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Abstract: In this study, a graph-based method is implemented for sensor placement in a water distri-
bution network (WDN) instead of using a hydraulic model. The proposed methodology determines
the pressure sensors’ location based on the node betweenness centrality of nodes from their source,
considering the WDN topology and assigning hydraulic-inspired edge weights. Furthermore, the
Non-dominated Sorting Genetic Algorithm (NSGA-II) determines the end node of the WDN’s critical
paths for sensor placement to maximize monitoring network efficiency to calibrate the model and
avoid additional data collection. For different numbers of sensors, the NSGA-II algorithm is imple-
mented 10 times and the final Pareto front is determined. The graph-based approach reduces the
sensor placement problem complexity to an acceptable level and can be implemented as a surrogate
approach for hydraulic-based sensor placement.

Keywords: complex network theory; smart water network; optimization; pressure monitoring;
compromise solution

1. Introduction

In the context of water distribution networks (WDNs), the mathematical models
serve multiple functions, including WDN operation, pressure management, and leakage
detection. However, before utilizing the model, it is crucial to calibrate WDNs using field
data, such as information obtained from pressure sensors [1].

Previous studies used different criteria such as the value of nodal pressure sensitivity
to WDN parameter variation and graph metrics to optimize the sensor location [2]. Further-
more, some studies determined the sensor location based on global sensitivity analysis [2,3].
This approach considers the interactions between different parameters and their effects on
the model’s output. However, usually, such sensitivity analysis takes a significant amount
of time, primarily due to the execution of hydraulic models.

In contrast to sensitivity analysis, graph theory-based methods require less compu-
tational time, e.g., De Schaetzen et al. and Fontana et al. determined the sensor location
based on the graph theory method [4,5]. They located the sensors at the furthest distance
from the source, and the distance was calculated based on the shortest path metric. Weber
and Hos determined the sensor location based on pressure sensitivity to roughness varia-
tion and maximized the hydraulic distance between them utilizing the shortest path [1].
However, these graph-based approaches are unable to fully capture the hydraulic behavior
of WDNs as a hydraulic model does. In recent years, some studies implemented weighted
hydraulically inspired graphs instead of using hydraulic models of WDNs to decrease the
computational time [6]. In the current study, a hydraulically weighted graph is used for
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sensor placement, mimicking the hydraulic behavior of WDNs. In the initial stage, nodes
in a WDN are clustered based on source heights and energy dissipation along the shortest
paths [7]. This is particularly important for multi-reservoir WDNs because if a graph-based
approach is utilized for sensor placement in such networks, identifying the primary source
of each node is essential in replicating the WDN hydraulic behavior. Furthermore, as
inspired by Sitzenfrei et al. [8], this research, for the first time, proposed a modified graph
metric called node betweenness centrality from source (NBC*) to identify a set of important
nodes for sensor placement.

2. Materials and Methods

This research proposes a multi-objective optimization algorithm to determine the
sensors’ location based on graph metrics. This methodology contains two main steps. In
the first step, the NBC* of each node is calculated, and in the second step, the optimization
algorithm determines the sensor location based on the NBC* of each node that has been
produced in the first step.

2.1. Node Betweenness Centrality from Source (NBC*)

As the proposed method is implemented in a multi-source WDN, at first, the source
primary supplying each node is determined based on a graph-based source tracking
approach [9]. Afterward, the NBC* of a node N from the source to all nodes is calculated
using Equation (1). NBC* counts how often node N is a part of the shortest path (σs,i)
connections between the source s that supplies node N and the demand node i, which is
inspired by the graph metrics proposed in [8].

NBC∗(N) = ∑s,i ∈ D σs,i(N) (1)

2.2. Multi-Objective Optimization

The NSGA-II maximizes the first object function F1 based on Equation (2) to find the
critical paths, representing the routes in a WDN with the highest water demand. Therein,
NBC* is weighted with the nodal demands Qj and summed up along the critical flow
paths. Additionally, it minimizes F2, defines the number of repeated nodes in all critical
paths to avoid collecting redundant pressure data, and improves the coverage of the
monitoring network. The decision variables are the sensor location at the final point of
the critical paths. The number of critical paths is equal to the number of sensors in the
proposed methodology.

F1 = ∑E
CP=1 ∑k

j=m NBC∗
j(CP)× Qj(CP) (2)

where E is the number of critical flow paths; k is the end node of each critical path (CP); m
is the first node index after the source in each critical path; and Qj is the demand of node j
in (m3/s).

2.3. Roughness Calibration and Validation

To validate the proposed methodology, the roughness calibration of the WDN is
performed and the calibration accuracy is assessed. The genetic algorithm (GA) is utilized
to determine the roughness of the pipes in the network. The roughness of each pipe group,
based on the pipe’s original roughness, is treated as a decision variable, and the objective
function is represented by Equation (3).

C(x) =
√

∑T
t=1

[
∑S

i=1(Prealsensori (t)− Psimsensori (t))
2
]

(3)

where S is the number of sensors; T is the number of time steps; Preal is the pressure
of the node based original pipe roughness of the model; and Psim is the pressure of the
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nodes based on the roughness that is determined as a decision variable in the optimization
algorithm. Afterwards, the pressure error is calculated based on Equation (3) for all nodes
of the WDN.

3. Results

The proposed methodology in this study was implemented in the Modena WDN
located in Italy, which consists of 268 junctions and 317 pipes. The results of the NSGA-II
optimization method and the Pareto front for various numbers of sensors are depicted in
Figure 1. It can be observed from Figure 1 that there is a trade-off between the number of
repeated nodes and F1.
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Figure 1. Pareto front for different numbers of sensors and trade-offs associated with each solution.

The trade-off solution in each Pareto front is chosen based on the compromise method
and the point that has a lower distance from the utopia point that is selected in each Pareto
front. This distance is calculated based on normalized objective function values from the
utopia point [9]. Critical paths for calibration and sensor location at the end of these paths
are shown in Figure 2. Furthermore, the calibration accuracy for the four, ten, twelve, and
sixteen sensors is shown in Table 1. These scenarios are chosen based on clustering the best
answers of the Pareto fronts.
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Table 1. Calibration accuracy for 4, 10, 12, and 16 sensors scenarios.

Number of Sensors Pressure Error (m)

4 0.6910
10 0.2339
12 0.1989
16 0.1641

It is noteworthy that the average node pressure in the WDN, considering the actual
roughness, stands at around 25 m. This indicates that the pressure error value calculated
for ten sensors is almost 1% of the average pressure, representing high accuracy in the
proposed model.

4. Discussion

This paper determines critical paths for WDN calibration based on NBC* and places the
sensor at the end of these paths. The results show that the pipe roughness variation along
these paths is sensed by the sensors. The number of ten sensors is in the shortest distance
from the utopia point of optimization, and, according to Table 1, there is a noticeable
improvement in the calibration accuracy with ten sensors, suggesting it as a suitable
number for sensor placement.
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