Chemical Composition, Antioxidant, and Anti-Diabetic Activities of Scorzonera phaeopappa Boiss
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield, Total Phenol, Total Flavonoid, and Total Terpene Contents
2.2. Antioxidant Activities of Scorzonera phaeopappa Extracts Using DPPH and Fe2+ Chelating Assays
2.3. Antidiabetic Activities of Scorzonera pheoppapa Leaves Extracts Using α-Amylase and α-Glucosidase Inhibitory Assays
3. Conclusions
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals
4.3. Extraction Methods
4.4. Total Phenolic Content for Leaves Extracts
4.5. Total Flavonoid Content
4.6. Total Terpenes Content
4.7. DPPH Radical Scavenging Assay
4.8. Ferrous Ion Chelating Assay
4.9. α-Amylase Inhibitory Activity
4.10. α-Glucosidase Inhibitory Activity
4.11. Statistical Analyses
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harumi Iyda, J.; Fernandes, Â.; Calhelha, R.C.; Alves, M.J.; Ferreira, F.D.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Nutritional Composition and Bioactivity of Umbilicus Rupestris (Salisb.) Dandy: An Underexploited Edible Wild Plant. Food Chem. 2019, 295, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Milella, L.; Bader, A.; De Tommasi, N.; Russo, D.; Braca, A. Antioxidant and Free Radical-Scavenging Activity of Constituents from Two Scorzonera Species. Food Chem. 2014, 160, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Tohmé, G.; Tohmé, H. Un Nouveau Signalement de Plante Du Liban. Leban. Sci. J. 2016, 17, 240–241. [Google Scholar] [CrossRef]
- Sarı, A. Two New 3-Benzylphthalides from Scorzonera Veratrifolia Fenzl. Nat. Prod. Res. 2010, 24, 56–62. [Google Scholar] [CrossRef]
- Zidorn, C. Sesquiterpene Lactones and Their Precursors as Chemosystematic Markers in the Tribe Cichorieae of the Asteraceae. Phytochemistry 2008, 69, 2270–2296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Edrada-Ebel, R.; Tsevegsuren, N.; Sendker, J.; Braun, M.; Wray, V.; Lin, W.; Proksch, P. Dihydrostilbene Derivatives from the Mongolian Medicinal Plant Scorzonera Radiata. J. Nat. Prod. 2009, 72, 671–675. [Google Scholar] [CrossRef]
- Bellassouad, K.; Feki, A.E.; Ayadi, H. Effect of Extraction Solvents on the Biomolecules and Antioxidant Properties of Scorzonera undulata (Asteraceae): Application of Factorial Design Optimization Phenolic Extraction. Acta Sci. Pol. Technol. Aliment. 2015, 14, 313–330. [Google Scholar] [CrossRef]
- Erden, Y.; Kırbağ, S.; Yılmaz, Ö. Phytochemical Composition and Antioxidant Activity of Some Scorzonera Species. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 271–276. [Google Scholar] [CrossRef]
- Sezer Senol, F.; Acikara, O.B.; Citoglu, G.S.; Orhan, I.E.; Acqua, S.D.; Özgökce, F. Prospective Neurobiological Effects of the Aerial and Root Extracts and Some Pure Compounds of Randomly Selected Scorzonera Species. Pharm. Biol. 2014, 52, 873–882. [Google Scholar] [CrossRef]
- Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-Amylases: A Biotechnological Perspective. Process Biochem. 2003, 38, 1599–1616. [Google Scholar] [CrossRef]
