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Abstract: This paper presents a comprehensive approach to modeling interacting tanks as a multi-
agent system. The primary goal is to develop a model that considers the dynamics of each agent and
their interconnection so that the behavior of the whole system can be inferred from their coupling via
graph theory, spectral graph theory and control systems. Given the tools used to model the system,
not only is the proposed model scalable to n agents/tanks, but it also considers any configuration
among them.
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1. Introduction

A collection of components known as agents communicate with one another to accom-
plish a shared goal in multi-agent systems (MASs) [1–5]. MAS applications are numerous
and expanding all the time. Numerous applications can be found here, including data traf-
fic in computer science; industrial plant control with actuator saturation [6]; multi-vehicle
coordination [7]; emergency response operations involving drones and mobile robots [8];
and smart grids or micro-grids [9–11], among others. In all of these applications, the agents
are interconnected and share resources, and their individual behavior affects the collective
response. Because of MASs’ complexity, these systems remain an open challenge in terms
of modeling, design, development, and coordination. As a result, a number of works have
focused on studying their structure, evolution, and control in diverse fields [3–5,12].

Despite the fact that interactive tank models have been studied in great detail [13–15]
because of their wide range of applications in power generation, chemical processes, food
and beverage production and storage, water supply and transportation, and oil and gas
refining and storage, most of the studies have focused on their control. Further, the few that
considered a MAS approach concentrated on computational techniques for its estimation,
simulation, and control [16–18].

In contrast, we describe the dynamics of this system as two parts: an individual
behavior with their individual inputs/outputs (Section 2) and the coupling (interaction)
among them as well as external inputs and outputs to form the whole system, all based
on engineering and physical principles. In order to make the model easily usable with
any number of interconnected agents (connected in any configuration), we apply MAS
analysis tools such as spectral graph theory and graph theory (Sections 3 and 4.1). Further,
control theory serves to understand the behavior of the whole system based on each agent’s
response (Sections 3.3 and 4.2). Finally, we show illustrative examples (Section 5).

2. Background

To model the fluid flow rate and pressure in a system of interconnected reservoirs
or tanks, one considers the following variables: (1) fluid height in the reservoir/tank
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h; (2) fluid resistance R, defined as the opposition to the fluid flow in the pipes, i.e., a
restriction/valve on the pipe or a load/drain valve; and (3) the coefficient of flow storage
in the reservoir (capacitance of the fluid) C, which depends on the area of the reservoir and
the density of the fluid [19] (see Figure 1).

Figure 1. Summary of variables in the ith tank.

For now, system uncertainties and external disturbances are not considered for model-
ing. According to the principle of conservation of material [19], in the ith tank/reservoir,
the relationship between fluid level hi and flow rate qi is

Ci
dhi
dt

= qi (1)

Further, the total flow rate, i.e., the summation of all flow rates related to the ith tank
in an n-tank system, could be written as

qi = qin,i − qo,i − ∑
j,{i,j}interact

qij (2)

where qin,i and qo,i are the flow rates for the source and drain of the fluid, respectively,
and qij is the exchanged flow rate between the tanks j that interact with i. Also, the flow
rate on the drain qo,i could be approximated to the equation that describes the flow rate
through a valve of constant Ro,i:

qo,i =
1

Ro,i
hi. (3)

3. Modeling as First-Order Coupled System
3.1. Modeling Interacting Tank Without Inputs and Outputs

If the tank does not have external input/output, i.e., a source and drain, and is
interacting with other tanks, then qin,i = 0 and qo,i = 0 in (2). Further, the exchanged flow
rate between tank i and j is qij =

1
Rij

(hi − hj) ∀i, j > 0, where Rij is the flow resistance in
the pipe (or valve) between tank i and j. Consequently, the level of tank i is given by

ḣi = − hi
Ci

 ∑
j,{i,j}interact

1
Rij

+
1
Ci

 ∑
j,{i,j}interact

hj

Rij

, (4)

where “{i, j}interact” indicates that there is an interaction between tank i and j.
Considering that the reservoirs/tanks are interconnected through pipes and valves,

and hence flows qij, one can specify the coupling between the tanks using a directed
weighted graph G = (V, E), where V = {i, . . . , n} is the vertex set that represents each
tank, and E = {(i, j) : wij} is the edge set that represents the interconnecting pipes/valves,
with weights given by wij =

