||||||
7 | Robotic | 1 (L4-L5) | OLIF | Degenerative | Direct | Dual | 307 | |
Navigated | 305 | |||||||
8 | Robotic | 2 (L4-S1) | MIS TLIF | Degenerative | Direct | Single | 310 | |
Navigated | 298 | |||||||
9 | Robotic | 2 (L4-S1) | MIS TLIF | Degenerative | Direct | Single | 323 | |
Navigated | 2 (L3-L5) | 372 | ||||||
10 | Robotic | 2 (L3-L5) | OLIF | Degenerative | Direct | Dual | 385 | |
Navigated | 367 |
Author | Year | Study Cohort | Robot | Results |
---|---|---|---|---|
Asada et al. [18] | 2024 | 321 patients (189 robotic; 157 navigated) | ExcelsiusGPS (Globus Medical, Audubon, PA, USA) | The robotic group showed a significantly higher overall accuracy with regard to the rates of no breach screws in the lumbar spine |
Yu et al. [19] | 2023 | 24 simulation spine models (Sawbone, Pacific Research Laboratories, Inc.) | TINAVI (TINAVI Medical Technologies Co., Ltd., Beijing, China) | Robot-assisted group had significantly less angular deviation than the navigation-assisted group |
Shafi et al. [20] | 2022 | 222 patients (92 robotic; 130 navigation) | ExcelsiusGPS (Globus Medical, Audubon, PA, USA) | Robotic assistance allows for the placement of screws with a greater screw diameter and length compared with surgical navigation alone, although both have a similarly high accuracy |
Shahi et al. [21] | 2022 | 244 patients (111 robotic; 133 navigated) | ExcelsiusGPS (Globus Medical, Audubon, PA, USA) | Robots used for minimally invasive TLIF, compared with navigation-assisted surgery, lead to a significant reduction in radiation exposure both to the surgeon and patient, with no significant difference in the total OR time |
Kahn et al. [22] | 2019 | 99 patients (50 robotic; 49 navigated) | Mazor X (Medtronic Inc., Dublin, Ireland) | Both technologies are safe and accurate. Patients undergoing surgery with robotic assistance were exposed to fluoroscopy for less time, had a decreased amount of time spent per screw placement, and had a shorter hospital stay than the patients undergoing surgery with 3D-CT navigation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramasivam Meenakshi Sundaram, P.; Lai, M.C.; Kaliya-Perumal, A.-K.; Oh, J.Y.-L. Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation? Surgeries 2024, 5, 896-907. https://doi.org/10.3390/surgeries5040072
Paramasivam Meenakshi Sundaram P, Lai MC, Kaliya-Perumal A-K, Oh JY-L. Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation? Surgeries. 2024; 5(4):896-907. https://doi.org/10.3390/surgeries5040072
Chicago/Turabian StyleParamasivam Meenakshi Sundaram, Pirateb, Mun Chun Lai, Arun-Kumar Kaliya-Perumal, and Jacob Yoong-Leong Oh. 2024. "Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation?" Surgeries 5, no. 4: 896-907. https://doi.org/10.3390/surgeries5040072
APA StyleParamasivam Meenakshi Sundaram, P., Lai, M. C., Kaliya-Perumal, A.-K., & Oh, J. Y.-L. (2024). Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation? Surgeries, 5(4), 896-907. https://doi.org/10.3390/surgeries5040072