- Anam, K.; Widharna, R.M.; Kusrini, D. α-Glucosidase Inhibitor Activity of Terminalia Species. IJP Int. J. Pharmacol. 2009, 5, 277–280. [Google Scholar] [CrossRef]
- Russo, D.; Valentão, P.; Andrade, P.B.; Fernandez, E.C.; Milella, L. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus Sonchifolius Landraces and Correlation with Their Phytochemical Profiles. Int. J. Mol. Sci. 2015, 16, 17696–17718. [Google Scholar] [CrossRef] [PubMed]
- Şakul, A.A.; Kurtul, E.; Özbek, H.; Kirmizi, N.İ.; Bahti̇yar, B.C.; Saltan, H.; Acikara, Ö.B. Evaluation of Antidiabetic Activities of Scorzonera Species on Alloxan Induced Diabetic Mice. Clin. Exp. Health Sci. 2021, 11, 74–80. [Google Scholar] [CrossRef]
- Temiz, M.A. Antioxidant and Antihyperglycemic Activities of Radical Leaves in Streptozocin-Induced Diabetic Rats. Acta Pharm. 2021, 71, 603–617. [Google Scholar] [CrossRef]
- Idoudi, S.; Othman, K.B.; Bouajila, J.; Tourrette, A.; Romdhane, M.; Elfalleh, W. Influence of Extraction Techniques and Solvents on the Antioxidant and Biological Potential of Different Parts of Scorzonera undulata. Life 2023, 13, 904. [Google Scholar] [CrossRef]
- Sonmez, N.I.K.; Acikara, O.B.; Sakul, A.A.; Bahtiyar, B.C.; Bardakci, H.; Barak, T.H.; Ozbek, H. HPTLC Quantification, Assessment of Antioxidant Potential and In Vivo Hypoglycemic Activity of Scorzonera Latifolia (Fisch. & C.A. Mey.) DC. and Its Major Compounds. S. Afr. J. Bot. 2022, 150, 671–677. [Google Scholar] [CrossRef]
- Ajebli, M.; Amssayef, A.; Eddouks, M. Antihyperglycemic Activity and Safety Assessment of the Aqueous Extract of Aerial Parts of Scorzonera undulata ssp Deliciosa in Rat. Cardiovasc. Hematol. Disord.-Drug Targets 2020, 20, 305–316. [Google Scholar] [CrossRef]
- Durmuskahya, C.; Ozturk, M. Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes in Manisa, Turkey. Sains Malays. 2013, 42, 1431–1438. [Google Scholar] [CrossRef]
- Shams Ardekani, M.R.; Hajimahmoodi, M.; Oveisi, M.R.; Sadeghi, N.; Jannat, B.; Ranjbar, A.M.; Gholam, N.; Moridi, T. Comparative Antioxidant Activity and Total Flavonoid Content of Persian Pomegranate (Punica granatum L.) Cultivars. Iran. J. Pharm. Res. 2011, 10, 519–524. [Google Scholar] [CrossRef]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical Constituents of Some Nigerian Medicinal Plants. AJB 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Yen, G.-C.; Chen, H.-Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant Properties of Several Tropical Fruits: A Comparative Study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Oboh, G. Soybean Phenolic-Rich Extracts Inhibit Key-Enzymes Linked to Type 2 Diabetes (α-Amylase and α-Glucosidase) and Hypertension (Angiotensin I Converting Enzyme) In Vitro. Exp. Toxicol. Pathol. 2013, 65, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Shai, L.J.; Magano, S.R.; Lebelo; Mogale, A.M. Inhibitory Effects of Five Medicinal Plants on Rat Alpha-Glucosidase: Comparison with Their Effects on Yeast Alpha-Glucosidase. JMPR 2011, 5, 2863–2867. Available online: https://academicjournals.org/journal/JMPR/article-full-text-pdf/B77C8DD18612 (accessed on 1 October 2023).