1
RijCi

[20]. Further, the dynamic model of the whole system of
interacting tanks is given by

˙⃗h = −L⃗h, (5)
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where h⃗ = [h1, . . . , hn]T is the state vector containing the tanks’ heights, and L is the
Laplacian matrix associated with graph G, defined as [21]

Lij =

{ − 1
Ci Rij

if i ̸= j, {i, j} ∈ E,

− ∑
j,{i,j}∈E,i ̸=j

Lij if i = j

0 if {i, j} /∈ E

, (6)

for all i, j = {1, 2, 3, . . . , n}. It should be noted that in this case, the Laplacian matrix L has
non-positive off-diagonal elements, and its diagonal elements are equal to the negative
sum of its row elements. Therefore, it has a left eigenvector equal to an all-ones vector (⃗1)
associated with a zero eigenvalue, i.e., L⃗1 = 0⃗1 [21].

3.2. Modeling Interacting Tank with Inputs and Outputs

Considering that the system has external sources, which forcibly take out or inject fluid
through local control valves that allow the tanks to interact or drain the tanks, the dynamic
model of the system of interacting tanks is given by

ḣi = − hi
Ci

 1
Ro,i

+ ∑
j,{i,j}interact

1
Rij

+
1
Ci

 ∑
j,{i,j}interact

hj

Rij

− 1
Ci

 ∑
{i,j}interact

qi,j

+
qin,i

Ci
, (7)

In general, one can consider a system of interacting tanks with both external in-
puts/outputs (flow rates) and local input and outputs to have the form

˙⃗h = −L⃗h + Eq⃗ + Bu⃗, (8)

where L is a Laplacian matrix, u⃗ = [qin,1, . . . , qin,p]
T is the external input vector, q⃗ =

[qi,j, . . . , qp,q]T is the local input vector, and the local input matrix is

Ei,m =

{ 1
Ci

if there is control valve m between tanks i and j
− 1

Cj
if there is control valve m between tanks j and i

0 otherwise
,

for all m = 1, . . . , M and i = 1, . . . , n, where M and n are the numbers of control valves and
tanks, respectively. And the input matrix is

Bi,m =

{
1
Ci

if there is an external input m to the tank i
0 otherwise

,

for all i = 1, . . . , n and m = 1, .., p, where p is the number of external inputs. Further, L in
(8) is the Laplacian matrix of the system’s graph. In this case, the graph associated with the
system can include self-edges; that is,

Lij =

{ − 1
Ci Rij

if i ̸= j, {i, j} ∈ E,
1

Ci Ro,i
− ∑

j,{i,j}∈E,i ̸=j
Lij if i = j

0 if {i, j} /∈ E

, (9)

for all i, j = {1, 2, 3, . . . , n}, where 1
Ci Ro,i

is a self-edge in the graph G, caused by the drain
in a tank i. It should be noted that in this case, the Laplacian matrix L has non-positive
off-diagonal elements, and its diagonal elements are equal to the negative sum of its row
elements plus the weight of a self-edge, i.e., it is non-negative. In this case, the matrix −L
is a Metzler matrix, which is commonly found in positive linear dynamical systems [22,23].

3.3. Interconnected Characteristics of the Coupled Model

One of the advantages of representing these systems as a MAS is that Equation (5)
works for any interconnection among the tanks. Further, applying the same tools used in
networked control systems and MAS [24], one can obtain the following result.
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A system of interconnected tanks without inputs and outputs modeled as (4) or (5)
reaches consensus if and only if the graph G associated with it is connected, i.e., there is
a path between any two vertices in the graph. Further, the consensus height of fluid is
hi = ∑i wihi(0) ∀i = 1, . . . , n (weighted average of the initial tanks’ levels), where hi(0) is
the initial height of tank i, and wi is the ith entry of the left eigenvector associated with the
eigenvalue λ1 = 0 of the Laplacian matrix L [25]. Moreover, if all the tanks have the same
capacitance (Ci = C∀i = 1, . . . , n), then the tanks’ heights converge to 1

n ∑i hi(0).
When considering the dynamics with local inputs/outputs qij (8), the graph represent-

ing the coupling may not be connected. However, the local input qij can locally control the
tank level and also connect all the tanks in the systems (through the control valves available
in the infrastructure). In this case, the exchange flow rate is qij = − 1