- Baydoun, S.; Chalak, L.; Dalleh, H.; Arnold, N. Ethnopharmacological Survey of Medicinal Plants Used in Traditional Medicine by the Communities of Mount Hermon, Lebanon. J. Ethnopharmacol. 2015, 173, 139–156. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila Aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Rauf, A. Optimization of Extraction Yield and Antioxidant Properties of Brassica Oleracea Convar Capitata Var L. Leaf Extracts. Food Chem. 2018, 242, 182–187. [Google Scholar] [CrossRef]
- Harkati, B.; Akkal, S.; Bayat, C.; Laouer, H.; Franca, M.D. Secondary Metabolites from Scorzonera undulata ssp. Deliciosa (Guss.) Maire (Asteracae) and Their Antioxidant Activities. Rec. Nat. Prod. 2010, 4, 171. [Google Scholar]
- Addai, Z.R.; Abdullah, A.; Mutalib, S.A. Effect of Extraction Solvents on the Phenolic Content and Antioxidant Properties of Two Papaya Cultivars. JMPR 2013, 7, 3354–3359. [Google Scholar]
- Sun, Y.; Liu, D.; Chen, J.; Ye, X.; Yu, D. Effects of Different Factors of Ultrasound Treatment on the Extraction Yield of the All-Trans-β-Carotene from Citrus Peels. Ultrason. Sonochemistry 2011, 18, 243–249. [Google Scholar] [CrossRef]
- Tai, Z.; Cai, L.; Dai, L.; Dong, L.; Wang, M.; Yang, Y.; Cao, Q.; Ding, Z. Antioxidant Activity and Chemical Constituents of Edible Flower of Sophora Viciifolia. Food Chem. 2011, 126, 1648–1654. [Google Scholar] [CrossRef]
- Donia, A.E.R.M. Phytochemical and Pharmacological Studies on Scorzonera Alexandrina Boiss. J. Saudi Chem. Soc. 2016, 20, S433–S439. [Google Scholar] [CrossRef]
- Iloki-Assanga, S.B.; Lewis-Luján, L.M.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent Effects on Phytochemical Constituent Profiles and Antioxidant Activities, Using Four Different Extraction Formulations for Analysis of Bucida buceras L. and Phoradendron Californicum. BMC Res. Notes 2015, 8, 396. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Identification and Concentration of Some Flavonoid Components in Malaysian Young Ginger (Zingiber Officinale Roscoe) Varieties by a High Performance Liquid Chromatography Method. Molecules 2010, 15, 6231–6243. [Google Scholar] [CrossRef] [PubMed]
- Justesen, U. Negative Atmospheric Pressure Chemical Ionisation Low-Energy Collision Activation Mass Spectrometry for the Characterisation of Flavonoids in Extracts of Fresh Herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-X.; Su, Y.-B.; Zhu, Y. Triterpenes and Steroids from the Roots of Scorzonera Austriaca. Fitoterapia 2011, 82, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Edrada, R.A.; Tsevegsuren, N.; Lin, W.; Ebel, R.; Torre, C.; Ortlepp, S.; Wray, V.; Proksch, P. Four New Natural Products from Mongolian Medicinal Plants Scorzonera Divaricata and Scorzonera Pseudodivaricata (Asteraceae). Planta Med. 2006, 72, S_011. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An Easy and Fast Test to Compare Total Free Radical Scavenger Capacity of Foodstuffs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant Activity of Dulse (Palmaria Palmata) Extract Evaluated In Vitro. Food Chem. 2005, 91, 485–494. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Piccolo, V.; Statti, G.A.; de Cindio, B.; Houghton, P.J.; Menichini, F. In Vitro Inhibitory Activities of Plants Used in Lebanon Traditional Medicine against Angiotensin Converting Enzyme (ACE) and Digestive Enzymes Related to Diabetes. J. Ethnopharmacol. 2008, 119, 109–116. [Google Scholar] [CrossRef]
- Narita, Y.; Kimura, R.; Nakagiri, O.; Inouye, K. Kinetic Analysis and Mechanism on the Inhibition of Chlorogenic Acids against Porcine Pancreas α-Amylase. In Proceedings of the 22nd International Conference on Coffee Science, ASIC 2008, Campinas, SP, Brazil, 14–19 September 2008; Association Scientifique Internationale du Café (ASIC): Lausanne, Switzerland, 2009; pp. 171–175. [Google Scholar]
- Lohani, H.; Haider, S.Z.; Chauhan, N.K.; Sah, S.; Andola, H.C. Aroma Profile of Two Juniperus Species from Alpine Region in Uttarakhand. J. Nat. Prod. 2013, 6, 38–43. [Google Scholar]
- Albayrak, S.; Aksoy, A.; Sagdic, O.; Hamzaoglu, E. Compositions, Antioxidant and Antimicrobial Activities of Helichrysum (Asteraceae) Species Collected from Turkey. Food Chem. 2010, 119, 114–122. [Google Scholar] [CrossRef]
Solvent | Extraction Yield % Mean ± SD |
---|---|
Acetone | 41.3 ± 0.0 |
DCM-a | 23.5 ± 0.0 |
DCM | 9.5 ± 0.0 |
MeOH | 12.2 ± 0.0 |
EtOH | 13.5 ± 0.1 |
Total Phenolic Content | Total Flavonoid Content | Total Terpene Content | |
---|---|---|---|
Extract | mg GAE/100 mg DW | mg QE/100 mg DW | mg LE/100 mg DW |
Acetone | 1.69 ± 0.00 | 61.0 ± 0.6 | 11.3 ± 0.5 |
DCM-a | 2.70 ± 0.00 | 14.0 ± 1.1 | 51.0 ± 1.4 |
DCM | 2.04 ± 0.00 | 25.0 ± 0.7 | 232.0 ± 22.6 |
MeOH | 1.83 ± 0.00 | 63.0 ± 1.4 | 28.3 ± 0.2 |
EtOH | 1.46 ± 0.04 | 53.0 ± 1.1 | 8.7 ± 1.9 |
Extract | IC50 DPPH Assay (mg/mL) | Fe2+ Chelating Activity | |
---|---|---|---|
Concentration (mg/mL) | Inhibitory Percentage (%) | ||
Acetone | 0.50 ± 0.07 | 0.10 | 45 ± 2 |
0.15 | 54 ± 1 | ||
DCM-a | 1.05 ± 0.10 | 0.15 | 52 ± 1 |
0.2 | 62 ± 1 | ||
DCM | 0.38 ± 0.03 | 0.15 | 52 ± 2 |
0.2 | 62 ± 1 | ||
MeOH | 0.07 ± 0.02 | 0.06 | 21 ± 1 |
0.08 | 50 ± 1 | ||
EtOH | 0.39 ± 0.02 | 0.10 | 37 ± 2 |
0.15 | 45 ± 1 |
Extract | IC50 α-Amylase (mg/mL) | IC50 α-Glucosidase (mg/mL) |
---|---|---|
Acetone | 0.21 ± 0.00 | 6.30 ± 0.21 |
DCM-a | 3.43 ± 2.10 | 12.55 ± 1.10 |
DCM | 0.97 ± 0.01 | 16.80 ± 1.13 |
EtOH | 0.56 ± 0.05 | 5.46 ± 0.32 |
MeOH | 2.06 ± 0.06 | 9.01 ± 0.36 |
Acarbose | 0.42 ± 0.03 | 0.28 ± 0.06 |
α-Amylase Inhibitory Activity | α-Glucosidase Inhibitory Activity | ||
---|---|---|---|
Total Phenol content | Correlation coefficient | 0.800 | 0.900 * |
p value | 0.104 | 0.037 | |
N | 5 | 5 | |
Total Flavonoid content | Correlation coefficient | −0.400 | −0.500 |
p value | 0.505 | 0.391 | |
N | 5 | 5 | |
Total Terpene content | Correlation coefficient | 0.600 | 1.000 ** |
p value | 0.285 | 0.112 | |
N | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hosry, L.; Al Ayash, S.; Matar Boumosleh, J.; Bou-Maroun, E. Chemical Composition, Antioxidant, and Anti-Diabetic Activities of Scorzonera phaeopappa Boiss. Stresses 2023, 3, 773-784. https://doi.org/10.3390/stresses3040053
El Hosry L, Al Ayash S, Matar Boumosleh J, Bou-Maroun E. Chemical Composition, Antioxidant, and Anti-Diabetic Activities of Scorzonera phaeopappa Boiss. Stresses. 2023; 3(4):773-784. https://doi.org/10.3390/stresses3040053
Chicago/Turabian StyleEl Hosry, Leina, Souad Al Ayash, Jocelyne Matar Boumosleh, and Elias Bou-Maroun. 2023. "Chemical Composition, Antioxidant, and Anti-Diabetic Activities of Scorzonera phaeopappa Boiss" Stresses 3, no. 4: 773-784. https://doi.org/10.3390/stresses3040053