Rpi,j

(
hi − hj

)
, where

Rpi,j is the flow resistance through the valve between tanks i and j, which can be considered
static gain in a simple control algorithm. Further, the values of 1

Rpi,j
̸= 0 generate new edges

in the graph G. From the control and graph theory perspective, these new edges must
connect the graph, in order to achieve a consensus in the system. Therefore, Equation (8) of
the system becomes

˙⃗h = −L̃⃗h + Bu⃗, (10)

where L̃ is the Laplacian matrix of the new graph, and hence has all the properties of any
Laplacian matrix.

Moreover, if the tanks have drains, then all the eigenvalues, γi, of the Laplacian L̃
have negative real parts. Hence, the natural response, i.e., u⃗ = 0⃗, of the dynamics in (10) is
h⃗(t) = ∑n

i=1 eγitviwT
i h⃗(0), whose steady-state value is zero, that is, the dynamics converge

to limt→∞ hi(t) = 0∀i = 1, . . . , n.

4. Modeling as Second-Order Coupled System
4.1. Model Development

In order to define the total flow rate qi as a state variable, expression (2) is derived:

q̇i = q̇in,i −
1

Roi
ḣi − ∑

j,{i,j}interact
q̇ij. (11)

Moreover, using the analysis of the pressure difference at the ends of the pipes that
interconnect tanks i and j [19], it is possible to describe the derivative of the flow rate qij
through that pipe as a general expression for the interconnection between tanks i and j:
q̇ij = aij

ρ
Lij

g
(
hi − hj

)
, where aij and Lij are the cross-section and the length of the pipe

between tanks i and j, ρ is the liquid density, g is the gravity constant, and hi is the fluid
height/level in tank i. Therefore, the total derivative of the flow rate exchanged by tank i
to the rest of the system can be expressed through the expression

∑
j,{i,j}interact

q̇ij = ρg ∑
j,{i,j}interact

apij

Lij

(
hi − hj

)
, (12)

Furthermore, in taking into account (1) and (3), (11) becomes

q̇i = − 1
Ro,i

1
Ci

qi − ρg ∑
j,{i,j}interact

apij

Lij

(
hi − hj

)
+ q̇in,i, (13)

As in Section 3, a weighted graph G = (V, E) represents the coupling between the
tanks, where V = {i, . . . , n} is the vertex set that represents each tank, and E = {(i, j) : wij}
is the edge set that represents the interconnecting pipes, with weights given by wij = wji =
apij
Lij

. Therefore, the dynamics of the system of interacting tanks can be expressed by a
second-order model as
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[
˙⃗h
˙⃗q

]
=

[
0n,n C̃

−ρgLK −C̃R̃o

][⃗
h

q⃗

]
+

[
0n,n

In,n

]
u⃗ (14)

where 0n,n and In,n are a zero matrix and the identity matrix, respectively, C̃ = diag(C−1
1 , . . . ,

C−1
n ) is the matrix whose diagonal corresponds to the inverse of each coefficient of flow stor-

age in every reservoir, R̃o = diag(R−1
o,1 , . . . , R−1

o,n) is the matrix whose diagonal corresponds

to the inverse of the fluid resistances of every reservoir, u⃗ = [q̇in,1, . . . , q̇in,n]
T , and LK is

the Laplacian matrix

LKij =

{ − apij
Lij

if i ̸= j, {i, j} ∈ E,

− ∑
j,{i,j}∈E,i ̸=j

LKij if i = j

0 if {i, j} /∈ E

, (15)

for all i, j = {1, 2, 3, . . . , n}.

4.2. Interconnected Characteristics in Tank System Behavior

The state matrix of the dynamics in (14) has the following characteristic equation:∣∣∣λ2 + λC̃R̃o + ρgLKC̃
∣∣∣ = 0, (16)

where λ denotes the eigenvalues of the state matrix. Therefore, the eigenvalues λ must
satisfy the equation λ2 + λ 1

Ci Ro,i
+ ρg 1

Ci
γi = 0, where γi is an eigenvalue of LK. Also, given

that n eigenvalues of the Laplacian matrix LK are 0 = γ1 ≤ γ2 ≤ . . . ≤ γn [21], the state
matrix has at least two real eigenvalues: λ1 = 0 and λ2 = − 1

CRo
. Further, the remaining

2n − 2 eigenvalues have negative real parts.
Additionally, if G is connected, then the dominant mode of the dynamics in (14) is e0t,

of which its response is maintained over time while the effect of the other modes disappears
as t → ∞ since the associated eigenvalues have a negative real part. In this regard, we can
analyze the behavior of this mode as time grows and whhile considering q̇ii = 0, i.e., the
natural response.

The natural response of (14) is given by[⃗
h(t)
q⃗(t)

]
=

2n

∑
i=1

(
eλitviwT

i

)[⃗h(0)
q⃗(0)

]
, (17)

where vi and wT
i are the right and left eigenvectors associated with the eigenvalue λi. Since

the eigenvalues λi∀i = 2, . . . , 2n have a negative real part and λ1 = 0, the steady state
natural response of the system is

lim
t→∞

[⃗
h(t)
q⃗(t)

]
= v1wT

1

[⃗
h(0)
q⃗(0)

]
, (18)

where vT
1 =

[⃗
1T 0⃗T

]
and wT

i = 1
n

[⃗
1T R̃−1

o 1⃗T
]

are the right and left eigenvectors associated
with the eigenvalue λ1 = 0. Therefore, both the fluid height and the flow rate converge to

lim
t→∞

hi(t) =
1
n

n

∑
i=1

hi(0) +
1
n

n

∑
i=1

Ro,iqi(0)

lim
t→∞

qi(t) = 0
(19)

Moreover, if the initial flow rate is zero, the height in each tank converges to 1
n ∑n

i=1 hi(0),
which is the same as in the first-order model.
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5. Illustrative Examples

First, let us model the system of three tanks shown in Figure 2 (left) using first-order
dynamics.

 

1 2 3 

𝑤21 

𝑤12 

𝑤32 

𝑤23 

Figure 2. System of three interacting tanks without inputs/outputs (left) and its associated graph
(right).

The graph associated with this system has three vertices and edges, as shown in
Figure 2 (right). Then, the directions and the weights of the edges depend on the direction
of the fluid flow, capacitance of each tank, and resistance of the pipes. For instance, the flows
q12 = −q21 = 1

R12
(h1 − h2) affect the dynamics of tank 1 and 2 and are represented as the

directions and weights of the edges between vertices 1 and 2. Therefore, the state matrix of
the model (5) is given by

L =


1

R12C1
− 1

R12C1
0

− 1
R12C2

( 1
R12C2

+ 1
R23C2

) 1
R23C2

0 − 1
R23C3

1
R23C3

,

which is the negative of the Laplacian matrix of the graph shown in Figure 2 (right).
The natural response of the three-tank dynamics is shown in Figure 3. One observes that
the tanks’ height reaches consensus with the weighted average of the initial heights, while
the flow rate in each tank becomes zero.
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[q2]
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Figure 3. Height and flow rate for a first-order model of a three-tank system.

Meanwhile, using second-order dynamics, (14), where LK is

LK =


ap12
L12

− ap12
L12

0
− ap12

L12
(

ap12
L12

+
ap23
L23

) − ap23
L23

0 − ap23
L23

ap23
L23


the natural response of the system is faster than its first-order counterpart, and it has an
oscillatory behavior due to the presence of complex modes in system (14), as shown in
Figure 4. It is observed that the tanks’ height reaches consensus with a value that depends
of the initial heights, and the flow rate in each tank becomes zero, which means that
exchanged flow rate through the pipes between tanks will be zero too.

Now, consider a five-tank system as shown in Figure 5, where there are control valves
between tanks 2 and 3 and between 3 and 4, i.e., the dynamics corresponding to tanks 2,
3, and 4 have local inputs/outputs. Further, tanks 1, 3, and 5 have external inputs and
tanks1, 2, 4, and 5 have an output flow.
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Figure 4. Height and flow rate for a second-order model of a three-tank system.

Figure 5. System of five interacting tanks.

The graph associated with this system is shown in Figure 6 (right), which includes
self-edges in all the vertices. Moreover, the graph is not connected since vertices 2 and 4
are isolated; however, these vertices, together with vertex 3, have local inputs. The system
dynamics are

˙⃗h = −L⃗h +


0 0
1

C2
0

− 1
C3

− 1
C3

0 1
C4

0 0


[

q23
q43

]
+


1

C1
0 0

0 0 0
0 1

C3
0

0 0 0
0 0 1

C5


qin,1

qin,3
qin,5

 (20)

where h⃗ =
[
h1 . . . h5

]T and L =



1
C1

(
1

Ro1
+ 1

R13

)
0 − 1

C1
1

R13
0 0

0 1
C2

1
Ro,2

0 0 0

− 1
C3

1
R13

0 1
C3

(
1

R35
+ 1

R13

)
0 − 1

C3
1

R35

0 0 0 1
C4

1
Ro,4

0

0 0 − 1
C5

1
R35

0 1
C5

(
1

Ro,5
+ 1

R35

)


.
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4 
1

𝐶4𝑅𝑜,4

 

𝑤32 
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𝑤34 

Figure 6. Graphs of the system with five interconnected tanks with closed control valves (left) and
open control valves (right) between tanks 2, 3, and 4.
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Once, the valves between tanks 2 and 3 and tanks 3 and 4 are open, the dynamics of
the system are given by (10), as shown in Figure 6 (left), with Laplacian matrix

L̃ =



1
C1

(
1

Ro1
+ 1

R13

)
0 − 1

C1
1

R13
0 0

0 1
C2

(
1

Ro,2
+ 1

Rp2,3

)
− 1

C2
1

Rp2,3
0 0

− 1
C3

1
R13

− 1
C3

1
Rp2,3

1
C3

(
1

R35
+ 1

R13
+ 1

Rp2,3
+ 1

Rp3,4

)
− 1

C3
1

Rp3,4
− 1

C3
1

R35

0 0 − 1
Rp3,4

1
C4

(
1

Ro,4
+ 1

Rp3,4

)
0

0 0 − 1
C5

1
R35

0 1
C5

(
1

Ro,5
+ 1

R35

)



For the second-order model, the dynamics of the five tanks given by (14) uses

LK =



ap13
L13

0 − ap13
L13

0 0
0

ap23
L23

− ap23
L23

0 0

− ap13
L13

− ap23
L23

(
ap13
L13

+
ap23
L23

+
ap34
L34

+
ap35
L35

)
− ap34

L34
− ap35

L35

0 0 − ap34
L34

ap34
L34

0
0 0 − ap35

L35
0

ap34
L34



Finally, the natural response of the five-tank system for a first-order and second-order
model are shown in Figures 7 and 8. Again, one observes that the tanks’ height and flow
rate reach consensus: the heights converge to the weighted average of the initial heights,
while the flow rates converge to zero.

0 100 200 300 400 500
Time t [sec]

1.0

1.2

1.4

1.6

1.8

2.0

He
ig

ht
 h

 [m
]

Height
[h1]
[h2]
[h3]
[h4]
[h5]

0 100 200 300 400 500
Time t [sec]

0.04

0.03

0.02

0.01

0.00

0.01

0.02
Fl

ow
 R

at
e 

q 
[m

/s
]

Flow Rate

[q1]
[q2]
[q3]
[q4]
[q5]

Figure 7. Height and flow rate for a first-order model of a five-tank system in star configuration.
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Figure 8. Height and flow rate for a second-order model of a five-tank system in star configuration.

6. Conclusions

The interacting tank model described in this study was modeled as a coupled/interconnected
system that can employ any configuration for the interconnection between the tanks and is
scalable to n agents. Furthermore, it employs analytical techniques to support the modeling,
including graph and spectral graph theory, and control theory to analyze and characterize
the behavior of individual agents as well as the system as a whole. Using this MAS ap-
proach, the system is viewed as a collection of independent agents cooperating to achieve a
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shared goal, namely the convergence of heights, which acts as a stepping stone to apply
control algorithms designed for cyber-physical systems to this type of system.
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